EP0555159B1 - Elément chauffant à structure sandwich et appareil éléctroménager, du type fer à repasser à vapeur, comportant un tel élément - Google Patents

Elément chauffant à structure sandwich et appareil éléctroménager, du type fer à repasser à vapeur, comportant un tel élément Download PDF

Info

Publication number
EP0555159B1
EP0555159B1 EP93420028A EP93420028A EP0555159B1 EP 0555159 B1 EP0555159 B1 EP 0555159B1 EP 93420028 A EP93420028 A EP 93420028A EP 93420028 A EP93420028 A EP 93420028A EP 0555159 B1 EP0555159 B1 EP 0555159B1
Authority
EP
European Patent Office
Prior art keywords
heating
thermoplastic resin
heating structure
sheets
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93420028A
Other languages
German (de)
English (en)
Other versions
EP0555159A1 (fr
Inventor
Dominique Gelus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEB SA
Original Assignee
SEB SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9426119&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0555159(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SEB SA filed Critical SEB SA
Publication of EP0555159A1 publication Critical patent/EP0555159A1/fr
Application granted granted Critical
Publication of EP0555159B1 publication Critical patent/EP0555159B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F75/00Hand irons
    • D06F75/08Hand irons internally heated by electricity
    • D06F75/24Arrangements of the heating means within the iron; Arrangements for distributing, conducting or storing the heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/30Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material on or between metallic plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type

Definitions

  • the present invention relates to the general technical field of flat heating structures of the sandwich type, intended to assume at least two differentiated thermal functions.
  • the present invention relates to a sandwich heating structure, externally limited by two elements having a certain veryness and of which at least one is a heating plate capable of diffusing the heat produced by a resistive element extending between the two elements.
  • a structure is therefore able to provide heat production which can be differentiated from each element in the case of the use of two heating plates to ensure distinct thermal functions such as heating, vaporization or simply the thermal dissipation.
  • the present invention applies in particular, but not exclusively, to household appliances, and among these, preferably to appliances capable of operating in a humid environment or of being in contact with humidity, such as irons in general whether steamed or dry (use of pattemouille), or even such as fryers or grilling appliances of all kinds.
  • the heating structure is advantageously integrated in an iron of the steam or dry type, and the present invention also directly relates to an iron provided with such a heating structure.
  • the sole must then perform a double thermal function, since it is firstly a question of evaporating water from the upper surface of the sole, and secondly of assuming the ironing proper through the lower surface of said sole.
  • sandwich structure soles externally limited by two diffusing elements of heat such as metal plates between which are arranged a plurality of intermediate layers superimposed on each other from a central element consisting of the resistive element.
  • sandwich structure can, for example, be illustrated by the sole described in French patent application FR-A-2,641,291, in which the intermediate layers between the central resistive element and the two external metal sheets consist of laminated layers of 'brazing alloy, the resistive element being separated from the latter by electrically insulating layers made of micanite sheets.
  • the use of a sandwich structure of this type can be considered as generally satisfactory in terms of the thermal resistance properties of the sole.
  • the object of the present invention therefore aims to remedy the various drawbacks listed above, and to provide a high temperature heating structure with a sandwich structure capable of assuming at least one and preferably two differentiated thermal functions, capable of improving heat dissipation from the resistive element without negatively influencing the resistance over time of the proper internal structure of the heating structure whatever the thermal stresses undergone, and this at a reduced manufacturing cost.
  • a complementary object of the invention aims to provide a heating structure produced in a particularly simplified manner, and having improved air and vapor tightness characteristics.
  • Another object of the invention is to provide a heating structure having an improvement in the resistance over time of the cohesion of the various layers constituting it, despite high thermal stresses.
  • the object of the invention also relates to a household appliance comprising such a heating structure, and in particular, a steam iron capable of being produced at low cost, while having good heat dissipation properties, good resistance. in time of the internal cohesion of the elements of the sole, and a good seal of the sole.
  • the heating structure 1 according to the invention and shown in FIG. 2 is of the high temperature type and produced according to a sandwich structure consisting of the stack of a plurality of layers externally bounded by two heat diffusing elements respectively forming a bottom plate 2 and an upper plate 3.
  • the temperatures commonly reached in such a structure exceed 180 ° C. and preferably even are close to 300 ° C.
  • the plates 2, 3 can be made of any rigid or flexible material commonly used to assume a heat diffusion function, such as stainless steel, mild steel, ceramic, vitrocrystalline materials and glass by example, as well as aluminum, the latter material being particularly advantageous in the case of using the heating structure in an iron.
  • the plates 2, 3 can also be made of the same material or, on the contrary, of two distinct materials depending on the applications envisaged, and be of equal or non-thickness.
  • the heating structure comprises a heating unit produced in the form of a resistive element 4 consisting of one or more tracks extending along a defined path forming a series of loops or laces (FIG. 6) between the two plates 2, 3.
  • the resistive element 4 and the loops which it comprises extend in the longitudinal plane of symmetry P of the heating structure 1.
  • the resistive element 4 can be made of any material commonly used as a track heating such as nickel-chromium alloys or preferably based on constantan.
  • the section and the length of the resistive element 4 varies according to the desired electrical power.
  • its thickness will be of the order of 50 u and may vary between 20 and 100 u for example.
  • the resistive element 4 is inserted into a first layer of thermoplastic resin 5, covering at least the upper and lower parts of the resistive element 4.
  • the resistive element 4 is provided with an electrical insulating coating consisting of an upper sheet 6a and a lower sheet 6b adhering respectively to each of the faces of the first layer of thermoplastic resin 5 and consequently delimiting the heating unit.
  • the material used as an electrical insulating coating can obviously be chosen from all the conventional components used to date by those skilled in the art, depending on the thermal stresses of the heating structure. When using the heating structure for a household appliance, of the iron type, it is particularly advantageous to use a material of the polyimide type.
  • the connecting means ensuring adhesion between on the one hand each of the respective opposite faces, 2b, 3a, of the lower and upper plates 2,3 and on the other hand the upper and lower faces of the electrical insulation sheets 6a, 6b , comprises at least one layer of thermoplastic resin, thus respectively forming a layer 7a called upper, and a layer 7b called lower.
  • the respective connections between the plates 2, 3 and the sheets of insulation coating 6a, 6b consist individually of a single layer of thermoplastic resin.
  • thermoplastic material used for each of the layers of thermoplastic resin, 7a, 7b, 5 will preferably have the same composition in each of the three layers. It is however conceivable to produce, each of the three layers in different thermoplastic materials, according to the type of thermal stress to which the heating structure 1 will be subjected, or alternatively to produce only the first layer of thermoplastic resin in a material distinct from the upper layers and lower 7a, 7b.
  • at least the upper 7a and lower 7b layers will be made of the same material, and preferably also the first resin layer 5.
  • thermoplastic resin obviously depends on the thermal stresses undergone by the heating structure and within the framework of a specific application to household appliances and in particular to steam irons, we will advantageously choose PFA (Perfluoroalkoxy) or PEEK (polyetheretherketone) to make each of the three layers of resin.
  • PFA Perfluoroalkoxy
  • PEEK polyetheretherketone
  • other thermoplastic materials can be considered, such as PTFE (polytetrafluoroethylene) or FEP (Tetrafluorethylene Héxafluoropropylène - Nomenclature taken from WEKA Editions volume 1) for example.
  • thermoplastic resin for example the upper layer 7a.
  • the rigid element 3 rests directly on the upper sheet 6a of electrical insulating coating, and may consist of a series of 3d blades or lamellae, spaced apart.
  • the electrical insulating coating comprises an upper fabric sheet 6'a and a lower fabric sheet 6'b, the weft of which is partially impregnated with the resin layers.
  • thermoplastic 5,7a and 7b The partial impregnation advantageously leaves the core of the frame free, and the electrical insulation is obtained by the conjunction of the thermoplastic resin and the fabrics.
  • the thermoplastic resin advantageously consists of three layers of PEEK and two sheets of partially filled glass fabrics.
  • the fabric sheets 6'a and 6'b also provide a mechanical spacer function in the heating structure ensuring with the thermoplastic resin good electrical insulation in the event of overheating of the tracks of the resistive element 4.
  • the presence of Glass fabrics also facilitate the obtaining of the sandwich structure by avoiding the effects of shrinking the resin layers which positively influences the flatness of the final product.
  • the thickness of the resin layers 7a, 7b forming the connection means with the plates 2,3 is preferably less than that of each sheet 6'a, 6'b of tissue.
  • the sum of the thicknesses of each resin layer 5,7a, 7b will be greater than or equal to 2 times the thickness of each sheet of tissue 6'a, 6'b.
  • the sum of the thicknesses of each resin layer 5,7a, 7b is preferably close to 1/10 of a mm.
  • the heating structure according to the invention can be produced according to a process for obtaining in which the resistive element 4 consists of a metal strip from which the resistive element 4 itself can be obtained by any known means of those skilled in the art and in particular by chemical cutting. Obviously, the resistive element 4 can also be obtained by mechanical cutting or by screen printing of a resistive paste.
  • the process for obtaining the heating structure 1 comprises a step of coating each of the sheets of electrical insulation 6a, 6b, which are pre-coated on each of their two faces by a layer of thermoplastic resin, as shown in FIG. 1.
  • the upper covering sheet 6a is pre-coated on its upper face by a layer of thermoplastic resin 7a, and on its lower face by another layer 51 thermoplastic coating.
  • the lower covering sheet 6b is in the same way covered on its lower face by a thermoplastic layer 7b, and on its upper face by another layer of thermoplastic resin 52.
  • the coating of the thermoplastic resin layers can be carried out using any known means, and for example by spraying or dusting.
  • the resin layers 51 and 52 are intended to adhere together on the resistive element 4 and may have for this purpose an individual thickness overall less than the upper and lower thermoplastic resin layers 7a and 7b which are intended to adhere to the faces 2b and 3a of the heat diffusing elements 2, 3.
  • the strip is colaminated, before its chemical cutting, on one of the layers of thermoplastic resin 51, 52 or on one of the electrical insulating sheets.
  • the next step consists in placing at least one resistive element 4 between the two sheets of electrical insulating coating 6a, 6b, pre-coated on each of their two faces with layers of thermoplastic resin.
  • thermoplastic resin 7a, 7b a heat diffusing element 2, 3 as shown in FIG. 1.
  • These diffusing elements heat can consist of different materials well known to those skilled in the art, such as rolled aluminum, stainless steel, steel coated with another metal by co-lamination (mild steel + stainless steel) or by deposition, of galvanized steel for example. It is also possible to use molded synthetic resin materials or even enamelled steel plates.
  • the entire stack is brought to a pressing unit (not shown in the figures) where means for pressing acting on the external faces 11 and 12 respectively of the lower and upper plates 2,3, ensure the compression of the stack formed by the plates 2, 3, the resin layers 7a, 7b, 51, 52, the resistive element 4 with the insulating coating sheets 6a, 6b, according to two opposite forces F1, F2.
  • the entire sandwich structure is also heated to a temperature at least equal to the melting temperature of the thermoplastic resin used, so as to obtain a passage for the resin. from its initial solid state to its liquid state.
  • the heating means used can be conventional and require heating by vibration or ultrasound for example to avoid generalized heating of the heating structure.
  • the heating temperature must be such that the resin is brought to a temperature of substantially between 300 and 310 ° C.
  • the combined action of pressing and the rise in temperature allows in particular good adhesion of the upper layers 7a and lower 7b of thermoplastic resin, on the plates 2, 3 and on the sheets 6a, 6b, as well as a diffusion then a fusion of the two layers of resin 51, 52, around the different tracks constituting the resistive element 4, in order to form the first layer of thermoplastic resin 5 shown in FIG. 2.
  • the resistive element 4 is more or less embedded in the first layer of thermoplastic resin 5.
  • the interstitial spaces 13 formed between the different strands of the circuit formed by the resistive elements 4, before the pressing step and temperature rise can be more or less filled with thermoplastic resin 5.
  • the thickness of each of the layers of thermoplastic resin 7a, 7b, 51, 52 will preferably be of the order of approximately 12.5 microns, while the thickness of the resistive element 4 will be of the order of 50 microns (0.05 mm), the thickness of the electrical insulating sheets being close to 25 microns (0.025 mm).
  • the ratio of the thickness of the PFA layers to the thickness of the resistive element 4 thus obtained, of the order of 3 / 10 can be considered to be the lower limit value below which the adhesion properties, heat dissipation and temperature resistance are compromised or even insufficient.
  • thermoplastic resin 5 obtained from two initial layers 51, 52, of thicknesses as reduced as possible within the limits of the relationship mentioned above
  • the peripheral sealing function can be obtained in a particularly simple way and economical, as shown in FIGS.
  • the upper and lower plates 2, 3, as well as the thermoplastic material will be chosen so as to have substantially identical thermal expansion properties so as to maintain a substantially constant temperature gradient throughout the thickness of the sandwich structure.
  • the lower plates and upper 2, 3 will be made of aluminum metal plates, the resistive element 4 preferably being made of constantan while the two layers of electrical insulating coating 6a, 6b, will be made of two layers of polyimide.
  • Figure 4 shows the incorporation of a heating structure 1 according to the invention in an appliance consisting of an iron, of the steam type of which only the lower part is shown.
  • the lower metal plate 2 forms the ironing sole proper intended to come into contact with a textile article to be ironed not shown in the figure, while the upper metal plate 3 at least partially forms the lower wall of a vaporization chamber 16 consequently arranged directly above the heating structure 1.
  • the function of sealing against steam and external aggressions in general is ensured as described above by mounting a track resistive 14, de-energized forming a peripheral seal at the end of the first resin layer 5.
  • the sealing function can be improved by the interposition of a seal 17 of silicone type, disposed between a lateral peripheral wing 18 of the vaporization chamber 16 and the upper metal plate 3.
  • the assembly can be maintained in place in good sealing conditions by folding the peripheral edge 19 of the lower plate 2 on the side wing 18 so that the peripheral edge 19 maintains by clamping the entire structure of the sole and ensures its peripheral tightness.
  • the iron of the steam type comprises, as is well known in the prior art, a series of passage orifices 21 for the steam, connecting the vaporization chamber 16 and the external face 12 of the lower plate 2.
  • the orifices 21 are produced by spinning the outer plate 2 so as to produce orifices passageway 21 of cylindrical shape, the walls 22 of which pass through the soleplate in leaktight manner to open above the upper face 11 of the plate 3 (see FIG. 5).
  • the different layers of the heating structure of the sole are then held in place at the orifice 21 by riveting the threads, so that the upper flange 23 of the orifice 21 forming the rivet not only assumes a function of compression of the different layers of the heating structure between the plates, 2, 3, so as to promote heat exchange and to avoid deformation, but also a vapor tightness function.
  • the seal is further improved at the passage openings 21, as shown in FIGS. 5 and 6, by incorporating, in the first resin layer 5, tracks of resistive elements 24, in the form of a ring surrounding the external diameter of the walls 22 constituting the spinning of the orifices 29.
  • the heating structure according to the invention thus has, thanks to the presence of three layers of thermoplastic resin, on the one hand good heat transmission properties between the different layers, and on the other hand also good resistance to mechanical shock and while maintaining good adhesion properties between the different layers.
  • thermoplastic materials used to form the first layer of resin 5 The production of such a heating structure does not require the use of a heavy and expensive industrial infrastructure, and the cost of such a heating structure can consequently be substantially reduced.
  • the dielectric properties of the heating structure can be obtained at the lowest cost, by limiting the quantities of the thermoplastic materials used to form the first layer of resin 5.
  • the heating structure according to the invention and in particular the iron comprising such a heating structure has remarkable vapor tightness properties obtained at a lower cost. Indeed, the seal is ensured by eliminating the mounting of a traditional sealing element through the use, as a sealing means, of certain tracks of the resistive element 4.
  • the incorporation of a heating structure in accordance with the invention in the ironing soleplate of a steam iron allows, thanks to the good heat dissipation properties of the heating assembly, to mount the vaporization chamber directly above the upper plate of the sandwich structure. This results in a great simplification of the internal arrangement of the iron, positively influencing the cost and the ease of manufacture.
  • the heating structure according to the invention is preferably incorporated in an iron of the steam type, but it is obvious that its mounting can extend to any type of iron in general, and also to receptacles fryers of the culinary type, to devices ensuring a grilling function, or having to ensure the formation of steam, such as coffee makers or kettles for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Laminated Bodies (AREA)

Description

  • La présente invention concerne le domaine technique général des structures chauffantes plates du type sandwich, destinées à assumer au moins deux fonctions thermiques différenciées.
  • La présente invention se rapporte à une structure chauffante sandwich, limitée extérieurement par deux éléments présentant une certaine ridigité et dont l'un au moins est une plaque de chauffe apte à diffuser la chaleur produite par un élément résistif s'étendant entre les deux éléments. Une telle structure est donc à même de pouvoir fournir une production de chaleur qui peut être différenciée à partir de chaque élément dans le cas d'utilisation de deux plaques de chauffe pour assurer des fonctions thermiques distinctes telles que la chauffe, la vaporisation ou simplement la dissipation thermique.
  • La présente invention s'applique notamment, mais non exclusivement, aux appareils électroménagers, et parmi ceux-ci, préférentiellement aux appareils susceptibles de fonctionner en ambiance humide ou d'être en contact avec l'humidité, tels que les fers à repasser en général qu'ils soient à vapeur ou à sec (utilisation de pattemouille), ou encore tels que des friteuses ou des appareils à griller de toutes sortes.
  • Dans les applications préférentielles auxquelles il est fait référence précédemment, la structure chauffante est intégrée de manière avantageuse dans un fer à repasser du type à vapeur ou sec, et la présente invention concerne également directement un fer à repasser pourvu d'une telle structure chauffante.
  • Dans le domaine technique spécifique des fers à repasser, il est déjà connu, tel que cela est par exemple décrit dans le brevet GB-A-1.085.784, de réaliser une semelle de fer à repasser comportant une feuille métallique destinée à diffuser la chaleur produite par un élément résistif et à venir en contact avec l'article textile à repasser. L'élément résistif est isolé électriquement à l'aide d'un matériau plastique polymérisé, du type résine siliconée, ou résine époxy ou polyimide, consistant en une couche de revêtement isolant inférieure et une couche de revêtement isolant supérieure. L'ensemble de l'élément résistif et de ces deux couches d'isolation électrique est collé sur la feuille métallique par l'intermédiaire d'une couche adhésive. Il est également prévu d'avoir recours à deux couches supplémentaires protectrices consistant par exemple en des feuilles de mica ou micanite, dans le cas où la température de travail du fer est élevée et susceptible d'influencer négativement la tenue des couches initiales d'isolant électrique. Une telle conception de semelle peut être considérée comme classique dans l'art antérieur, et souffre d'une série d'inconvénients.
  • En premier lieu il a déjà été noté que la tenue à la température de la couche adhésive était insuffisante, et qu'un décollement partiel ou total de l'élément résistif survenait après une période d'utilisation relativement courte en regards de la durée de vie globale et escomptée des autres éléments du fer à repasser.
  • Il doit également être noté qu'une telle technique s'avère totalement inadaptée à la réalisation de semelles pour des fers à repasser notamment à vapeur pour lesquels les contraintes de fonctionnement, et en particulier les contraintes thermiques subies par la semelle, sont très exigeantes et hétérogènes.
  • En effet, la semelle doit alors assurer une double fonction thermique, puisqu'il s'agit d'une part d'évaporer de l'eau à partir de la surface supérieure de la semelle, et d'autre part d'assumer le repassage proprement dit par l'intermédiaire de la surface inférieure de la dite semelle.
  • Il a été déjà proposé de réaliser pour des fers à repasser à vapeur, des semelles dites à structure sandwich, limitées extérieurement par deux éléments diffuseurs de chaleur tels que des plaques métalliques entre lesquelles sont disposées une pluralité de couches intermédiaires superposées les unes aux autres à partir d'un élément central constitué de l'élément résistif. Une telle structure sandwich peut être par exemple illustrée par la semelle décrite dans la demande de brevet français FR-A-2.641.291, dans laquelle les couches intermédiaires entre l'élément résistif central et les deux feuilles métalliques externes sont constituées de couches colaminées d'alliage de brasage, l'élément résistif étant séparé de ces dernières par des couches électriquement isolantes constituées de feuilles de micanite. Le recours à une structure sandwich de ce type peut être considéré comme donnant globalement satisfaction sur le plan des propriétés de tenue thermique de la semelle. En revanche il y a lieu de noter que la réalisation d'une telle structure sandwich nécessite une série d'investissements industriels lourds et onéreux en raison de la nécessité d'utiliser un four de brasage. Une telle technique peut être en conséquence considérée comme donnant lieu à l'incorporation, dans un article électroménager, d'un élément au prix de revient élevé.
  • L'objet de la présente invention vise en conséquence à remédier aux divers inconvénients énumérés précédemment, et àfournir une structure chauffante haute température à structure sandwich apte à assumer au moins une et de préférence deux fonctions thermiques différenciées, capable d'améliorer la dissipation de chaleur à partir de l'élément résistif sans influencer négativement la tenue dans le temps de la structure interne propre de la structure chauffante quelles que soient les contraintes thermiques subies, et ce à un coût de fabrication réduit.
  • Un objet complémentaire de l'invention vise à fournir une structure chauffante réalisée de manière particulièrement simplifiée, et présentant des caractéristiques améliorées d'étanchéité à l'air et aux vapeurs.
  • Un autre objet de l'invention vise à fournir une structure chauffante présentant une amélioration de la tenue dans le temps de la cohésion des différentes couches la constituant, et ce malgré de fortes contraintes thermiques.
  • L'objet de l'invention concerne également un appareil électroménager comportant une telle structure chauffante, et en particulier, un fer à repasser à vapeur susceptible d'être réalisé à faible coût, tout en possédant de bonnes propriétés de dissipation thermique, une bonne tenue dans le temps de la cohésion interne des éléments de la semelle, et une bonne étanchéité de la semelle.
  • Les buts assignés à l'invention sont atteints à l'aide d'une structure chauffante, notamment pour appareil électroménager, du type fer à repasser ou récipient culinaire tel qu'une friteuse par exemple, réalisée selon une structure sandwich limitée extérieurement par deux éléments rigides dont l'un au moins forme une plaque de chauffe, les dits éléments étant aptes à diffuser la chaleur produite par une unité de chauffe comprenant un élément résistif revêtu d'un isolant électrique, ladite unité étant solidaire des dits éléments par l'intermédiaire d'un moyen de liaison, caractérisée en ce que :
    • l'unité de chauffe est délimitée par l'isolant électrique comprenant deux feuilles de revêtement isolant électrique entre lesquelles s'étend une première couche de résine thermoplastique dans laquelle est inséré l'élément résistif, ladite couche de résine thermoplastique adhérant aux feuilles de revêtement isolant électrique
    • le moyen de liaison est constitué d'au moins une deuxième couche de résine thermoplastique, s'étendant entre la plaque de chauffe et la feuille de revêtement isolant électrique associée et adhérant à ladite plaque et à ladite feuille.
  • D'autres particularités et avantages de l'invention apparaitront et ressortiront plus en détail à partir de la description jointe ci-après, en référence aux dessins annexés, donnés à titre d'exemples illustratifs non limitatifs dans lesquels :
    • la figure 1 représente selon une coupe transversale, une structure chauffante conforme à l'invention avant l'opération de pressage et chauffage menant à son obtention.
    • la figure 2 représente selon une coupe transversale l'état final d'une structure chauffante conforme à l'invention et identique à celle montrée à la figure 1, après l'opération de pressage et chauffage.
    • La figure 2a représente une variante simplifiée de la structure chauffante montrée à la figure 2.
    • la figure 3 représente selon une coupe transversale partielle une structure chauffante conforme à l'invention pourvue d'un moyen d'étanchéité périphérique.
    • la figure 4 montre selon une coupe transversale, l'intégration d'une structure chauffante conforme à l'invention dans un fer à repasser à vapeur.
    • la figure 5 montre un détail de réalisation de l'étanchéité d'un trou de vapeur dans le cas de l'intégration d'une structure chauffante conforme à l'invention dans un fer à repasser à vapeur.
    • la figure 6 montre selon une vue en élévation un détail de réalisation de l'élément résistif de la structure chauffante.
    • la figure 7 représente une autre variante de réalisation de la structure chauffante selon l'invention.
  • La structure chauffante 1 conforme à l'invention et montrée à la figure 2 est du type haute température et réalisée selon une structure sandwich constituée de l'empilement d'une pluralité de couches limitées extérieurement par deux éléments diffuseurs de chaleur formant respectivement une plaque inférieure 2 et une plaque supérieure 3. Les températures couramment atteintes dans une telle structure dépassent 180°C et de préférence même sont proches de 300°C. Les plaques 2, 3 peuvent être réalisées dans tous matériaux rigides ou souples utilisés couramment pour assumer une fonction de diffusion de chaleur, tels que l'acier inoxydable, l'acier doux, la céramique, les matières vitrocristallines et le verre par exemple, ainsi que l'aluminium, ce dernier matériau étant particulièrement avantageux dans le cas d'une utilisation de la structure chauffante dans un fer à repasser. Les plaques 2, 3 peuvent également être réalisées en un même matériau ou au contraire en deux matériaux distincts selon les applications envisagées, et être d'épaisseur égale ou non.
  • La structure chauffante comprend une unité de chauffe réalisée sous la forme d'un élément résistif 4 constitué d'une ou de plusieurs pistes s'étendant selon un trajet défini formant une série de boucles ou lacets (figure 6) entre les deux plaques 2, 3. De préférence l'élément résistif 4 et les boucles qu'il comporte, s'étendent dans le plan de symétrie longitudinal P de la structure chauffante 1. L'élément résistif 4 peut être réalisé en tous matériaux couramment utilisés en tant que piste chauffante tels que des alliages nickel-chrome ou bien de manière préférentielle à base de constantan. La section et la longueur de l'élément résistif 4 varie selon la puissance électrique souhaitée. Avantageusement son épaisseur sera de l'ordre de 50 u et pourra varier entre 20 et 100 u par exemple.
  • L'élément résistif 4 est inséré dans une première couche de résine thermoplastique 5, recouvrant au moins les parties supérieures et inférieures de l'élément résistif 4. D'une manière classique, l'élément résistif 4 est pourvu d'un revêtement isolant électrique constitué d'une feuille supérieure 6a et d'une feuille inférieure 6b adhérant respectivement sur chacune des faces de la première couche de résine thermoplastique 5 et délimitant en conséquence l'unité de chauffe. Le matériau utilisé en tant que revêtement isolant électrique peut être choisi bien évidemment parmi tous les composants classiques utilisés à ce jour par l'homme du métier, en fonction des contraintes thermiques de la structure chauffante. Dans le cadre d'une utilisation de la structure chauffante pour un appareil électroménager, du type fer à repasser il est particulièrement avantageux d'avoir recours à un matériau du type polyimide.
  • Le moyen de liaison assurant l'adhésion entre d'une part chacune des faces opposées respectives, 2b, 3a, des plaques inférieures et supérieures 2,3 et d'autre part les faces supérieures et inférieures des feuilles d'isolation électrique 6a, 6b, comporte au moins une couche de résine thermoplastique, formant ainsi respectivement une couche 7a dite supérieure, et une couche 7b dite inférieure.
  • Dans les applications préférentielles conformes à l'invention, les liaisons respectives entre les plaques 2, 3 et les feuilles de revêtement d'isolation 6a, 6b sont constituées individuellement d'une seule et unique couche de résine thermoplastique.
  • Pour des raisons de constance de dissipation thermique à travers l'épaisseur de la structure sandwich, le matériau thermoplastique utilisé pour chacune des couches de résine thermoplastique, 7a, 7b, 5, aura de préférence la même composition dans chacune des trois couches. Il est cependant envisageable de réaliser, chacune des trois couches dans des matériaux thermoplastiques différents, suivant le type de contrainte thermique auquel sera soumis la structure chauffante 1, ou bien encore de réaliser seulement la première couche de résine thermoplastique dans un matériau distinct des couches supérieures et inférieures 7a, 7b. De manière avantageuse au moins les couches supérieures 7a, et inférieures 7b seront réalisées dans le même matériau, et de préférence également la première couche de résine 5.
  • Le choix de la résine thermoplastique dépend bien évidemment des contraintes thermiques subies par la structure chauffante et dans le cadre d'une application spécifique aux articles électroménagers et en particulier aux fers à repasser à vapeur, on choisira avantageusement le PFA (Perfluoroalkoxy) ou le PEEK (polyetherethercétone) pour réaliser chacune des trois couches de résine. Bien entendu suivant les contraintes thermiques devant être subies par la structure chauffante en fonction de l'utilisation prévue, d'autres matériaux thermoplastiques peuvent être envisagés, tels que le PTFE (polytétrafluoréthylène) ou encore le FEP (Tétrafluoréthylène Héxafluoropropylène - Nomenclature tirée des Editions WEKA tome 1) par exemple.
  • Il est également envisageable de simplifier la structure chauffante 1 conforme à l'invention, en supprimant, tel que cela est montré à la figure 2a, une couche de résine thermoplastique et par exemple la couche supérieure 7a. Dans une telle variante de réalisation, seule la plaque inférieure 2 assume une fonction de diffusion thermique spécifique, l'élément rigide 3 limitant en partie supérieure la structure chauffante 1 assumant une fonction principale mécanique de raidissement et accessoirement de diffusion thermique. L'élément rigide 3 repose directement sur la feuille supérieure 6a de revêtement isolant électrique, et peut être constitué d'une série de lames ou lamelles 3d, espacées entre elles.
  • Selon une autre variante de réalisation, telle que celle montrée à la Figure 7, le revêtement isolant électrique comprend une feuille de tissus supérieure 6'a et une feuille de tissus inférieure 6'b dont la trame est imprégnée en partie par les couches de résine thermoplastique 5,7a et 7b. L'imprégnation partielle laisse avantageusement le coeur de la trame libre, et l'isolation électrique est obtenue par la conjonction de la résine thermoplastique et du tissus. Dans l'exemple montré à la Figure 7, la résine thermoplastique est avantageusement constituées de trois couches de PEEK et de deux feuilles de tissus de verre partiellement remplies. Les feuilles de tissus 6'a et 6'b assurent également une fonction mécanique d'entretoise dans la structure chauffante garantissant avec la résine thermoplastique un bon isolement électrique en cas de surchauffe des pistes de l'élément résistif 4. La présence de feuille de tissus de verre facilite également l'obtention de la structure sandwich en évitant les effets de rétractation des couches de résine ce qui influe positivement sur la planeïté du produit final. L'épaisseur des couches de résines 7a, 7b formant les moyens de liaison avec les plaques 2,3 est de préférence inférieure à celle de chaque feuille 6'a, 6'b de tissus. Avantageusement la somme des épaisseurs de chaque couche de résine 5,7a, 7b sera supérieure ou égale à 2 fois l'épaisseur de chaque feuille de tissus 6'a, 6'b. La somme des épaisseurs de chaque couche de résine 5,7a, 7b est de préférence voisine de 1/10 de mm.
  • La structure chauffante conforme à l'invention peut être réalisée selon un procédé d'obtention dans lequel l'élément résistif 4 est constitué d'un feuillard de métal à partir duquel l'élément résistif 4 proprement dit peut être obtenu par tous moyens connus de l'homme du métier et en particulier par découpage chimique. Bien évidemment, l'élément résistif 4 peut également être obtenu par découpage mécanique ou par dépôt sérigraphique d'une pâte résistive. Parallèlement à l'obtention de l'élément résistif 4, le procédé d'obtention de la structure chauffante 1 comporte une étape d'enduction de chacune des feuilles d'isolant électrique 6a, 6b, lesquelles sont préenduites sur chacune de leurs deux faces par une couche de résine thermoplastique, tel que cela est montré à la figure 1. Selon cette représentation graphique, la feuille de revêtement supérieure 6a est préenduite sur sa face supérieure par une couche de résine thermoplastique 7a, et sur sa face inférieure par une autre couche de revêtement thermoplastique 5₁. La feuille de revêtement inférieure 6b est de la même facon recouverte sur sa face inférieure par une couche thermoplastique 7b, et sur sa face supérieure par une autre couche de résine thermoplastique 5₂. L'enduction des couches de résine thermoplastique peut être effectuée à l'aide de tous moyens connus, et par exemple par pulvérisation ou par poudrage. Les couches de résine 5₁ et 5₂ sont destinées à venir adhérer ensemble sur l'élément résistif 4 et peuvent présenter à cette fin une épaisseur individuelle hors tout inférieure aux couches de résine thermoplastiques supérieures et inférieures 7a et 7b lesquelles sont destinées à venir adhérer sur les faces 2b et 3a des éléments diffuseurs de chaleur 2, 3. Avantageusement, le feuillard est colaminé, avant son découpage chimique, sur l'une des couches de résine thermoplastique 5₁, 5₂ ou sur l'une des feuilles isolante électrique. L'étape suivante consiste à disposer entre les deux feuilles de revêtement isolant électrique 6a, 6b, préalablement préenduites sur chacune de leurs deux faces de couches de résine thermoplastique, au moins un élément résistif 4.
  • La mise en place des différentes couches est complétée par la superposition sur chacune des faces libres des couches de résine thermoplastique 7a, 7b, d'un élément diffuseur de chaleur 2, 3 tel que cela est montré à la figure 1. Ces éléments diffuseurs de chaleur peuvent consister en différents matériaux bien connus de l'homme de l'art, tels que de l'aluminium laminé, de l'acier inox, de l'acier revêtu d'un autre métal par colaminage (acier doux + acier inox) ou par dépôt, d'acier zingué par exemple. Il est également possible d'utiliser des matériaux moulés en résine synthétique ou même des plaques d'acier émaillé. Après avoir superposé les différentes couches, feuilles et éléments diffuseurs dans l'ordre et selon la structure montrée à la figure 1, l'ensemble de l'empilement est amené à une unité de pressage (non représentée sur les figures) où des moyens de pressage agissant sur les faces externes 11 et 12 respectivement des plaques inférieures et supérieures 2,3, assurent la compression de l'empilement constitué par les plaques 2, 3, les couches de résine 7a, 7b, 5₁, 5₂, l'élément résistif 4 avec les feuilles de revêtement isolant 6a, 6b, selon deux forces opposées F₁, F₂.
  • Au cours de l'opération de pressage, et de manière synchrone, l'ensemble de la structure sandwich est également chauffé à une température au moins égale à la température de fusion de la résine thermoplastique utilisée, de manière à obtenir un passage de la résine de son état initial solide à son état liquide. Les moyens de chauffe utilisés peuvent être classiques et faire appel à un chauffage par vibrations ou ultrasons par exemple pour éviter l'échauffement généralisé de la structure chauffante. Dans le cadre de l'utilisation d'une résine thermoplastique telle que du PFA, la température de chauffe doit être telle que la résine est portée à une température comprise sensiblement entre 300 et 310°C. Lors de l'action combinée du pressage et de la fusion des diverses couches de la résine thermoplastique, 7a, 7b, 5₁, 5₂, on obtient une adhésion et un scellage entre eux des différents constituants de la structure sandwich. L'action combinée du pressage et de la montée en température permet en particulier un bon accrochage des couches supérieure 7a et inférieure 7b de résine thermoplastique, sur les plaques 2, 3 et sur les feuilles 6a, 6b, ainsi qu'une diffusion puis un fusionnement des deux couches de résine 5₁, 5₂, autour des différentes pistes constituant l'élément résistif 4, pour venir constituer la première couche de résine thermoplastique 5 montrée à la figure 2. Selon les épaisseurs relatives des éléments résistifs 4 et des couches initiales de résine 5₁, 5₂, l'élément résistif 4 est plus ou moins noyé dans la première couche de résine thermoplastique 5. Ainsi les espaces interstitiels 13 ménagés entre les différents brins du circuit formé par les éléments résistifs 4, avant l'étape de pressage et de montée en température, peuvent être plus ou moins comblés par la résine thermoplastique 5. Dans tous les cas il a été constaté qu'un remplissage même partiel des espaces interstitiels 13 n'avait pas d'incidence sur les caractéristiques diélectriques de la structure chauffante, et que la première couche de résine thermoplastique 5 adhérait suffisamment sur les éléments résistifs 4, même en cas de noyage partiel. Il n'est en conséquence pas nécessaire d'ajuster au plus près la quantité de matière thermoplastique en vue d'effectuer un noyage complet des brins de piste de l'élément résistif 4. Dans l'application préférentielle visée à savoir celle des fers à repasser à vapeur, l'épaisseur de chacune des couches de résine thermoplastique 7a, 7b, 5₁, 5₂, sera de préférence de l'ordre d'environ 12,5 microns, alors que l'épaisseur propre de l'élément résistif 4 sera de l'ordre de 50 microns (0.05 mm), l'épaisseur des feuilles isolantes électriques étant voisine de 25 microns (0.025 mm). Le rapport de l'épaisseur des couches de PFA sur l'épaisseur de l'élément résistif 4 ainsi obtenu, de l'ordre de ³/₁₀ peut être considéré comme étant la valeur limite inférieure en deça de laquelle les propriétés d'adhésion, de dissipation thermique et de tenue à la température sont compromises, voire insuffisantes.
  • Dans le cas de réalisation d'un structure chauffante conforme à l'invention avec une première couche de résine thermoplastique 5 obtenue à partir de deux couches initiales 5₁, 5₂, d'épaisseurs aussi réduites que possible dans les limites de la relation mentionnée précédemment, il est préférable pour conserver une structure chauffante présentant de bonnes propriétés diélectriques, de prévoir un moyen complémentaire d'étanchéité périphérique au niveau et en bordure de l'élément résistif 4 de manière à éviter toute possibilité de passage d'air, de vapeur d'eau ou de liquide, en provenance du milieu externe vers et à l'intérieur de l'élément résistif 4 et à l'extérieur de la première couche de résine 5. La fonction d'étanchéité périphérique peut être obtenue d'une manière particulièrement simple et économique, tel que cela est montré aux figures 3 et 6, par l'incorporation au niveau des pistes constituant l'élément résistif 4, et dans la première couche de résine 5, d'une bordure périphérique 14 formée par une piste résistive inerte, hors tension, ceinturant l'ensemble de toutes les pistes résistives actives. Une telle bordure 14 est réalisée en même temps et selon le même principe que les pistes actives de l'élément résisitif 4, et évite la fuite radiale de la résine thermoplastique à l'état liquide provenant des couches 5₁ et 5₂ lors de la compression de la structure sandwich, en faisant fonction de butée antiécoulement.
  • Avantageusement les plaques supérieures et inférieures 2, 3, ainsi que le matériau thermoplastique seront choisis de manière à présenter des propriétés de dilatation thermique sensiblement identiques de manière à conserver un gradiant de température sensiblement constant dans toute l'épaisseur de la structure sandwich.
  • Avantageusement également, les plaques inférieures et supérieures 2, 3 seront constituées de plaques métalliques en aluminium, l'élément résistif 4 étant de préférence réalisé en constantan alors que les deux couches de revêtement isolant électrique 6a, 6b, seront constituées de deux couches de polyimide.
  • La figure 4 montre l'incorporation d'une structure chauffante 1 conforme à l'invention dans un appareil électroménager constitué d'un fer à repasser, du type à vapeur dont seule la partie inférieure est représentée. Dans une telle réalisation la plaque métallique inférieure 2 forme la semelle de repassage proprement dite destinée à venir en contact avec un article textile à repasser non représenté sur la figure, alors que la plaque métallique supérieure 3 forme au moins partiellement la paroi inférieure d'une chambre de vaporisation 16 disposée en conséquence directement au dessus de la structure chauffante 1. Dans une telle application, la fonction d'étanchéité à la vapeur et aux agressions externes en général est assurée comme cela a été décrit précédemment par le montage d'une piste résistive 14, hors tension formant joint périphérique à l'extrémité de la première couche de résine 5. De manière classique la fonction d'étanchéité peut être améliorée par l'interposition d'un joint 17 de type silicone, disposé entre une aile périphérique latérale 18 de la chambre de vaporisation 16 et la plaque métallique supérieure 3. L'ensemble peut être maintenu en place dans de bonnes conditions d'étanchéité en repliant la bordure périphérique 19 de la plaque inférieure 2 sur l'aile latérale 18 de manière que la bordure périphérique 19 maintienne par pincement l'ensemble de la structure de la semelle et assure son étanchéité périphérique.
  • Le fer à repasser du type à vapeur conforme à l'invention, comporte comme cela est bien connu dans l'art antérieur, une série d'orifices de passage 21 pour la vapeur, reliant la chambre de vaporisation 16 et la face externe 12 de la plaque inférieure 2. De manière préférentielle, les orifices 21 sont réalisés par filage de la plaque extérieure 2 de manière à réaliser des orifices de passage 21 de forme cylindrique dont les parois 22 traversent la semelle de manière étanche pour déboucher au dessus de la face supérieure 11 de la plaque 3 (voir figure 5). Les différentes couches de la structure chauffante de la semelle sont ensuite maintenues en place au niveau de l'orifice 21 par rivetage des filages, de manière que la collerette supérieure 23 de l'orifice 21 formant le rivet assume non seulement une fonction de compression des différentes couches de la structure chauffante entre les plaques, 2, 3, de manière à favoriser les échanges thermiques et à éviter les déformations, mais encore une fonction d'étanchéité à la vapeur. L'étanchéité est en outre améliorée au niveau des orifices de passage 21, tel que cela est montré aux figures 5 et 6, par l'incorporation, dans la première couche de résine 5, de pistes d'éléments résistifs 24, en forme d'anneau entourant le diamètre externe des parois 22 constituant le filage des orifices 29.
  • La structure chauffante conforme à l'invention présente ainsi grâce à la présence de trois couches de résine thermoplastique, d'une part de bonnes propriétés de transmission de chaleur entre les différentes couches, et d'autre part également une bonne résistance aux chocs mécaniques et thermiques, et ce, tout en conservant de bonnes propriétés d'adhésion entre les différentes couches.
  • La réalisation d'une telle structure chauffante ne nécessite pas le recours à une infrastructure industrielle lourde et onéreuse, et le coût d'une telle structure chauffante peut être en conséquence sensiblement réduit. De la même manière, les propriétés diélectriques de la structure chauffante peuvent être obtenues au moindre coût, en limitant les quantités des matériaux thermoplastiques utilisés pour former la première couche de résine 5. Il peut également être noté que la structure chauffante conforme à l'invention, et notamment le fer à repasser comprenant une telle structure chauffante présente des propriétés d'étanchéité à la vapeur remarquables obtenues à un moindre coût. En effet l'étanchéité est assurée en supprimant le montage d'un élément d'étanchéité traditionnel grâce à l'utilisation, en tant que moyen d'étanchéité, de certaines pistes de l'élément résistif 4.
  • Enfin on pourra noter que l'incorporation d'une structure chauffante conforme à l'invention dans la semelle de repassage d'un fer à repasser à vapeur, permet, grâce aux bonnes propriétés de dissipation thermique de l'ensemble chauffant, de monter la chambre de vaporisation directement au-dessus de la plaque supérieure de la structure sandwich. Il en résulte une grande simplification de l'agencement interne du fer à repasser influençant d'une manière positive le coût et la facilité de fabrication. La structure chauffante conforme à l'invention est incorporée de manière préférentielle dans un fer à repasser du type à vapeur, mais il est bien évident que son montage peut s'étendre à tout type de fer à repasser en général, et également à des récipients culinaires du type friteuses, à des appareils assurant une fonction de grillage, ou devant assurer la formation de vapeur, tels que des cafetières ou des bouilloires par exemple.

Claims (14)

  1. Structure chauffante (1), notamment pour appareil électroménager du type fer à repasser ou récipient culinaire tel qu'une friteuse par exemple, réalisée selon une structure sandwich limitée extérieurement par deux éléments rigides (2,3) dont l'un au moins forme une plaque de chauffe (2), lesdits éléments étant aptes à diffuser la chaleur produite par une unité de chauffe comprenant un élément résistif (4) revêtu d'un isolant électrique (6a, 6b, 6'a, 6'b), ladite unité étant solidaire desdits éléments (2,3) par l'intermédiaire de moyens de liaison, caractérisé en ce que :
    - l'unité de chauffe est délimitée par l'isolant électrique comprenant deux feuilles de revêtement isolant électrique (6a, 6b, 6'a, 6'b), entre lesquelles s'étend une première couche de résine thermoplastique (5) dans laquelle est inséré l'élément résistif (4), ladite couche de résine thermoplastique adhérant aux feuilles de revêtement isolant électrique (6a, 6b, 6'a, 6'b).
    - les moyens de liaison sont constitués d'au moins une deuxième couche (7b) de résine thermoplastique, s'étendant entre la plaque de chauffe (2) et la feuille de revêtement isolant électrique associée (6b, 6'b) et adhérant à ladite plaque (2) et à ladite feuille (6b, 6'b).
  2. Structure chauffante selon la revendication 1 caractérisée en ce que le second élément rigide forme une seconde plaque de chauffe (3) et en ce que les moyens de liaison comprennent une troisième couche de résine thermoplastique (7a) s'étendant entre la seconde plaque de chauffe (3) et l'autre fouille de revêtement isolant électrique (6a) associée d'une part, et adhérant à ladite seconde plaque (3) et à ladite feuille de revêtement isolant électrique (6a) d'autre part,
  3. Structure chauffante selon la revendication 1 ou 2 caractérisée on ce que les couches de résine thermoplastique (5, 7a, 7b) sont réalisées dans un matériau de même composition.
  4. Structure chauffante selon la revendication 3 caractérisée en ce que les couches de résine (5, 7a, 7b), sont constituées de PTFE, FEP ou de préférence de PFA ou de PEEK.
  5. Structure chauffante selon l'une des revendications précédentes caractérisée en ce qu'elle comporte, au niveau de la première couche de résine (5) au moins une bordure périphérique d'étanchéité (14) formée par une piste résistive inerte.
  6. Structure chauffante selon l'une des revendications précédentes caractérisée en ce que la ou les plaques de chauffe (2, 3) et les couches de résine thermoplastique (7a, 7b, 5) ont des propriétés de dilatation thermique sensiblement identiques.
  7. Structure chauffante selon l'une des revendications précédentes caractérisée en ce que les plaques (2, 3) sont réalisées en aluminium et l'élément résistif (4) en constantan.
  8. Structure chauffante selon l'une des revendications 1 à 7 caractérisée en ce que les feuilles (6a, 6b) de revêtement isolant électrique sont constituées de deux feuilles de polyimide.
  9. Structure chauffante selon l'une des Revendications 1 à 7 caractérisée en ce que les feuilles (6a, 6b) de revêtement isolant électrique sont chacune constituées d'une feuille de tissus (6'a, 6'b), de préférence de tissus de verre, imprégnées par les couches (5, 7a, 7b) de résine thermoplastique.
  10. Appareil électroménager comportant au moins une structure chauffante conforme à l'une des revendications de 1 à 9.
  11. Appareil électroménager selon la revendication 10 caractérisé en ce ledit appareil est un fer à repasser à vapeur dans lequel la plaque inférieure (2) forme la semelle de repassage, et la plaque supérieure (3) forme au moins partiellement la paroi inférieure d'une chambre de vaporisation (16).
  12. Appareil électroménager selon la revendication 11 caractérisé en ce qu'il comporte des orifices de passage (21) pour la vapeur reliant la chambre de vaporisation (16) à la semelle de repassage (2), les dits orifices (21) étant réalisés par filage de la plaque inférieure et par rivetage de ces filages sur la plaque supérieure (3) de manière que les orifices de vapeur (21) forment un moyen additionnel de liaison de l'ensemble de la structure chauffante.
  13. Appareil électroménager selon la revendication 12 caractérisé en ce qu'il comporte dans la première couche de résine thermoplastique (15) des pistes résistives inertes (24) entourant le filage des orifices (21) de passage de la vapeur, pour former des joints d'étanchéité.
  14. Procédé d'obtention d'un élément chauffant conforme à l'une des revendications 2 à 9, caractérisé en ce qu'il consiste :
    - à disposer entre deux feuilles de revêtement isolant électrique, préalablement enduites sur chacune de leurs deux faces, de couches de résine thermoplastique, au moins un élément résistif,
    - à disposer, sur chaque couche de résine thermoplastique opposée à la couche de résine thermoplastique en regard de l'élément résistif, au moins deux éléments diffuseurs de chaleur formant plaques,
    - à assurer, à l'aide de moyens de pressage agissant sur les faces externes des éléments diffuseurs, la compression de l'ensemble des plaques, des couches de résine et des feuilles de revêtement isolant électrique, tout en assurant de manière synchrone, le chauffage de l'ensemble à une température au moins égale à la température de fusion du matériau thermoplastique utilisé,
    - à arrêter la compression de l'ensemble, laisser refroidir et évacuer la structure chauffante à structure sandwich obtenue.
EP93420028A 1992-01-24 1993-01-22 Elément chauffant à structure sandwich et appareil éléctroménager, du type fer à repasser à vapeur, comportant un tel élément Expired - Lifetime EP0555159B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9200970 1992-01-24
FR9200970A FR2686761B1 (fr) 1992-01-24 1992-01-24 Element chauffant a structure sandwich et appareil electromenager du type fer a repasser a vapeur comportant un tel element.

Publications (2)

Publication Number Publication Date
EP0555159A1 EP0555159A1 (fr) 1993-08-11
EP0555159B1 true EP0555159B1 (fr) 1996-01-10

Family

ID=9426119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93420028A Expired - Lifetime EP0555159B1 (fr) 1992-01-24 1993-01-22 Elément chauffant à structure sandwich et appareil éléctroménager, du type fer à repasser à vapeur, comportant un tel élément

Country Status (5)

Country Link
US (1) US5804791A (fr)
EP (1) EP0555159B1 (fr)
DE (1) DE69301250T2 (fr)
FR (1) FR2686761B1 (fr)
HK (1) HK83096A (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711996B1 (fr) * 1993-11-03 1995-12-15 Seb Sa Fer à repasser électrique comportant une semelle de repassage à faible inertie thermique.
FR2731237B1 (fr) * 1995-03-02 1997-04-30 Seb Sa Structure chauffante, notamment pour appareil electromenager realise selon une structure sandwich et appareil electromenager comportant une telle structure chauffante
US6018288A (en) * 1997-05-09 2000-01-25 Indak Manufacturing Corp. Flat resistors for automotive blower motor speed control or other service
US5911896A (en) * 1997-06-25 1999-06-15 Brooks Automation, Inc. Substrate heating apparatus with glass-ceramic panels and thin film ribbon heater element
US6054692A (en) * 1997-06-25 2000-04-25 Takehiko Hitomi Heating device, heat storing type heat generating body and protective sheet for the heating device
US6124579A (en) * 1997-10-06 2000-09-26 Watlow Electric Manufacturing Molded polymer composite heater
EP0958712B1 (fr) * 1997-12-05 2006-05-17 Koninklijke Philips Electronics N.V. Thermoplongeur
GB2338632A (en) * 1998-06-16 1999-12-22 Pifco Ltd Metal sheathed planar element: Edge connector with shutter
IT1319291B1 (it) * 1999-11-09 2003-10-10 Cadif Srl Pannello per riscaldamento elettrico ad alto rendimento di sicurezza
ITMI20022146A1 (it) * 2002-10-10 2004-04-11 Cadif Srl Sistema per il riscaldamento a nastro di costruzioni ed
FR2856880B1 (fr) * 2003-06-27 2005-09-23 Auxitrol Sa Resistance chauffante notamment pour la chauffe d'une piece massive telle qu'une sonde de temperature et/ou de prise de pression
JP2008501399A (ja) * 2004-06-02 2008-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも1つの螺旋形の蒸気流路及び少なくとも1つの平坦な抵抗発熱体を有する蒸気発生器
NL1027571C2 (nl) * 2004-11-23 2006-05-24 Ferro Techniek Holding Bv Emailsamenstelling voor toepassing als dielektricum, en gebruik van een dergelijke emailsamenstelling.
EP2066971B1 (fr) * 2005-12-19 2020-06-17 Koninklijke Philips N.V. Appareil et procede de generation de vapeur
US20070187381A1 (en) * 2006-02-16 2007-08-16 United Technologies Corporation Heater assembly for deicing and/or anti-icing a component
EP1989352B1 (fr) * 2006-02-23 2016-10-12 Koninklijke Philips N.V. Semelle de fer a repasser
CN100455380C (zh) * 2006-04-14 2009-01-28 广州市立本电器有限公司 一种空心熨斗发热体的制作方法
GB0908860D0 (en) * 2009-05-22 2009-07-01 Sagentia Ltd Iron
EP2491758A1 (fr) * 2009-10-22 2012-08-29 Datec Coating Corporation Procédé de liaison par fusion d'un élément chauffant à base de thermoplastique résistant aux températures élevées à un substrat
WO2015028632A1 (fr) * 2013-08-30 2015-03-05 Dsm Ip Assets B.V. Dispositif de distribution de chaleur élevée
FR3029543B1 (fr) * 2014-12-08 2017-07-07 Seb Sa Fer a repasser comportant un corps et une plaque de semelle metallique rapportee contre le corps
CN104626422B (zh) * 2015-02-09 2017-05-24 辽宁奇点节能科技股份有限公司 一种单面传热压机热板
FR3033679A1 (fr) * 2015-03-11 2016-09-16 Fanien Hubert Jean Louis Henri Delelis Procede d'assemblage d'element chauffant de type plaque et article chauffant s'y rapportant
US10645808B2 (en) * 2018-02-22 2020-05-05 Apple Inc. Devices with radio-frequency printed circuits
JP7131178B2 (ja) * 2018-07-30 2022-09-06 株式会社デンソー 発熱部材
EP3749054A1 (fr) 2019-06-03 2020-12-09 Patentbox Internacional, S.L. Agencement d'éléments dans une plaque de chauffage électrique et son procédé de fabrication

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US447023A (en) * 1891-02-24 Electro-heating apparatus
US457828A (en) * 1891-08-18 Method of insulating electric conductors
US566693A (en) * 1896-08-25 Harry ward leonard
FR331565A (fr) * 1903-04-28 1903-09-19 Frederick E Brooks Coussinet à rouleaux
US1149172A (en) * 1909-08-06 1915-08-10 Gen Electric Electric flat-iron.
US1287192A (en) * 1918-07-08 1918-12-10 Gen Electric Electric heating device.
US1472185A (en) * 1921-10-20 1923-10-30 Elmer A Mollenhauer Vulcanizing apparatus
US1930880A (en) * 1929-05-10 1933-10-17 Elektrisk Bureau As Electrical heating apparatus
FR822661A (fr) * 1937-06-04 1938-01-05 Plaques de chauffage électrique pour presses hydrauliques
GB503299A (en) * 1937-07-30 1939-03-30 Chicago Flexible Shaft Co Electric sadirons
US2569499A (en) * 1949-06-08 1951-10-02 Shoub Harry Wire-resistance gauge for measuring large strains
US2889439A (en) * 1955-07-29 1959-06-02 Albert C Nolte Electric heating devices and the like
US3191004A (en) * 1962-10-12 1965-06-22 Corning Glass Works Electrically heated immersible warming unit
GB1102125A (en) * 1964-02-24 1968-02-07 Richards Morphy N I Ltd Improvements relating to electric smoothing irons and heating units therefor
GB1085784A (en) * 1964-03-17 1967-10-04 Technograph Printed Circuits L Electrical resistance heating devices for electric irons
FR2048252A5 (en) * 1969-11-25 1971-03-19 Bourgouin Guy Thin printed circuit laminated heating - panels
DE2615064A1 (de) * 1976-04-07 1977-10-20 Husqvarna Ab Kochpfanne mit elektronisch gesteuerter temperaturregelung und ein verfahren zur herstellung derselben
FR2580887B1 (fr) * 1985-04-19 1989-04-14 Seb Sa Element chauffant plat a resistance electrique et article chauffant comprenant un tel element
NL8501327A (nl) * 1985-05-09 1986-12-01 Ferro Electronic Bv Verwarmingsinrichting voor het verwarmen van een lichaam.
DE3530690A1 (de) * 1985-08-28 1987-03-05 Aschwege Gerd Von Heizplatte
FR2628283B1 (fr) * 1988-03-02 1996-04-19 Seb Sa Composant chauffant plat a element chauffant electriquement resistant et son procede de fabrication
FR2641291B1 (fr) * 1989-01-04 1991-03-22 Seb Sa
US5100494A (en) * 1989-09-05 1992-03-31 Hughes Aircraft Company Structural bonding and debonding system

Also Published As

Publication number Publication date
EP0555159A1 (fr) 1993-08-11
DE69301250D1 (de) 1996-02-22
HK83096A (en) 1996-05-17
FR2686761A1 (fr) 1993-07-30
US5804791A (en) 1998-09-08
FR2686761B1 (fr) 1994-05-27
DE69301250T2 (de) 1996-09-19

Similar Documents

Publication Publication Date Title
EP0555159B1 (fr) Elément chauffant à structure sandwich et appareil éléctroménager, du type fer à repasser à vapeur, comportant un tel élément
EP0202969B1 (fr) Elément chauffant plat à résistance électrique et article chauffant comprenant un tel élément
EP0650620B2 (fr) Procede de fabrication d'une carte comprenant au moins un element electronique et carte obtenue par un tel procede
FR2733871A1 (fr) Element chauffant, procede de fabrication et application
EP0172078B1 (fr) Chaudière pour appareil ménager électrique
FR2552012A1 (fr) Procede de fabrication d'un moule pour realiser des pieces moulees de grandes dimensions en materiau composite, moule obtenu au moyen de ce procede et piece polymerisee obtenue au moyen de ce moule
EP3246459B1 (fr) Fer a repasser a vapeur comportant un corps chauffant muni d'une chambre de vaporisation et une surface de repassage en relation thermique avec le corps chauffant
FR2711996A1 (fr) Fer à repasser électrique comportant une semelle de repassage à faible inertie thermique.
EP0719886A1 (fr) Fer à repasser muni d'un détecteur thermique mesurant une température de tissu
EP0730058B1 (fr) Structure chauffante, notamment pour appareil electromenager, realisée selon une structure sandwich et appareil electromenager comportant une telle structure chauffante
FR2744843A1 (fr) Procede de realisation de connexion electrique par collage d'une cosse rigide sur une piste conductrice, cosse rigide pour la mise en oeuvre du procede et son application a une plaque chauffante pour recipient chauffant
FR2718317A1 (fr) Combinaison d'éléments de construction.
FR2938416A1 (fr) Appareil de cuisson comprenant un materiau multicouche et un element chauffant a couche epaisse.
EP0891118B1 (fr) Elément chauffant et appareil électroménager, notamment fer à repasser à vapeur, comportant un tel élément et procédé d'obtention du fer à repasser
EP0807367B1 (fr) Element chauffant avec plaque diffusante et procede d'assemblage dudit ensemble
FR2490056A1 (fr) Element de surface de chauffage electrique et son procede de fabrication
FR2628283A1 (fr) Composant chauffant plat a element chauffant electriquement resistant et son procede de fabrication
WO2023247455A1 (fr) Procede d'obtention d'un plancher chauffant pour vehicules, et plancher chauffant pour vehicules
FR2675078A1 (fr) Produit plastique ou elastomerique multicouches, procede d'assemblage de ce produit et structure plastique obtenue.
FR3136695A1 (fr) Procede d’obtention d’un plancher chauffant pour vehicules, et plancher chauffant pour vehicules
EP0739153B1 (fr) Elément chauffant brasé sur support
FR3138450A1 (fr) Procédé d’assemblage d’un film antiadhesif sur un substrat metallique par frappe à chaud
FR2798403A1 (fr) Fer a vapeur tous tissus a un seul element chauffant
EP4395614A1 (fr) Element de cuisson revetu par un film polymerique fluore antiadhesif pelable
WO2023031565A1 (fr) Element de cuisson revetu par un film polymerique fluore antiadhesif pelable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19930921

17Q First examination report despatched

Effective date: 19950112

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SEB S.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 69301250

Country of ref document: DE

Date of ref document: 19960222

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960307

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

26 Opposition filed

Opponent name: PHILIPS ELECTRONICS N.V.

Effective date: 19961004

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

NLR1 Nl: opposition has been filed with the epo

Opponent name: PHILIPS ELECTRONICS N.V.

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20000222

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081210

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081125

Year of fee payment: 17

Ref country code: DE

Payment date: 20090203

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090128

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100122

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100122