EP0555734B1 - Dispositif pour l'épuration de l'eau souterraine - Google Patents

Dispositif pour l'épuration de l'eau souterraine Download PDF

Info

Publication number
EP0555734B1
EP0555734B1 EP93101586A EP93101586A EP0555734B1 EP 0555734 B1 EP0555734 B1 EP 0555734B1 EP 93101586 A EP93101586 A EP 93101586A EP 93101586 A EP93101586 A EP 93101586A EP 0555734 B1 EP0555734 B1 EP 0555734B1
Authority
EP
European Patent Office
Prior art keywords
arrangement according
filter
shaft
area
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93101586A
Other languages
German (de)
English (en)
Other versions
EP0555734A1 (fr
Inventor
Bruno Bernhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IEG Industrie Engineering GmbH
Original Assignee
IEG Industrie Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IEG Industrie Engineering GmbH filed Critical IEG Industrie Engineering GmbH
Publication of EP0555734A1 publication Critical patent/EP0555734A1/fr
Application granted granted Critical
Publication of EP0555734B1 publication Critical patent/EP0555734B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • E03B3/08Obtaining and confining water by means of wells
    • E03B3/16Component parts of wells
    • E03B3/18Well filters
    • E03B3/24Well filters formed of loose materials, e.g. gravel
    • E03B3/26Well filters formed of loose materials, e.g. gravel with packed filtering material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/04Gravelling of wells

Definitions

  • the invention relates to an arrangement for cleaning groundwater and the soil through which it flows, with a conveying device for generating a liquid circuit leading through filters between a well shaft driven into the area of the contaminated groundwater and the surrounding soil, the well shaft being in an upper and is divided into a lower area, which are separated from one another and each have at least in some areas a water-permeable shaft wall for water intake from or for reintroduction of the water into the ground, and the two areas are connected to one another by means of a through-pipe in which the conveying device is effective.
  • the invention has for its object to provide an arrangement of the type mentioned so that it allows the cheapest use of a well shaft cross-section without endangering the effectiveness and duration of the cleaning fountain.
  • filter chambers are formed both in the upper and in the lower region of the well shaft, which occupy the entire free cross-section of the well shaft and at least in the upper well shaft area rise upwards over the upper edge of the water-permeable Extend the shaft wall into a shaft area (well pipe) that is sealed off from the outside.
  • a plurality of filter chambers can advantageously be arranged one above the other and each separated by a screen wall.
  • all filter areas are thus arranged within a drilling cross section of the well shaft and extend over the entire drilling cross section, insofar as it is not occupied by other parts of the arrangement, in particular from the mainly centrally arranged through pipe.
  • An outer filter sheathing which requires a larger bore diameter and can subsequently be badly influenced, is eliminated, as is filter walls with vertical filter surfaces, which experience has shown to be quick due to precipitation from the Add groundwater.
  • Horizontal or inclined filter walls, as are provided between the several filter chambers, are far less exposed to the risk that they become tight due to blockages.
  • the arrangement of several filter chambers one above the other also has the advantage that at least the uppermost filter chamber in the well shaft can be provided with exchangeable filter material that can be sucked off and / or instilled, as can be seen, for example, from DE-PS 41 38 414 by the applicant.
  • sieve walls delimiting the filter chambers can be designed in the form of conical rings concentrically surrounding the centrally arranged through-tube, which can be arranged in pairs symmetrically symmetrically to one another and can be arranged with their outer edges touching. Either the interior of these double-conical structures can be kept free of filter material, or filter material can only be arranged within these structures, while the rest of the space - ie either inside the double-conical structures or outside of it - is filled with filter material.
  • the sieve walls delimiting the filter chambers can, however, also run curved and, for example, be spherical or spherical segment-shaped wall structures, which can likewise limit spaces for the groundwater that are free of filter material.
  • a drum-shaped filter can be arranged in the lower shaft area in front of the end of the through pipe.
  • the height of the drum body can be kept relatively low, so that the Main filter surfaces are formed by the two horizontal end faces of the drum.
  • the conveying device in an arrangement designed according to the invention can expediently be formed by at least one conveying pump, which can preferably be accommodated in the through-pipe.
  • an airlift device can also be provided exclusively or additionally, as can be formed in the previously proposed manner by a nozzle body which is arranged in the upper region of the well shaft and in which a gas, in particular fresh air, from outside the shaft Generating negative pressure in the upper shaft area is fed.
  • the supplied gas brings about an additional purification of the groundwater by absorbing and removing volatile impurities as it passes through the groundwater.
  • concentric guide rings arranged individually or in groups above the nozzle body, a circular movement of the groundwater inside the shaft can be forced, which increases the effectiveness of the additional gas treatment of the groundwater.
  • the sieve walls which at least partially limit the filter chambers, have a special design and that devices for generating vibrations are arranged on the sieve walls and / or in the filter material of the filter chambers.
  • the screen walls can consist of a supporting and shaping web carrier and attached round wires delimiting the screen openings.
  • the sieve openings formed here with their rounded edges make clogging due to deposits difficult.
  • Approaches for a non-stationary and mobile vibration generator can also be formed on the web supports, with which the screen walls can be vibrated from time to time. Are suitable as stationary or mobile vibration generators mechanical, electromechanical or ultrasonic devices.
  • 1 to 4 and 8 to 11 each show a drilled well shaft 12 which is driven into a soil 10 interspersed with contaminated groundwater.
  • the well shaft 12 is lined with a well pipe 13 in its upper region.
  • the well shaft is divided into an upper region 15 and a lower region 16 by a seal 14.
  • a connection between the two areas is provided by a through tube 17 which is arranged centrally in the well shaft 12.
  • Filter chambers are formed both in the upper and in the lower region 15, 16 of the well shaft 12, which cover the entire free bore cross section of the well shaft take in. These filter chambers are arranged or limited differently in the individual exemplary embodiments.
  • a pump 18 is arranged in the upper end region of the through-pipe 17 and sucks the ground water rising into the upper free shaft area surrounding the well pipe 13 into the through-pipe 17.
  • the passage tube 17 ends at the bottom in the opening of a transverse wall 19, which brings about the separation into the upper shaft area 15 and the lower shaft area 16 and to which the seal 14 is connected in the form of an annular jacket.
  • two filter chambers 20, 21 are formed, which are separated from one another by a horizontal screen wall 22.
  • two filter chambers 23 and 24 are formed, which are separated from one another by a horizontal sieve wall 25 and of which the upper filter chamber 23 is located within the ring-shaped seal 14.
  • the upper filter chamber 20 is closed off from the outside, there by the well pipe 13.
  • the two upper filter chambers 20 and 23, which can only flow through in the vertical direction, are filled with an exchangeable filter material.
  • the filter material can be exchanged from the upper filter chambers 20 and 23 by suctioning off the pourable and free-flowing material and subsequently infusing new filter material.
  • the upper filter chamber 23 of the lower well shaft area 16 is accessible through the through pipe 17 for a suction or inflow hose, not shown.
  • the groundwater circulation well according to Fig. 1 is operated in the so-called left-hand rotation, because in the upper well shaft area 15 groundwater flowing into the lower filter chamber 21 there and rising through the upper filter chamber 20 is conveyed through the through pipe 17 into the lower shaft area 16, where it first flows through the upper filter chamber 23 with the exchangeable filter material filling and the sieve wall 25, then into the lower filter chamber 24 arrives and from there can flow back into the ground.
  • further solid filter layers in the form of removable ring packs can be arranged in the upper filter chamber 20, which can be easily replaced.
  • a perforated distributor pipe 26 is arranged coaxially in the upper well shaft area 15 via the central through-pipe 17. It is expanded in the upper filter-free shaft end to a collecting cylinder 27 in which the through pipe 17 provided with a feed pump 28 ends. Downward into the lower shaft area 16, the through pipe 17 is extended beyond the seal 14 to the bottom of the well shaft and is designed in this area as a perforated collecting pipe 29.
  • filter chambers or filter areas are delimited by sieve walls 30, which are arranged in the form of conical rings between the perforated distributor pipe 26 and the wall of the well shaft 12 in pairs of mirror images of one another and with the outer walls touching with their outer edges.
  • the interior of the double-conical screen wall structure forms a free flow space for the groundwater.
  • Granular filter material lies against the outside of these double-conical structures. Large filter areas are created, through which the groundwater is guided in a well-distributed manner. The filter mass that widens from the inside to the outside in the individual filter chambers prevents undesired vertical groundwater flow in the edge area of the well shaft. Easy-change filter chambers have been omitted here.
  • the groundwater circulation well is operated in the so-called clockwise rotation, i.e. groundwater in the lower well shaft area 16 is sucked up, conveyed upwards and returned through the upper well shaft area 15 back into the ground.
  • FIG. 3 and 4 show an arrangement, operated according to FIG. 3 in left-hand rotation and according to FIG. 4 in clockwise rotation.
  • outer filter chamber areas with changing filter material thickness are formed similarly to the exemplary embodiment according to FIG. 2.
  • the interior 32 of the gates forms free flow spaces for the groundwater.
  • the space between the outside of the curved sieve walls 31 and the shaft wall is filled with filter gravel.
  • the perforated distributor pipe 26 has the function of a collector pipe, while the collector pipe 29 has the function of a distributor pipe.
  • FIG. 5 to 7 show the structure of a torus 33 formed by a curved sieve wall 31 and pushed onto the distributor pipe 26.
  • Web carriers 36 are clamped in an arcuate manner between two support rings 34 and 35.
  • Round wires 37 are placed at uniform intervals on these arch-shaped web supports 36, for example a single round wire is wound and connected to the web supports 36 by spot welding or gluing.
  • the two support rings 34 and 35 are connected to one another by means of rectilinear support webs 38, at least one of which is provided with a cam-like extension 39 which projects into the space between the distributor pipe 26 and the through pipe 17 (FIG. 5).
  • the carrier webs 38 can also be connected to one another by an electromagnetically actuated vibration ring 40, as is also shown in FIG. 5.
  • a vibration rod 41 of a mobile vibration generator 42 can be attached to the lugs 39, which is shown in FIG. 5 with dash-dotted lines.
  • the screen wall structures can be set in vibration from time to time in order to detach precipitates that settle on the screen walls 31 or parts that have washed away from the groundwater or from the ground from the screen walls.
  • the well pipe 13 is closed to the outside by a cover 118, through which an air suction pipe 119 with a pump 120 and an air suction pipe 121 are guided.
  • a vacuum is generated by the pump 120 above the groundwater level 122 in the well 12, which is responsible for pumping the groundwater from the lower well area 16 into the upper well area 15.
  • a drum-shaped filter body 123 which is surrounded by filter gravel 124, is arranged in the lower shaft area 16.
  • the filter body 123 has a vertical side wall 125 and two horizontal filter surfaces 126 and 127, through which groundwater flows in from the surrounding soil 11 due to the negative pressure generated in the upper shaft area, which is indicated by the arrows 128.
  • the water then passes through the passage pipe 17 into the upper shaft area 15, where it is received by a second pipe 130 inserted into an expansion 129 of the passage pipe 17, which widens like a pot and an air chamber 131, which is delimited by a nozzle body 132, and forms a water receiving space 133 below the air chamber.
  • the water passes from the pipe 17 via the insert pipe 130 into the water receiving space 133 and from there via two tubes 134 and 135 led through the air chamber 131 into a water treatment area 136 above the air chamber 131.
  • the tubes 134 and 135 have openings at the level of the air chamber 131 through which air drawn in by the water flowing in the tubes can penetrate and be transported with it upwards into the treatment room 136.
  • two concentrically arranged guide rings 137 and 138 are arranged, which promote the laminar flow of the water during the upward and downward flow and thereby contribute to a part of the downward flowing water being caught again by the upward flowing air bubble stream and being cleaned a second time.
  • the air bubbles are sucked out of the shaft by the pump 120 together with the contaminations bound to them.
  • the negative pressure generated by the pump 120 in the shaft ensures that fresh air can flow in through the intake pipe 121 into the air chamber 131.
  • the entire insert consisting of the insert pipe 130, the water chamber 133, the air chamber 131, the air supply pipe 121 and the guide rings 137 and 138, is attached to a floating body with air chambers 139 in order to be able to compensate for fluctuations in the groundwater level 140 in the ground 11.
  • the groundwater After the groundwater has been cleaned of volatile impurities by means of the air or gas bubbles in the treatment room 136, the groundwater flows down again along the edge of the shaft and seeps through a gravel fill 141 in the upper shaft area 15 before it leaves the well shaft 12 again laterally. If the water seeps through the gravel fill 141, other substances bound in the water, such as. B. iron can be solved from this. After backflow into the ground 11, the groundwater is again picked up by the suction effect in the lower shaft area 16 and thus forms a cycle between the well shaft 12 and the ground 11. New, not yet cleaned groundwater is constantly being drawn in. The range of the circuit in the radial direction around the well shaft can be further increased by reducing the height of the side wall 125 of the drum filter 123 in the lower shaft area.
  • FIG. 9 shows an arrangement whose lower region 16 has a smaller diameter than the upper shaft region 15, i. H. the more expensive, wide drilling of the well shaft is only necessary in the upper area in which the treatment of the water takes place.
  • an insert pipe 130 and a feed pump 150 connected to it are inserted.
  • a pipe 151 is arranged which conveys the water through an air chamber 131 in order to then discharge it into a treatment room 136 through lateral openings 152.
  • two concentric guide rings 137 and 138 are arranged to promote the laminar water flow.
  • the tube 151 has in its upper region a transverse wall 153, which prevents the ingress of water into the end piece 154 of the pipe 151 reaching up to a manhole cover 118 and thus this end piece 154, the two connecting pipes 155 and 156, which extend into the air intake space 131 are guided, has, for the supply of fresh air into the air chamber 131.
  • the fresh air is sucked into the shaft by the negative pressure generated above the shaft 12 by means of a pump 120.
  • the contaminated groundwater is first cleaned of volatile contaminants in the treatment room 136 before it undergoes a second cleaning when flowing downward through a gravel fill 141. Subsequently, the groundwater leaves the shaft 12 in the upper region 15 again and forms a circuit to the water suction point in the lower shaft region 16, the flow rate of the water in the exemplary embodiment according to FIG. 9 through the feed pump 150 being greater than in the exemplary embodiment according to FIG. 8, in which the circuit is created solely by generating negative pressure in the well shaft.
  • vibration generators 157 are arranged in the gravel fill, the pressure waves of which dissolve impurities in the gravel, which can then be suctioned off.
  • additional feed pumps 45 or 46 are provided which amplify and control the movement of the groundwater in the gas treatment area of the arrangements.
  • the structure of the filter part of the arrangement is very similar to that of the exemplary embodiment according to FIG. 1, which is why the same reference numerals as in FIG. 1 are used for corresponding device parts.
  • parts corresponding to the embodiment according to FIG. 8 are designated with the same reference numbers as there.
  • the two pumps 18, 45 and 28, 46 cause a multiple circulation of the groundwater within the upper shaft area closed off from the outside by the well pipe 13.
  • the additional pump 45 or 46 is arranged in a tube 47, which is passed through the air chamber 131 and a little way through the air intake tube 121, and which is below the liquid level 122 and above the guide ring 138 into a central region of the upper well shaft region exit.
  • This central area is delimited by a guide tube 48 which projects beyond the liquid level 122 and acts in the liquid area like a third guide plate between the two other guide plates 137 and 138.
  • the baffles Through the baffles, the groundwater is led several times through the area with the rising gas bubbles and redirected.
  • the groundwater is pumped up by the pump 45 into the gas treatment area and then flows back downward past the air chamber 131.
  • FIG. 10 the groundwater is pumped up by the pump 45 into the gas treatment area and then flows back downward past the air chamber 131.
  • the groundwater is drawn down from the gas treatment area by the pump 46 and rises again along the air chamber 131 into the gas treatment area, insofar as it is not detected by the pump 28 and into the lower well shaft area 16 and the filter chambers there is subtracted.
  • the pumps can be operated with different capacities depending on the type and extent of contamination of the groundwater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)
  • Processing Of Solid Wastes (AREA)
  • Sewage (AREA)

Claims (21)

  1. Dispositif pour l'épuration d'eau souterraine et de la terre parcourue par celle-ci, avec un dispositif d'extraction pour produire un circuit de liquide conduisant par l'intermédiaire de filtres entre un puits enfoncé jusque dans la zone de l'eau souterraine polluée et la terre entourant celui-ci, le puits étant subdivisé en une zone supérieure et une zone inférieure (15, 16) qui sont séparées l'une de l'autre et présentent chacune au moins par zone une paroi de puits perméable à l'eau pour aspiration d'eau hors de la terre ou pour réintroduction de l'eau dans la terre, et les deux zones (15, 16) étant reliées l'une à l'autre au moyen d'un tube de passage (17), dans lequel le dispositif d'extraction est efficace, caractérisé en ce que des chambres de filtration (20, 21 ; 23, 24, 124) sont formées tant dans la zone supérieure que dans la zone inférieure (15, 16) du puits (12), lesquelles prennent toute la section de forage libre du puits et s'étendent vers le haut au moins dans la zone de puits supérieure (15) au-dessus du bord supérieur de la paroi de puits perméable à l'eau dans une zone de puits fermée vers l'extérieur (tube de puits 13).
  2. Dispositif selon la revendication 1, caractérisé en ce que plusieurs chambres de filtration sont disposées les unes au-dessus des autres au moins dans l'une des deux zones de puits (15, 16) et sont séparées chacune par une paroi perforée (22, 25, 30, 31).
  3. Dispositif selon les revendications 1 et 2, caractérisé en ce qu'au moins la chambre de filtration supérieure (20) dans le puits (12) est munie de matériau filtrant remplaçable.
  4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que les parois perforées (30) délimitant les chambres de filtration sont conçues en forme d'anneaux coniques entourant concentriquement le tube de passage (17) disposé centralement.
  5. Dispositif selon la revendication 4, caractérisé en ce que les anneaux coniques de paroi perforés (30) sont disposés par paires symétriquement les uns par rapport aux autres et en se touchant avec leurs bords extérieurs.
  6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que les parois perforées (31) délimitant les chambres de filtration (31) sont courbes.
  7. Dispositif selon la revendication 6, caractérisé en ce que les chambres de filtration sont délimitées vers l'intérieur par des parois perforées (31) en forme de sphères ou de segments sphériques.
  8. Dispositif selon l'une des revendications 4 à 7, caractérisé en ce que le matériau filtrant est disposé entre les parois perforées (30, 31) et la paroi du puits foré (12) et des espaces libres (32) pour l'eau souterraine existent entre des parois perforées voisines.
  9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce qu'un filtre en forme de tambour (123) est disposé dans la zone de puits inférieure (16) en amont de l'extrémité du tube de passage (17).
  10. Dispositif selon la revendication 9, caractérisé en ce que les parois latérales (125) du filtre en forme de tambour (123) présentent une hauteur qui est inférieure au diamètre du filtre.
  11. Dispositif selon l'une des revendications 1 à 10, caractérisé en ce que la zone de puits supérieure (15') présente un diamètre plus grand que la zone de puits inférieure (16') (Fig. 9).
  12. Dispositif selon l'une des revendications 1 à 11, caractérisé en ce que le tube de passage (17, 17') présente sur son extrémité supérieure un évasement (129, 129').
  13. Dispositif selon la revendication 12, caractérisé en ce qu'une pompe d'extraction (150) est disposée dans l'évasement (129, 129').
  14. Dispositif selon l'une des revendications 1 à 13, caractérisé en ce qu'une chambre d'air (131, 131') délimitée par un corps à buses (132, 132') est disposée dans la zone supérieure (15, 15') du puits pour l'amenée de gaz, en particulier d'air frais, provenant de l'extérieur du puits (12, 12') par production de dépression dans la zone de puits supérieure (15, 15').
  15. Dispositif selon la revendication 14, caractérisé en ce qu'un ou plusieurs anneaux directeurs concentriques (37, 38 ; 37', 38' ; 48) sont disposés au-dessus du corps à buses (132, 132').
  16. Dispositif selon les revendications 14 et 15, caractérisé en ce que le corps à buses (132, 132') et les anneaux directeurs (137, 138 ; 137', 138') sont fixés sur un flotteur commun (139).
  17. Dispositif selon la revendication 14, caractérisé en ce qu'à travers le corps à buses (132) est guidé un tube de passage supplémentaire (47) pour l'eau souterraine, dans lequel une pompe d'extraction (45, 46) est active comme dispositif d'extraction supplémentaire.
  18. Dispositif selon l'une des revendications 1 à 17, caractérisé en ce que le tube de passage (17) dépasse jusqu'au-dessus des chambres de filtration (20, 21) de la zone de puits supérieure (15) et présente comme dispositif d'extraction une pompe d'extraction à inversion de sens.
  19. Dispositif selon l'une des revendications 1 à 18, caractérisé en ce que les parois perforées (31) sont constituées d'une traverse (34, 35, 36, 38) soutenant et donnant forme et de fils ronds (37) posés dessus, délimitant des ouvertures de filtration.
  20. Dispositif selon l'une des revendications 2 à 19, caractérisé en ce que des dispositifs (40, 157) pour la génération de vibrations sont disposés sur les parois perforées des chambres de filtration et/ou dans le matériau filtrant des chambres de filtration.
  21. Dispositif selon les revendications 19 et 20, caractérisé en ce que les traverses (38) sont munies d'une embase (39) au moins pour un générateur de vibrations (41/42) (Fig. 5).
EP93101586A 1992-02-06 1993-02-02 Dispositif pour l'épuration de l'eau souterraine Expired - Lifetime EP0555734B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4203382 1992-02-06
DE4203382 1992-02-06
DE4235069A DE4235069A1 (de) 1992-02-06 1992-10-17 Anordnung zum reinigen von grundwasser
DE4235069 1992-10-17

Publications (2)

Publication Number Publication Date
EP0555734A1 EP0555734A1 (fr) 1993-08-18
EP0555734B1 true EP0555734B1 (fr) 1996-05-22

Family

ID=25911576

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93101586A Expired - Lifetime EP0555734B1 (fr) 1992-02-06 1993-02-02 Dispositif pour l'épuration de l'eau souterraine

Country Status (4)

Country Link
US (1) US5281333A (fr)
EP (1) EP0555734B1 (fr)
AT (1) ATE138447T1 (fr)
DE (2) DE4235069A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402848A (en) * 1994-04-07 1995-04-04 Kelly; Leo G. Method and apparatus for conducting environmental procedures
US5622450A (en) * 1995-03-24 1997-04-22 Grant, Jr.; Richard P. Pressure extraction process for removing soil and groundwater contaminants
US6143177A (en) 1995-04-11 2000-11-07 Arcadis Geraghty & Miller, Inc. Engineered in situ anaerobic reactive zones
DE19617879A1 (de) * 1996-04-25 1997-11-06 Argus Umweltbiotech Gmbh Verfahren und Filter zur in-situ-Reinigung von mit organischen oder anorganischen Schadstoffen verunreinigtem Grundwasser
US6007274A (en) 1997-05-19 1999-12-28 Arcadis Geraghty & Miller In-well air stripping, oxidation, and adsorption
DE19828917C1 (de) * 1998-06-29 2000-01-20 Ieg Ind Engineering Gmbh Anordnung vom Brunnenfiltermaterial in Entnahme- oder Schluckbrunnen
US6116816A (en) 1998-08-26 2000-09-12 Arcadis Geraghty & Miller, Inc. In situ reactive gate for groundwater remediation
US6921477B2 (en) * 2002-04-08 2005-07-26 Steven L. Wilhelm Groundwater treatment system and method
US7156988B2 (en) * 2003-05-16 2007-01-02 Wilhelm Steven L Floating product removal
US7077208B2 (en) * 2003-09-11 2006-07-18 R3 Pump Technologies Method and system for directing fluid flow
US20060266712A1 (en) * 2005-05-27 2006-11-30 Wilhelm Steven L Groundwater treatment
US7514004B1 (en) * 2008-05-01 2009-04-07 Sandia Corporation In-tank recirculating arsenic treatment system
AU2009202672B2 (en) * 2009-07-01 2015-08-13 Desaln8 Pty Ltd Apparatus and method for improving the quality of water from an aquifer
PT2486988E (pt) * 2011-02-11 2013-08-27 Luxin Green Planet Ag Sistema subterrâneo de gestão de água para minas e processo para o funcionamento deste sistema de gestão de água
CN109570209A (zh) * 2018-12-27 2019-04-05 博川环境修复(北京)有限公司 一种用于修复污染地下水及其流经污染土壤的装置
CN109912090B (zh) * 2019-04-23 2020-12-04 中南大学 一种环形多功能净水器
DE202019105023U1 (de) * 2019-09-11 2020-12-14 IEG - Technologie GmbH Filteranordnung
CN113304664B (zh) * 2021-05-31 2023-09-05 广州兰德环保资源科技有限公司 一种通过高频超声波作用和层流沉降优化的乳化装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543186A (en) * 1984-06-08 1985-09-24 Weisenbarger Gale M Apparatus and method for the treatment of well water therewith
DE3612468A1 (de) * 1986-04-14 1987-10-15 Meister Karl Verfahren zum herstellen eines filterbrunnens und filterbrunnen mit grossem fassungsraum
DE3625488C2 (de) * 1986-04-22 1994-09-22 Ieg Ind Engineering Gmbh Vorrichtung zum Austreiben leicht flüchtiger Verunreinigungen aus Flüssigkeiten
DE3805200C1 (en) * 1988-02-19 1988-09-29 Ieg - Industrie-Engineering Gmbh, 7410 Reutlingen, De Arrangement for expelling readily volatile impurities from groundwater
DE3811962C1 (en) * 1988-04-11 1989-02-16 Ieg - Industrie-Engineering Gmbh, 7410 Reutlingen, De Arrangement for expelling highly volatile impurities from ground water
DE3842740A1 (de) * 1988-12-19 1990-06-21 Zueblin Ag Verfahren zum entfernen von verunreinigungen aus dem grundwasser und ein brunnen zur durchfuehrung des verfahrens
US5015370A (en) * 1989-06-08 1991-05-14 Anthony Fricano Apparatus and method for treating well water
ES2036081T3 (es) * 1989-09-16 1993-05-01 Ieg Industrie-Engineering Gmbh Disposicion para extraer impurezas facilmente volatiles a partir del agua subterranea.
DE3933426A1 (de) * 1989-09-16 1991-06-27 Ieg Ind Engineering Gmbh Anordnung zum reinigen von verunreinigtem grundwasser
DE4001011C1 (en) * 1990-01-16 1990-12-13 Ieg - Industrie-Engineering Gmbh, 7410 Reutlingen, De Ground water flow control - comprises shaft sunk into ground water levels with successive permeable and impermeable wall areas
DE4001012C1 (fr) * 1990-01-16 1991-05-02 Ieg - Industrie-Engineering Gmbh, 7410 Reutlingen, De
DE4006435C2 (de) * 1990-03-01 1995-02-09 Uwa Umweltanalytik Gmbh Verfahren und Einrichtung zur in-situ Grund- und/oder Sickerwassersanierung
EP0457261B1 (fr) * 1990-05-16 1993-03-10 TEGEO Tegtmeyer Geophysik GmbH Dispositif de la purification, par exemple de l'eau souterraine contaminée
DE4021814A1 (de) * 1990-05-23 1991-11-28 Ieg Ind Engineering Gmbh Anordnung zur gasbehandlung von verunreinigtem erdreich
DE4027304C2 (de) * 1990-08-29 1993-12-09 Ieg Ind Engineering Gmbh Anordnung zum Austreiben leichtflüchtiger Verunreinigungen aus dem Grundwasser
DE4037059A1 (de) * 1990-11-22 1992-05-27 Ieg Ind Engineering Gmbh Anordnung zum reinigen von verschmutztem grundwasser
DE4039824C1 (fr) * 1990-12-13 1991-12-19 Ieg - Industrie-Engineering Gmbh, 7410 Reutlingen, De
DE4138414C2 (de) * 1991-11-22 1993-10-07 Ieg Ind Engineering Gmbh Anordnung zum Reinigen von verunreinigtem Grundwasser

Also Published As

Publication number Publication date
US5281333A (en) 1994-01-25
DE4235069A1 (de) 1993-08-12
DE59302631D1 (de) 1996-06-27
ATE138447T1 (de) 1996-06-15
EP0555734A1 (fr) 1993-08-18

Similar Documents

Publication Publication Date Title
EP0555734B1 (fr) Dispositif pour l'épuration de l'eau souterraine
EP0486976B1 (fr) Dispositif pour la pourification des eaux souterraines polluées
EP0291538B1 (fr) Procédé et appareil pour filtrer en continu des liquides
EP0654294B1 (fr) Procédé et dispositif de filtration de particules solides de liquides et le rinçage du filtre à contre-courant
EP0044382B1 (fr) Appareil flottant pour la purification d'eau
EP0571812A1 (fr) Dispositif pour enlever des polluants de la nappe souterraine
EP0437805A1 (fr) Dispositif pour chasser les souillures légèrement volatiles de la nappe souterraine
DE60222685T2 (de) Verteiler und sammler für ein granulares filterbett
EP0548768A1 (fr) Procédé et dispositif pour influencer un liquide contenu dans le sol
DE3225537C2 (fr)
EP0458090A2 (fr) Dispositif pour le traitement de sols pollués par un gaz
DE2146838C3 (de) Verfahren und Vorrichtung zum Filtrieren von Flüssigkeiten
EP0457261B1 (fr) Dispositif de la purification, par exemple de l'eau souterraine contaminée
DE2733044A1 (de) Verbesserte anlage zur abwasserbehandlung
EP3222357B1 (fr) Separateur de boue
DE2855907A1 (de) Vorrichtung zum mechanischen reinigen von abwasser
DE2150164A1 (de) Vorrichtung zum Behandeln von Abwasser
DE102010041312A1 (de) Vorrichtung zum Entfernen von Siebgut aus in einem Gerinne strömender Flüssigkeit
DE1947229A1 (de) Aktivkohle-Austrags-Vorrichtung
DE202006018117U1 (de) Regenwasser-Schachtfiltersystem
DE3617054C2 (de) Eindicker
DE2807917A1 (de) Verfahren und vorrichtung zum reinigen der bei erdaushubarbeiten verwendeten fluessigkeiten
AT398102B (de) Ölabscheideanlage
CH515731A (de) Einrichtung zur Reinigung von schüttbarem Filterstoff in mit Wasser gefüllten Wasseraufbereitungslangsamfiltern
DE102007017447A1 (de) Becken zur Aufzucht und/oder Mast von Fischen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19940202

17Q First examination report despatched

Effective date: 19950630

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960522

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960522

Ref country code: GB

Effective date: 19960522

Ref country code: FR

Effective date: 19960522

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960522

REF Corresponds to:

Ref document number: 138447

Country of ref document: AT

Date of ref document: 19960615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59302631

Country of ref document: DE

Date of ref document: 19960627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960822

EN Fr: translation not filed
EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970228

Ref country code: CH

Effective date: 19970228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971101