EP0556208B1 - Dispositif pour le revetement de pieces creuses par diffusion gazeuse - Google Patents

Dispositif pour le revetement de pieces creuses par diffusion gazeuse Download PDF

Info

Publication number
EP0556208B1
EP0556208B1 EP91918473A EP91918473A EP0556208B1 EP 0556208 B1 EP0556208 B1 EP 0556208B1 EP 91918473 A EP91918473 A EP 91918473A EP 91918473 A EP91918473 A EP 91918473A EP 0556208 B1 EP0556208 B1 EP 0556208B1
Authority
EP
European Patent Office
Prior art keywords
donor metal
workpiece
gas
donor
workpieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91918473A
Other languages
German (de)
English (en)
Other versions
EP0556208A1 (fr
Inventor
Lothar Peichl
Heinrich Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0556208A1 publication Critical patent/EP0556208A1/fr
Application granted granted Critical
Publication of EP0556208B1 publication Critical patent/EP0556208B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases

Definitions

  • the invention relates to a device for gas diffusion coating of hollow workpieces made of heat-resistant alloys such as Ni, Co or Fe-based alloys, the outer and inner surfaces of which are connected to one another by bores, with a container which has at least one gas supply line and one gas discharge line, the gas discharge line is connected downstream of the inner surfaces of the workpiece to be coated and with a donor metal in the form of a donor metal body which completely envelops the outer and inner surfaces of the workpiece to be coated while maintaining a gap.
  • heat-resistant alloys such as Ni, Co or Fe-based alloys
  • a method for producing surface alloys on metal components is known from US Pat. No. 2,910,382.
  • a donor metal in the form of a sintered body is placed at a distance from the component surfaces to be coated, and if the inner surfaces are additionally coated, the component cavities are filled with sintered bodies made of donor metal, so that a sintered body also faces the component surfaces in the cavities.
  • a device for the simultaneous gas diffusion coating of outer and inner surfaces is known.
  • the components to be coated are arranged in the upper region of a box.
  • the box In the lower area, the box has a carrier gas feed line and a support grid for receiving an activator powder and a donor metal granulate.
  • This device has the disadvantage that heavy donor metal gases that form have to rise from the donor metal granules to the components to be coated, whereby according to the barometric height formula, a thinning of the donor metal gases occurs in the vertical direction, which is disadvantageous to differences in layer thickness on the components depending on their geodetic height with respect to the Lead donor metal.
  • the device causes the inner surfaces of the component to have smaller coating thicknesses up to a lack of coating inside the component as the distance from connecting bores between the outer and inner surfaces increases.
  • the object of the invention is to provide a device for gas diffusion coating, with which a uniform coating of a hollow component on the outer and inner surfaces is ensured, particularly in the case of long and narrow cavities.
  • a device which has the generic features and in which workpiece holders are arranged in the container, which hold the workpieces at a geodetically low height with respect to a donor metal and the cavities of the hollow workpiece are free of donor metal and the gas discharge is direct or in combination with an upstream siphon is shaped as an overflow, the overflow level of which is positioned at the level of the uppermost surface of the workpiece to be coated.
  • This device has the advantage that coating thicknesses which have small thickness fluctuations are achieved both inside the component and on the outside.
  • the surface of the component is supplied with a consistently high concentration of donor metal gas, without dilution effect of the donor metal gas due to a high proportion of carrier gas and without donor metal particles inside the component, so that the danger of the cavities becoming blocked and the drilling between outer and inner surfaces is avoided.
  • the components are advantageously held in a highly concentrated inexhaustible donor metal gas source which is formed in the device according to the invention due to the small gap to the donor metal body and the encasing of the components by the donor metal body.
  • the donor metal gas can diffuse into the interior and fill the cavities through openings, such as preferably holes, on the outer surface of the component.
  • the filling and supplying of the cavities with donor metal gas can be accelerated by introducing gases via the gas supply line and discharging via the gas discharge line downstream of the inner surfaces. This is particularly advantageous for components with strongly subdivided cavities, relatively small cross-sectional areas of the openings in the outer surface compared to the inner surfaces to be coated, or for long, small connecting bores between outer and inner surfaces, so that this device is preferably used for gas diffusion coating of engine blades with cooling channels and Cooling air holes is suitable.
  • the formation of the gas discharge as an overflow or upstream siphon has the advantage that the height of the donor metal gas sump can be adapted to the component height. Since the heavy donor metal gas can only escape via the overflow as a threshold, an overflow or siphon ensures a constant high donor metal gas concentration.
  • the workpiece holder preferably comprises a conical seat, which has a centrally arranged gas discharge channel and corresponds with connecting bores to cavities in the workpieces.
  • This conical seat has the advantage that not only is the workpiece held in position, but that transition pieces can be used to hold the components, which enable quick assembly of the components to be coated.
  • transition pieces and component areas that are not to be coated these surfaces can be coated with a layer of ceramic slip, for example, and dried, which layer can be secured against chipping or crumbling by embedding in dispenser metal powders.
  • Embedding the workpiece holder with donor metal powder in the bottom area of the device has the advantage that an almost inexhaustible reservoir with a large donor metal surface is available for the donor metal gas supply to the donor metal gas sump. For this reason, a fine-grained powder bed of donor metal is preferably arranged below the donor metal body.
  • the donor metal body preferably consists of one or more coarse-mesh granulate baskets which are filled with coarse-grained donor metal granules.
  • a coarse-grained donor metal granulate has a reduced surface on which donor metal gas can form, but can advantageously be layered laterally and above the component in the provided baskets without falling through the basket mesh and thus contaminating the component surface or clogging the holes in the outer surface .
  • the surface can advantageously be enlarged with a correspondingly high porosity and baskets for maintaining the gap due to the dimensional stability of such a donor metal body can be dispensed with.
  • Donor metal bodies made of one or more porous sintered bodies are used advantageously when large quantities are to be coated.
  • a donor metal body which consists of compact metal, in which labyrinth structures are incorporated for gas guidance.
  • the labyrinth structures advantageously enlarge the donor metal body surface so that a slowly flowing carrier gas can be enriched with donor metal gas before it reaches the surfaces to be coated.
  • This multi-part dispenser metal body is placed over the component to be coated while maintaining a gap of 0.5 to 50 mm in width.
  • Both a dispenser metal body made of compact metal and one made of open-pore and porous material can drill holes, Indentations or other indentations for receiving powders that are involved in a reaction for donor gas formation.
  • FIG. 1 shows a device for gas diffusion coating by means of a compact donor metal body 1 of hollow workpieces 11 made of heat-resistant alloys such as Ni, Co or Fe-based alloys, the outer and inner surfaces 16 of which are connected to one another by a large number of bores 13, 14, 15 are.
  • the device has a container 22 which has at least one gas feed line 23 and one gas discharge line 21.
  • the gas discharge line 21 is connected downstream of the inner surfaces 16 to be coated.
  • the container 22 is arranged in a process space known per se.
  • the workpieces 11 are held by workpiece holders 24 at a geodetically low height with respect to the donor metal body 1.
  • the dispenser metal body 1 completely envelops the outer surfaces 12 to be coated while maintaining a gap 8.
  • the dispenser metal body 1 is self-supporting and is composed of several compact individual parts 2 to 7 such as lids 3, 5, 7 and sleeves 2, 4, 6.
  • the covers 3, 5, 7 and sleeves 2, 4, 6 are spaced apart from one another and form a labyrinth for guiding the gas.
  • the outer sleeve 2 has openings 9 in the lower region which allow the gas to flow into the labyrinth in the direction of the arrow 47 and the inner sleeve 6 shows openings 10 in the lower region which the gas in the direction of the arrow 38 lead into the gap between donor metal body 1 and outer surfaces 12 to be coated.
  • the donor-rich gas is supplied to the cavities 17 for coating the inner surfaces 16 in the direction of arrow 39.
  • An exhaust gas line 18 ends, for example, openly in a gas-purged space 19 which, for example, also has an inlet 20 in addition to the gas supply line 23.
  • the container 22 is heated so that a powdery activator 25 sublimes at the bottom of the labyrinth 26 and fills the labyrinth 26 with activator gas.
  • a reaction with the activator gas forms a heavy donor metal gas on the surfaces of the donor metal body 1, which deposits metal such as aluminum or aluminum alloys on the workpiece outer surface 12, the walls of the bores and the inner surface 16 of the workpiece.
  • the gas discharge line in FIG. 1 is designed as an overflow, the overflow level of which is arranged at the height of the highest workpiece edge.
  • Powdery activator or an activator gas can also be fed in via the gas feed line 23. When an activator gas is fed in, the gas feed line 23 is heated above the sublimation temperature of the activator in order to avoid condensation in the gas feed line.
  • the 2 shows a device for gas diffusion coating by means of a dispenser metal body 1 made of granulate baskets 27.
  • the granulate baskets 27 are designed in such a way that they completely envelop the workpiece 11 on the outer surfaces 12 to be coated while maintaining a gap 8 of 2 to 5 mm.
  • the particle size of the granules 31 in the granule baskets 27 is larger than the mesh size of the baskets.
  • the granulate 31 consists of donor metal such as aluminum or aluminum alloys.
  • the granulate baskets 27 are arranged with the workpiece 11 and a workpiece holder 24 in a retort 28, which is sealed gas-tight by means of a seal 45.
  • At the bottom of the retort activator powder 25 is arranged mixed with donor metal powder 32 and also supplies the test tube with donor metal gas.
  • the mixture of activator powder 25 and donor metal powder 32 simultaneously supports the ceramic layer 29 so that it does not flake or crumble during the gas diffusion process.
  • the retort 28 has a conical seat 33 in the bottom area for receiving the workpiece holder 24.
  • a centrally arranged gas discharge channel 30 directs the process gases in the direction of arrow 43 from the inside of the workpiece into the gas-purged space 19 via an overflow 34.
  • This overflow means that the heavy donor metal gas does not flow out of the inside of the workpiece in an uncontrolled manner, since the overflow level is arranged higher than the top edge 44 of the workpiece .
  • a donor metal gas sump is formed in the retort 28 regardless of the level of the gas discharge 21 of the container 22.
  • the gas supply and purging of the space 19 with inert or reducing gas takes place in the direction of the arrow 40 via the inlet 20 and the gas outlet 21.
  • FIG. 3 shows a device for gas diffusion coating by means of a dispenser metal body 1 made of sintered metal 35, for example an aluminum alloy, which completely envelops the outer surfaces 12 of the workpiece 11 to be coated while maintaining a gap 8.
  • the sintered metal 35 has a high concentration of open pores, so that a high gas permeability is achieved.
  • activator gas and donor metal gas diffuse in the direction of arrow 41 through the donor metal body 1 to the workpiece 11, wherein the activator gas penetrates the entire donor metal body 1 and forms donor metal gas and supplies the surfaces of the workpiece 11 to be coated with donor metal on all sides.
  • the donor metal gas reaches the cavities of the workpiece 11 in the direction of arrow 42 while coating the outer 12 and inner surfaces.
  • the heavy donor metal glass accumulates in the gas discharge channel 30 and fills the riser 37, which is designed as a siphon, up to the overflow level 34 of the riser 37 as a siphon riser 37, so that a uniform and thick coating of the inner and outer surfaces 12 of the workpiece 11 takes place.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention se rapporte à un dispositif pour le revêtement, par diffusion gazeuse, de pièces creuses en alliages résistant aux températures élevées, tels que alliages à base de Ni, Co ou Fe, dont les surfaces extérieures et intérieures communiquent par des trous. Les pièces sont disposées dans un récipient se trouvant dans une enceinte de type connu, des porte-pièces étant disposés à une faible hauteur géodésique par rapport à un corps de métal dispensateur. Le corps de métal dispensateur, en granulé, métal fritté ou métal compact, enveloppe complètement, tout en laissant une fente, les surfaces extérieures à revêtir de chaque pièce. Le dispositif convient en premier lieu au revêtement intérieur et extérieur d'aubes de motopropulseurs munies de trous à air de refroidissement.

Claims (5)

  1. Dispositif pour le revêtement par diffusion gazeuse de pièces d'oeuvre creuses en alliages résistant à la chaleur tels que des alliages à base de nickel, de cobalt ou de fer, dont les surfaces externe et interne sont reliées ensemble par des perçages, au moyen d'un récipient qui comporte au moins une conduite d'amenée de gaz et une conduite d'évacuation de gaz, la conduite d'évacuation de gaz étant branchée à la suite de la surface interne à revêtir de la pièce d'oeuvre, et au moyen d'un métal dispensateur sous la forme d'une structure de métal dispensateur qui en ménageant un interstice enveloppe complètement les surfaces externe et interne à revêtir de la pièce d'oeuvre, dispositif caractérisé en ce que dans le réservoir (22) sont disposés des supports (24) de pièces d'oeuvre qui maintiennent les pièces d'oeuvre (11) à un niveau géodésiquement réduit par rapport au métal dispensateur, et les espaces creux de la pièce d'oeuvre creuse sont exempts de métal dispensateur tandis que la canalisation d'évacuation des gaz (21) est formée directement ou en combinaison avec un siphon branché en amont sous la forme d'un déversoir dont le niveau de déversement est positionné à la hauteur de la surface à revêtir la plus haute de la pièce d'oeuvre (11).
  2. Dispositif selon la revendication 1, caractérisé en ce que le support de la pièce d'oeuvre (24) comprend un siège conique (33) qui comporte un canal d'évacuation des gaz disposé au centre et correspond avec des perçages de liaison vers les espaces creux de la pièce d'oeuvre (11).
  3. Dispositif selon la revendication 1 ou la revendication 2, caractérisé en ce qu'au-dessous de la structure en métal dispensateur (1) est disposé un remblai à grains fins de métal dispensateur (32).
  4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que la structure de métal dispensateur (1) consiste en un ou plusieurs paniers de granulés (27) à grandes mailles, qui est rempli ou qui sont remplis d'un granulat de métal dispensateur (31) à gros grains.
  5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que la structure de métal dispensateur (1) est constitué de métal compact dans lequel ont été creusées des structures en labyrinthe pour la circulation des gaz.
EP91918473A 1990-11-10 1991-10-29 Dispositif pour le revetement de pieces creuses par diffusion gazeuse Expired - Lifetime EP0556208B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4035789A DE4035789C1 (fr) 1990-11-10 1990-11-10
DE4035789 1990-11-10
PCT/EP1991/002039 WO1992008821A1 (fr) 1990-11-10 1991-10-29 Dispositif pour le revetement de pieces creuses par diffusion gazeuse

Publications (2)

Publication Number Publication Date
EP0556208A1 EP0556208A1 (fr) 1993-08-25
EP0556208B1 true EP0556208B1 (fr) 1995-04-05

Family

ID=6417997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91918473A Expired - Lifetime EP0556208B1 (fr) 1990-11-10 1991-10-29 Dispositif pour le revetement de pieces creuses par diffusion gazeuse

Country Status (5)

Country Link
US (1) US5439525A (fr)
EP (1) EP0556208B1 (fr)
JP (1) JPH06504321A (fr)
DE (1) DE4035789C1 (fr)
WO (1) WO1992008821A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424097A (en) * 1993-09-30 1995-06-13 Specialty Coating Systems, Inc. Continuous vapor deposition apparatus
US5536319A (en) * 1995-10-27 1996-07-16 Specialty Coating Systems, Inc. Parylene deposition apparatus including an atmospheric shroud and inert gas source
US5879808A (en) * 1995-10-27 1999-03-09 Alpha Metals, Inc. Parylene polymer layers
DE19607625C1 (de) * 1996-02-29 1996-12-12 Mtu Muenchen Gmbh Vorrichtung und Verfahren zur Präparation und/oder Beschichtung der Oberflächen von Hohlbauteilen
US5806319A (en) * 1997-03-13 1998-09-15 Wary; John Method and apparatus for cryogenically cooling a deposition chamber
US6051276A (en) * 1997-03-14 2000-04-18 Alpha Metals, Inc. Internally heated pyrolysis zone
US5841005A (en) * 1997-03-14 1998-11-24 Dolbier, Jr.; William R. Parylene AF4 synthesis
US5910219A (en) * 1997-06-06 1999-06-08 United Technologies Corporation Can coating system
DE19803740C2 (de) * 1998-01-30 2001-05-31 Mtu Aero Engines Gmbh Gasphasenbeschichtungsverfahren und Vorrichtung zur Gasphasenbeschichtung von Werkstücken
US7390535B2 (en) * 2003-07-03 2008-06-24 Aeromet Technologies, Inc. Simple chemical vapor deposition system and methods for depositing multiple-metal aluminide coatings
US7444955B2 (en) * 2004-05-19 2008-11-04 Sub-One Technology, Inc. Apparatus for directing plasma flow to coat internal passageways
JP5306993B2 (ja) * 2007-03-30 2013-10-02 東京エレクトロン株式会社 蒸着源ユニット、蒸着装置および蒸着源ユニットの温度調整装置
KR200445846Y1 (ko) * 2009-06-10 2009-09-03 (주) 엠에스피 중앙유통관을 갖는 청크 에칭 바스켓
US9709334B2 (en) * 2009-12-24 2017-07-18 Lg Innotek Co., Ltd. Heat treatment container for vacuum heat treatment apparatus
EP2476776B1 (fr) * 2011-01-18 2015-08-12 Siemens Aktiengesellschaft Procédé de réglage de la consommation en produit de refroidissement dans des composants refroidis activement
US9068260B2 (en) 2012-03-14 2015-06-30 Andritz Iggesund Tools Inc. Knife for wood processing and methods for plating and surface treating a knife for wood processing
US11267012B2 (en) 2014-06-25 2022-03-08 Universal Display Corporation Spatial control of vapor condensation using convection
US11220737B2 (en) 2014-06-25 2022-01-11 Universal Display Corporation Systems and methods of modulating flow during vapor jet deposition of organic materials
EP2960059B1 (fr) 2014-06-25 2018-10-24 Universal Display Corporation Systèmes et procédés de modulation de flux durant une opération de dépôt par jet de vapeur de matériaux organiques
US10566534B2 (en) * 2015-10-12 2020-02-18 Universal Display Corporation Apparatus and method to deliver organic material via organic vapor-jet printing (OVJP)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1134753A (fr) * 1955-01-31 1957-04-17 Procédé de traitement d'objets métalliques dont la surface doit être modifiée par la formation d'alliages superficiels
GB825847A (en) * 1955-02-16 1959-12-23 Onera (Off Nat Aerospatiale) Improvements in methods of forming superficial diffusion alloys containing chromium
US2910382A (en) * 1955-06-30 1959-10-27 Vulliez Paul Method of forming surface alloys on metallic articles
FR1130118A (fr) * 1955-07-07 1957-01-31 Perfectionnements aux fours utilisés pour la mise en oeuvre des procédés de formation d'alliages superficiels par diffusion en phase gazeuse d'un métal d'apport
GB975202A (en) * 1961-06-23 1964-11-11 Alloy Surfaces Co Inc Improvements in process for chromizing and product
FR2508063A1 (fr) * 1981-06-18 1982-12-24 Snecma Procede, en phase vapeur, pour le depot d'un revetement protecteur sur une piece metallique, dispositif pour sa mise en oeuvre et pieces obtenues selon ledit procede
FR2633641B1 (fr) * 1988-06-30 1993-02-05 Snecma Procede et dispositif de protection simultanee des surfaces internes et externes, notamment par aluminisation de pieces en alliages resistant a chaud, a base de ni, co ou fe

Also Published As

Publication number Publication date
JPH06504321A (ja) 1994-05-19
DE4035789C1 (fr) 1991-06-13
EP0556208A1 (fr) 1993-08-25
WO1992008821A1 (fr) 1992-05-29
US5439525A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
EP0556208B1 (fr) Dispositif pour le revetement de pieces creuses par diffusion gazeuse
EP2792985B1 (fr) Dispositif de frittage
DE3906270A1 (de) Glasschmelzverfahren und vorrichtung dafuer
EP2792332B1 (fr) Agencement comprenant au moins une pièce à fritter
DE3207675A1 (de) Vorrichtung fuer das verdeckte abgiessen von metallschmelzen
DE3705710C2 (fr)
DE102009009579B4 (de) Verfahren zum Beschichten der Kanäle eines Wabenkörpers, Vorrichtung zur Durchführung des Verfahrens und Verwendung des beschichteten Wabenkörpers
CH641839A5 (de) Vorrichtung zur einleitung von gasen in metallschmelzen.
DE19803740A1 (de) Gasphasenbeschichtungsverfahren und Vorrichtung zur Gasphasenbeschichtung von Werkstücken
DE1929422A1 (de) Vorrichtung zum epitaktischen Abscheiden von Halbleitermaterial
EP2900405B1 (fr) Procédé de frittage d'une pièce
DE2032418C3 (de) Verfahren zur teilweisen Oberflachenbeschichtung von Werkstucken aus Superlegierungen durch Metalldiffusion
DE2914347C2 (fr)
DE102009039260A1 (de) Vorrichtung zur Entgasung einer Stahlschmelze mit einem verbesserten Auslaufrüssel
DE102018113643A1 (de) Vorrichtung zur Beschichtung einer Oberfläche
DE10036620A1 (de) Verfahren und Vorrichtung zum Chromieren einer inneren Oberfläche eines Bauteils
DE3802055A1 (de) Verfahren und einrichtung zum frischen von metallschmelze
EP2021532B1 (fr) Récipient source d'un réacteur vpe
DE1164605B (de) Verfahren und Vorrichtung zum fallenden Giessen von Metall
EP2352856A1 (fr) Couche de protection contre la corrosion à haute température et procédé de fabrication
EP3009187A1 (fr) Reacteur a arc electrique et procede de fabrication de nanoparticules
DE102006023046A1 (de) Verfahren, Vorrichtung und Ausgangsmaterial zum Bereitstellen eines gasförmigen Precursors
AT214957B (de) Eintauchrohr für die Vakuumentgasung geschmolzener Metalle, insbesondere Stahl
DE19600682C2 (de) Verfahren und Vorrichtung zum Schutz einer Schmelze aus Blei oder einer Bleilegierung
DE1621364C3 (de) Titankarbiduberzug sowie Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19940309

RBV Designated contracting states (corrected)

Designated state(s): CH FR GB IT LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB IT LI

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951031

Ref country code: CH

Effective date: 19951031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051029