EP0554852B1 - Zündkerze - Google Patents

Zündkerze Download PDF

Info

Publication number
EP0554852B1
EP0554852B1 EP93101658A EP93101658A EP0554852B1 EP 0554852 B1 EP0554852 B1 EP 0554852B1 EP 93101658 A EP93101658 A EP 93101658A EP 93101658 A EP93101658 A EP 93101658A EP 0554852 B1 EP0554852 B1 EP 0554852B1
Authority
EP
European Patent Office
Prior art keywords
nickel
electrode
silver
spark plug
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93101658A
Other languages
English (en)
French (fr)
Other versions
EP0554852A2 (de
EP0554852A3 (en
Inventor
Werner Niessner
Heinz Ambacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERU Ruprecht GmbH and Co KG
Beru Werk Albert Ruprecht GmbH and Co KG
Original Assignee
BERU Ruprecht GmbH and Co KG
Beru Werk Albert Ruprecht GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERU Ruprecht GmbH and Co KG, Beru Werk Albert Ruprecht GmbH and Co KG filed Critical BERU Ruprecht GmbH and Co KG
Publication of EP0554852A2 publication Critical patent/EP0554852A2/de
Publication of EP0554852A3 publication Critical patent/EP0554852A3/de
Application granted granted Critical
Publication of EP0554852B1 publication Critical patent/EP0554852B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes

Definitions

  • the invention relates to a spark plug with an insulator, a center electrode arranged in the insulator, a body located on the outside of the insulator and at least one body electrode designed as a rope electrode.
  • the center electrode and the body electrode are usually made from two-component nickel copper, from full silver or from a nickel alloy.
  • a silver-nickel fiber composite material which consists of a silver matrix in which nickel fibers are embedded and which can be used as a material for the production of electrodes, in particular the central electrode of a spark plug.
  • Spark plugs that last as long as possible are required for use in modern internal combustion engines of motor vehicles Have lifespan for a vehicle mileage of approx. 100,000 km
  • Such spark plugs are intended to run without misfires with a predetermined ignition, so that, for example, no unburned fuel comes into contact with the catalytic converter for exhaust gas purification and this is damaged or the exhaust gas complies with the legal regulations and there is no drop in performance of the internal combustion engine. Good cold start properties are also required.
  • the object on which the invention is based is to design the spark plug of the type mentioned at the outset in such a way that it has a low breakdown voltage.
  • the body electrode is formed from a silver-nickel fiber composite material which consists of a silver matrix in which nickel or nickel alloy fibers are embedded, the nickel or nickel alloy fibers being arranged in such a way that when Burn up Nickel or nickel alloy fiber tips work around from the electrode surface of the body electrode opposite the center electrode.
  • a spark plug the body electrode of which is formed from such a silver-nickel fiber composite material, has a long service life, which is particularly true when in addition to the Body electrode and the center electrode is made of this material.
  • the electrode edges are not burned down very much, but the burn-off is distributed almost evenly over the opposing electrode surfaces.
  • the nickel tips that develop after some time cause low response voltages over a long operating time.
  • the good heat dissipation of the silver matrix cools the nickel fibers or nickel alloy fibers particularly well, so that electrodes of this type burn off significantly less than in the case of known two-component nickel-copper electrodes.
  • the electrode spacings can be chosen larger for the same ignition system, so that e.g. with gas engines result in greater leanings. This results in better efficiency, lower consumption and thus greater market opportunities for gas engines with such spark plugs. The same applies to lean-concept internal combustion engines of the Otto engine type.
  • the spark plug according to the invention has improved cold start properties, since the lower response voltage allows less energy to flow off via shunts until ignition.
  • the spark plug according to the invention is also suitable for highly compressed menthanol engines, with a larger electrode spacing being selectable with the same response voltage. It is less sensitive to shunts than usual with other common materials, allows more cold starts with a long service life due to the lower response voltage and has a large burn-up reserve.
  • the spark plug according to the invention can thus be used as a long-life spark plug for stationary engines and vehicle engines, such as, for example, Otto engines for passenger cars and motorcycles, for two-stroke and four-stroke engines, for single and multi-cylinder rotary piston engines, for with Otto fuel, methanol, ethanol, etc.
  • Gas, eg natural gas, hydrogen, biogas working Engines and methanol engines with high compression can be used. It fits conventional ignition systems such as TSZ and / or HKZ ignition systems with and without mechanical distributors, with individual ignition coils and electronic distributors and with spark ignition.
  • Such spark plugs are also suitable for model engines because of their particularly low response voltage. With hand-held machines, lawn mowers and the like, the low response voltage gives better starting properties, so that simpler and less expensive detonators are possible. The reduced response voltage leads to lower interference suppression.
  • a particularly preferred embodiment and development of the spark plug according to the invention are the subject of claims 2 to 5.
  • a reduced erosion of the spark plug electrodes can be achieved in particular by using a silver-nickel fiber composite material for the center electrode and the body electrode, which contains 20-80% nickel or a nickel alloy e.g. with silicon, magnesium, chromium at 100 to 6,000 fibers per mm.
  • the body electrodes can be optionally welded to the body in a ring shape or, for example, flanged into the body, the body electrode also being able to be juxtaposed with a customary center electrode made of two-component nickel copper, solid silver, silver with a copper core or a nickel alloy.
  • this can also be equipped with platinum, i.e. be provided with an insert or attachment made of platinum or a gold-palladium-platinum alloy.
  • the silver fiber-cooled tips of the nickel fibers stop because the silver burns out.
  • the peak effect reduces the response voltage, which is particularly advantageous when both electrodes are made of the fiber composite material.
  • the result is an almost even one Burns up over the entire ignition surface and the roughened, nickel-tipped surface creates additional field distortion, which is further enhanced by the fact that silver is non-magnetic and nickel is magnetic.
  • Semiconductor-based additives in the electrode material have another effect that reduces the response voltage.
  • the electrodes should be as short as possible. Side electrodes are shorter than roof electrodes and therefore colder.
  • the silver matrix results in a particularly favorable heat dissipation, and with cold body electrodes it is possible to extend the insulator base in order to achieve the same glow ignition behavior.
  • a longer insulator foot means more insensitivity to the formation of residues on the insulator and more possible cold starts.
  • the number of body electrodes is not limited to one. Two to four body electrodes (side electrodes) can be provided, which has proven particularly useful in practice.
  • the spark plug according to the invention can also be produced using the mass production process, since the silver-nickel fiber composite can be melted as a central electrode and a body electrode made of this fiber composite material can be welded on, the back and forth bending requirement being met.
  • the one in fig. 1 shown embodiment of a spark plug usually consists of an insulator 1 with a central electrode 3 arranged centrally in the insulator 1, which is arranged there via a glass melt 4. On the outside of the insulator there is a body 2 with a body electrode 5 provided thereon. The electrodes 3 and 5 form an electrode spacing 9.
  • the body electrode 5 is preferably welded onto the body; it can also be crimped into it.
  • the electrode 5 consists of a silver-nickel fiber composite material, wherein the silver component can also consist of an oxygen-tight silver alloy in order to protect the nickel component from chemical attacks in the combustion chamber. If necessary, additional measures can be taken to lower the response voltage.
  • Conventional spark plug nickel alloys, preferably with 0.3% magnesium and 1-4% silicon, are suitable as the nickel component.
  • the center electrode consists of two-component nickel copper or solid silver or a nickel alloy.
  • the body electrode is in the form of a roof electrode made of the silver-nickel fiber composite.
  • the center electrode 3 is also formed using the silver-nickel fiber composite material, for example in the form of a silver-nickel insert 12.
  • Two side electrodes 5 also consist of the silver-nickel fiber composite material.
  • a cleaning chamber 7 causes the insulator 1 to be additionally blown clean.
  • the insulator foot cleans itself at its free-burning temperature, i.e. with modern lead-free fuels at around 550 ° C. This temperature is not reached during cold starts.
  • the residues can contain conductive components or the conductivity can be strongly dependent on the applied voltage.
  • the resulting shunts deprive energy, making it difficult, if not impossible, to reach the required breakdown voltage.
  • the cleaning chamber also blows the isolator 1 clean.
  • the insulator parts lying in the spark path are cleaned of the sparks, while on the other hand the metal of the electrodes 3, 5 is applied.
  • the increased electrode distance over the running time due to the electrode erosion is then partially bridged by this conductive path, so that the response voltage remains low even with long running times.
  • the center electrode 3 is formed using the silver-nickel fiber composite material and three side electrodes 5 made of the silver-nickel fiber composite material are provided on the insulator together with a sliding spark gap.
  • the tip 11 of the isolator is.
  • Fig. 4 shows an embodiment of a spark plug with horn arrester, in which the central and the body electrode made of silver-nickel fiber composite material or only the central or the body electrode in single or Multiple arrangement of this material are formed. Slidable spark plugs tend to dig channels into the ceramic surface of the insulator.
  • the aim of the arrangement shown in FIG. 4 is to start the sparks at high pressures via the insulator, but then to ensure, by means of a special electrode arrangement, that the spark lifts off this surface and is drawn towards the combustion chamber (horn conductor). This significantly reduces loads on the insulator and ensures a longer service life.
  • an ignition plate made of the silver-nickel fiber composite material is provided as the body electrode 5.
  • Such an ignition plate is approximately star-shaped in one piece and welded to the body in three places. The connection of the three rays of the star shape over the center electrode 3 forms the actual ignition plate. More than three-pointed star shapes can also be used and holes can be provided in the star center or eccentrically.
  • the exemplary embodiment of the spark plug shown in FIG. 6 has a center electrode 3 with a silver-nickel attachment or insert 12 on the ignition-side end face and a body electrode 5 with a corresponding silver-nickel attachment or insert 13.
  • the body electrodes are welded onto the spark plug body in the form of a single to quadruple electrode made of a silver-nickel fiber composite material.
  • the body electrode can also be provided, for example, in the form of a disk crimped into the body.
  • This body electrode can be used in combination with a center electrode made of the same composite material as well as known materials such as nickel alloys (full silver center electrode, platinum-tipped center electrode, Nikkel-copper two-substance center electrode, silver-copper two-substance electrode) be provided.
  • a spark plug can be designed with and without a glass-based erosion or interference suppression resistor or a loosely installed, for example wire-wound resistor and can be provided with an additional sliding spark component (combination of air and sliding spark gap).
  • the spark runs through the air at low compression pressures and increasingly over the glide path as the pressure increases (horn arrester electrode shape).
  • an additional cleaning chamber can be provided, into which hot combustion gases are sent to quickly dry the insulator or to clean off soot, which then emerge with a delay during the exhaust stroke, sweep past the insulator, heat it up and carry away vaporized components.
  • the shape of the ground electrode made of the fiber composite material can differ from the usual shape with natural edges. It can e.g. be designed in the form of a U-shaped profile or with a trapezoidal cross-section, the center electrode being to face as large a surface as possible, preferably also tips.
  • the body electrode consists of a nickel alloy or a nickel-copper binary
  • pieces of the silver-nickel fiber composite material can be attached, for example by welding.
  • Center and body electrodes with attached or inserted pieces made of the silver-nickel fiber composite material can be provided in conjunction with conventional electrode base materials.
  • Another advantage of using the silver-nickel fiber composite material is that the electrode material is mechanically and thermally more stable than that of solid silver. A large annular gap is not necessary, which prevents silver electrodes from tipping over when heated. Larger electrode diameters result in an increased burn-up area, which is the prerequisite for high mileage of the spark plug.

Landscapes

  • Spark Plugs (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

  • Die Erfindung betrifft eine Zündkerze mit einem Isolator, einer im Isolator angeordneten Mittelelektrode, einem außen am Isolator befindlichen Körper und wenigstens einer als Seilenelektrode ausgebildeten Körperelektrode.
  • Bei einer derartigen üblichen Zündkerze sind die Mittelelektrode und die Körperelektrode gewöhnlich aus Zweistoff-Nikkel-Kupfer, aus Vollsilber oder aus einer Nickellegierung gebildet.
  • Aus der DE-A-2361274 ist weiterhin ein Silber-Nickel-Faserverbundwerkstoff bekannt, der aus einer Silbermatrix besteht, in die Nickelfasern eingebettet sind, und der als Werkstoff zur Herstellung von Elektroden, insbesondere der Mittelelektrode einer Zündkerze Verwandt werden kann.
  • Zum Einsatz in modernen Brennkraftmaschinen von Kraftfahrzeugen werden Zündkerzen benötigt, die eine möglichst lange Lebensdauer für beispielsweise eine Fahrzeuglaufleistung von ca. 100.000 km haben. Derartige Zündkerzen sollen ohne Zündaussetzer mit vorgegebener Zündung laufen, damit beispielsweise kein unverbrannter Kraftstoff mit dem Katalysator für die Abgasreinigung in Berührung kommt und dieser beschädigt wird bzw. das Abgas den gesetzlichen Vorschriften entspricht und kein Leistungsabfall der Brennkraftmaschine auftritt. Darüber hinaus sind gute Kaltstarteigenschaften gefordert.
  • Diesen Anforderungen genügen die bisher bekannten Zündkerzen nicht.
  • Was insbesondere die Abbrandfestigkeit anbetrifft, so ist diese nur mit Platinmetallen erreichbar, die mit hohen Kosten verbunden sind. Wenn andererseits das Elektrodenmaterial über die Laufzeit abbrennt, dann wird der Elektrodenabstand größer. Da die Zündkerzenansprechspannung proportional zum Kompressionsdruck und dem Elektrodenabstand ansteigt, übersteigt der Spannungsbedarf insbesondere bei Brennkraftmaschinen mit hoher Verdichtung das Zündspannungsangebot, das üblicherweise bei 33 kV bei Serienzündungen oder 40 kV bei Kondensatorzündungen für Gasmotoren liegt. Kleine Elektrodenabstände führen andererseits zu schlechten Abgaswerten.
  • Die der Erfindung zugrunde gelegte Aufgabe besteht darin, die Zündkerze der eingangs genannten Art so auszulbilden, daß sie eine niedriege Überchlagsspannung hat.
  • Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die Körperelektrode aus einem Silber-Nickel-Faserverbundwerkstoff gebildet ist, der aus einer Silbermatrix besteht, in die Nickel- oder Nickellegierungsfasern eingelagert sind, wobei die Nickel- oder Nickellegierungsfasern so angeordnet sind, daß sich beim Abbrand Nickel- oder Nickellegierungsfaserspitzen aus der der Mittelelektrode gegenüber liegenden Elektrodenfläche der Körperelektrode herumarbeiten.
  • Eine Zündkerze, deren Körperelektrode aus einem derartigen Silber-Nickel-Faserverbundwerkstoff gebildet ist, zeigt eine lange Lebensdauer, was insbesondere dann gilt, wenn neben der Körperelektrode auch die Mittelelektrode aus diesem Werkstoff gebildet ist.
  • Im Gegensatz zu bekannten Zündkerzen mit normalen Elektroden werden die Elektrodenkanten nicht besonders stark abgebrannt, sondern ist der Abbrand über die sich gegenüberstehenden Elektrodenflächen nahezu gleichmäßig verteilt. Die sich nach einiger Zeit herausarbeitenden Nickelspitzen bewirken über eine lange Betriebszeit niedrige Ansprechspannungen. Die gute Wärmeabführung der Silbermatrix kühlt die Nickelfasern oder Nickellegierungsfasern besonders gut, so daß derartige Elektroden deutlich weniger stark als bei bekannten Zweistoff-Nickel-Kupfer-Elektroden abbrennen. Die Elektrodenabstände können bei gleicher Zündanlage größer gewählt werden, so daß sich z.B. bei Gasmotoren größere Abmagerungsmöglichkeiten ergeben. Das hat einen besseren Wirkungsgrad, einen geringeren Verbrauch und damit größere Marktchancen für Gasmotoren mit derartigen Zündkerzen zur Folge. Ähnliches gilt für Magerkonzept-Brennkraftmaschinen vom Typ der Otto-Motoren.
  • Die erfindungsgemäße Zündkerze hat verbesserte Kaltstarteigenschaften, da die niedrigere Ansprechspannung bis zum Zünden weniger Energie über Nebenschlüsse abfließen läßt.
  • Die erfindungsgemäße Zündkerze eignet sich auch für hochverdichtete Menthanol-Motoren, wobei ein größerer Elektrodenabstand bei gleicher Ansprechspannung wählbar ist. Sie ist nebenschlußunempfindlicher als sonst bei anderen üblichen Werkstoffen, erlaubt mehr Kaltstarts bei langer Lebensdauer durch die niedrigere Ansprechspannung und hat eine große Abbrandreserve.
  • Die erfindungsgemäße Zündkerze kann somit als Langlebensdauer-Zündkerze für Stationärmotore und Fahrzeugmotore, wie beispielsweise Otto-Motore für Personenkraftwagen und Motorräder, für Zweitakt- und Viertaktmotore, für Ein- und Mehrzylinder-Rotationskolbenmotore, für mit Otto-Kraftstoff, Methanol, Ethanol usw., Gas, z.B. Erdgas, Wasserstoff, Biogas arbeitende Motore und Methanolmotore mit hoher Verdichtung, eingesetzt werden. Sie paßt zu üblichen Zündanlagen wie beispielsweise TSZ- und/oder HKZ-Zündanlagen mit und ohne mechanischen Verteiler, mit Einzelzündspulen und elektronischem Verteiler sowie mit Vorfunkenzündung. Auch für Modellmotoren eignen sich derartige Zündkerzen wegen ihrer besonders niedrigen Ansprechspannung. Bei handgeführten Arbeitsmaschinen, Rasenmähern u.ä., ergibt die niedrige Ansprechspannung bessere Starteigenschaften, so daß einfachere und kostenkünstigere Zünder möglich sind. Die verringerte Ansprechspannung führt insgesamt zu einem geringeren Entstöraufwand.
  • Besonders bevorzugte Ausgestaltung und Weiterbildung der erfindungsgemäßen Zündkerze sind Gegenstand der Ansprüche 2 bis 5.
  • Ein verringerter Abbrand der Zündkerzenelektroden läßt sich insbesondere durch die Verwendung eines Silber-Nickel-Faserverbundmaterials für die Mittelelektrode und die Körperelektrode erreichen, das 20 - 80 % Nickel oder einer Nickellegierung z.B. mit Silizium, Magnesium, Chrom bei 100 bis 6.000 Fasern pro mm umfaßt. Die Körperelektroden können dabei als Seitenelektroden wahlweise in Ringform an den Körper geschweißt oder beispielsweise in den Körper eingebördelt vorgesehen sein, wobei der Körperelektrode auch eine übliche Mittelelektrode aus Zweistoff-Nickel-Kupfer, Vollsilber, Silber mit Kupferkern oder einer Nickellegierung gegenübergestellt sein kann. Bei einer Nickeloberfläche kann diese auch platinbestückt, d.h. mit einem Ein- oder Aufsatz aus Platin oder einer Gold-Palladium-Platin-Legierung versehen sein.
  • Beim Abbrand der Elektroden bleiben die durch Silber gekühlten Nickelfaserspitzen stehen, da das Silber eher herausbrennt. Die Spitzenwirkung setzt die Ansprechspannung herab, was insbesondere dann günstig ist, wenn beide Elektroden aus dem Faserverbundmaterial bestehen. Es ergibt sich ein nahezu gleichmäßiger Abbrand über die ganze Zündfläche und es entsteht durch die aufgerauhte, mit Nickelspitzen versehene Oberfläche eine zusätzliche Feldverzerrung, die zusätzlich dadurch begünstigt wird, daß Silber unmagnetisch und Nickel magnetisch ist. Zusätze auf Halbleiterbasis im Elektrodenmaterial haben eine weitere, die Ansprechspannung herabsetztende Wirkung.
  • Zur Absenkung der Elektrodentemperatur sollten die Elektroden so kurz wie möglich sein. Seitenelektroden sind kürzer als Dachelektroden und damit kälter. Durch die Silbermatrix ergibt sich eine besonders günstige Wärmeabführung, und bei kalten Körperelektroden ist es möglich, den Isolatorfuß zu verlängern, um auf das gleiche Glühzündverhalten zu kommen. Ein längerer Isolatorfuß bedeutet mehr Unempfindlichkeit gegenüber einer Rückstandsbildung auf dem Isolator und mehr mögliche Kaltstarts.
  • Die Anzahl der Körperelektroden ist nicht auf eine einzige begrenzt. Es können zwei bis vier Körperelektroden (Seitenelektroden) vorgesehen sein, was sich in der Praxis besonders bewährt hat.
  • Die erfindungsgemäße Zündkerze ist darüber hinaus im Mengenfertigungsverfahren herstellbar, da der Silber-Nickel-Faserverbund als Mittelelektrode glaseinschmelzbar ist und eine Körperelektrode aus diesem Faserverbundwerkstoff anschweißbar ist, wobei die Hin- und Herbiegeforderung erfüllt ist.
  • Im folgenden werden anhand der zugehörigen Zeichnung besonders bevorzugte Ausführungsbeispiele der erfindungsgemäßen Zündkerze näher beschrieben. Es zeigen
    • Fig. 1 eine Teilschnittansicht eines nicht unter den Schutzumfang der ansprüche fallenden Ausführungsbeispiels einer Zündkerze,
    • Fig. 2 eine Teilschnittansicht und Draufsicht von unten auf ein Ausführungsbeispiel der erfindungsgemäßen Zündkerze,
    • Fig. 3 eine Teilschnittansicht und eine Draufsicht von unten auf ein nicht unter den Schutzumfang der ansprüche fallenden Ausführungsbeispiel einer Zündkerze,
    • Fig. 4 eine Teilschnittansicht eines nicht unter den Schutzumfang der ansprüche fallenden Ausführungsbeispiels einer Zündkerze,
    • Fig. 5 eine Teilschnittansicht sowie eine Draufsicht von unten auf ein nicht unter den Schutzumfang der ansprüche fallendes Ausführungsbeispiel einer Zündkerze und
    • Fig. 6 eine Teilschnittansicht eines nicht unter den Schutzumfang der ansprüche fallenden Ausführungsbeispiels einer Zündkerze.
  • Das in fig. 1 dargestellte Ausführungsbeispiel einer Zündkerze besteht üblicherweise us einem Isolator 1 mit einer zentral im Isolator 1 angeordneten Mittelelektrode 3, die dort über eine Glaseinschmelzung 4 angeordnet ist. Außen am Isolator befindet sich ein Körper 2 mit einer daran vorgesehenen Körperelektrode 5. Die Elektroden 3 und 5 bilden einen Elektrodenabstand 9.
  • Der Isolator 1, der die Mittelelektrode 3 mit Glaseinschmelzung 4 enthält, kann in den Körper 2 eingebördelt sein. Die Körperelektrode 5 ist vorzugsweise auf den Körper aufgeschweißt, sie kann auch in diesen eingebördelt sein. Die Elektrode 5 besteht aus einem Silber-Nickel-Faserverbundwerkstoff, wobei die Silberkomponente auch aus einer sauerstoffdichten Silberlegierung bestehen kann, um die Nickelkomponente vor chemischen Angriffen im Brennraum zu schützen. Bei Bedarf können zusätzlichen Maßnahmen zur Senkung der Ansprechspannung getroffen sein. Als Nickelkomponente kommen übliche Zündkerzen-Nickellegierungen, vorzugsweise mit 0,3 % Magnesium und 1 - 4 % Silizium, in Frage.
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel besteht die Mittelelektrode aus Zweistoff-Nickel-Kupfer bzw. Vollsilber oder einer Nickellegierung. Die Körperelektrode ist in Form einer Dachelektrode aus dem Silber-Nickel-Faserverbund ausgebildet.
  • Bei dem in Fig. 2 dargestellten Ausführungsbeispiel der erfindungsgemäßen Zündkerze ist auch die Mittelelektrode 3 unter Verwendung des Silber-Nickel-Faserverbundwerkstoffes, beispielsweise in Form eines Silber-Nickel-Einsatzes 12, ausgebildet. Zwei Seitenelektroden 5 bestehen gleichfalls aus dem Silber-Nickel-Faserverbundwerkstoff.
  • Eine Reinigungskammer 7 bewirkt ein zusätzliches Sauberblasen des Isolators 1. An sich reinigt sich der Isolatorfuß bei seiner Freibrenntemperatur, d.h. bei modernen bleifreien Kraftstoffen bei etwa 550°C. Diese Temperatur wird bei Kaltstarts nicht erreicht. Die Rückstände können leitfähige Bestandteile enthalten bzw. die Leitfähigkeit kann stark von der anliegenden Spannung abhängig sein. Die sich ergebenden Nebenschlüsse entziehen Energie, so daß das Erreichen der erforderlichen Überschlagsspannung erschwert, wenn nicht gar unmöglich ist. Die Reinigungskammer bläst den Isolator 1 zusätzlich sauber. Die im Funkenweg liegenden Isolatorteile werden von den Funken abgereinigt, während andererseits das Metall der Elektroden 3, 5 aufgetragen wird. Der durch den Elektrodenabbrand über die Laufzeit vergrößerte Elektrodenabstand wird dann zum Teil durch diese leitfähige Strecke überbrückt, so daß die Ansprechspannung auch bei langen Laufzeiten niedrig bleibt.
  • Bei dem in Fig. 3 dargestellten Ausführungsbeispiel einer Zündkerze ist die Mittelelektrode 3 unter Verwendung des Silber-Nickel-Faserverbundwerkstoff gebildet und sind drei Seitenelektroden 5 aus dem Silber-Nickel-Faserverbundwerkstoff zusammen mit einer Gleitfunkenstrecke auf dem Isolator vorgesehen. Im Elektrodenabstand, d.h. im Funkenweg, liegt die Spitze 11 des Isolators.
  • Fig. 4 zeigt ein Ausführungsbeispiel einer Zündkerze mit Hörnerableiter, bei dem die Mittel- und die Körperelektrode aus Silber-Nickel-Faserverbundwerkstoff oder nur jeweils die Mittel- oder die Körperelektrode in Einfach- oder Mehrfachanordnung aus diesem Werkstoff gebildet sind. Gleitfunkenzündkerzen haben die Neigung, Kanäle in die keramische Oberfläche des Isolators zu graben. Das Ziel der in Fig. 4 dargestellten Anordnung ist es, bei hohen Drücken die Funken zwar über den Isolator zu starten, dann durch spezielle Elektrodenanordnung aber dafür zu sorgen, daß der Funke von dieser Oberfläche abhebt und in Richtung Brennraum vorgesogen wird (Hörnerableiter). Damit sind Belastungen des Isolators wesentlich verringert und ist eine höhere Lebensdauer sichergestellt.
  • Bei dem in Fig. 5 dargestellten Ausführungsbeispiel ist eine Zündplatte aus dem Silber-Nickel-Faserverbundmaterial als Körperelektrode 5 vorgesehen. Eine derartige Zündplatte ist in einem Stück etwa sternförmig ausgebildet und an drei Stellen an den Körper geschweißt. Die Verbindung der drei Strahlen der Sternform über der Mittelelektrode 3 bildet die eigentliche Zündplatte. Es können auch mehr als dreistrahlige Sternformen verwendet werden und es können Bohrungen im Sternzentrum oder exzentrisch vorgesehen sein.
  • Das in Fig. 6 dargestellte Ausführungsbeispiel der Zündkerze weist eine Mittelelektrode 3 mit einem Silber-Nickel-An- oder Einsatz 12 an der zündseitigen Stirnfläche und eine Körperelektrode 5 mit einem entsprechenden Silber-Nickel- An- oder Einsatz 13 auf.
  • Wie es oben beschrieben wurde, sind bei der erfindungsgemäßen Zündkerze die Körperelektroden in Form einer Einfach- bis Vierfachelektrode aus einem Silber-Nickel-Faserverbundwerkstoff auf den Zündkerzenkörper aufgeschweißt. Die Körperelektrode kann aber auch beispielsweise in Form einer in den Körper eingebördelten Scheibe, vorgesehen sein. Diese Körperelektrode kann in Kombination mit einer Mittelelektrode aus dem gleichen Verbundwerkstoff sowie aus bekannten Werkstoffen wie Nickellegierungen (Vollsilber-Mittelektrode, platinbestückte Mittelektrode, Nikkel-Kupfer-Zweistoffmittelelektrode, Silber-Kupfer-Zweistoffelektrode) vorgesehen sein. Eine derartige Zündkerze kann mit und ohne Abbrand- bzw. Entstörwiderstand auf Glasbasis oder einem lose eingebauten, z.B. drahtgewickelten Widerstand ausgebildet sein und mit einem zusätzlichen Gleitfunkenanteil (Kombination aus Luft und Gleitfunkenstrecke) versehen sein.
  • Bei einer speziellen Elektrodenanordnung der Zündkerze läuft der Funke bei niedrigem Kompressionsdruck durch die Luft und bei steigendem Druck zunehmend über die Gleitstrecke (Hörnerableiter-Elektrodenform). Im Atmungsraum des Körpers kann eine zusätzliche Reinigungskammer vorgesehen sein, in die zum schnellen Trocknen des Isolators oder zum Abreinigen von Ruß heiße Verbrennungsgase geschickt werden, die dann mit Verzögerung beim Auslaßhub austreten, am Isolator vorbeistreichen, diesen aufheizen und verdampfte Bestandteile mitreißen. Die Form der Masseelektrode aus dem Faserverbundwerkstoff kann von der üblichen Form mit Naturkanten abweichen. Sie kann z.B. in Form eines U-Profils oder mit trapezförmigem Querschnitt ausgebildet sein, wobei der Mittelelektrode eine möglichst große Fläche, am besten auch Spitzen, gegenüberstehen sollte.
  • Wenn die Körperelektrode aus einer Nickellegierung oder aus einem Nickel-Kupfer-Zweistoff besteht, können Stücke aus dem Silber-Nickel-Faserverbundwerkstoff aufgesetzt, beispielsweise durch Schweißen, verbunden sein. Es können Mittel- und Körperelektroden mit aufgesetzten oder eingesetzten Stücken aus dem Silber-Nickel-Faserverbundwerkstoff in Verbindung mit üblichen Elektrodenbasismaterialien vorgesehen sein.
  • Ein weiterer Vorteil beim Einsatz des Silber-Nickel-Faserverbundwerkstoffes ist das im Vergleich mit Vollsilber mechanisch und thermisch stabilere Elektrodenmaterial. Ein großer Ringspalt ist nicht notwendig, der bei Silberelektroden das Umkippen bei Wärme verhindert. Größere Elektrodendurchmesser ergeben eine vergrößerte Abbrandfläche, was die Voraussetzung für hohe Laufleistungen der Zündkerze ist.

Claims (5)

  1. Zündkerze mit einem Isolator, einer im Isolator angeordneten Mittelelektrode, einem außen am Isolator befindlichen Körper und wenigstens einer als Seitenelektrode ausgebildeten Körperelektrode, dadurch gekennzeichnet, daß die Körperelektrode aus einem Silber-Nickel-Faserverbundwerkstoff gebildet ist, der aus einer Silbermatrix besteht, in die Nickel- oder Nickellegierungsfasern eingelagert sind, wobei die Nickel- oder Nickellegierungsfasern so angeordnet sind, daß sich beim Abbrand Nickel- oder Nickellegierungsfaserspitzen aus der der Mittelelektrode gegenüberliegenden Elektrodenfläche der Körperelektrode herausarbeiten.
  2. Zündkerze nach Anspruch 1, dadurch gekennzeichnet, daß die Mittelelektrode aus einem Silber-Nickel-Faserverbundwerkstoff gebildet ist, der aus einer Silbermatrix besteht, in die Nickelfasern eingelagert sind.
  3. Zündkerze nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Faserverbundmaterial 20 - 80 % Nickel bei 100 bis 6.000 Fasern pro mm umfaßt.
  4. Zündkerze nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Silbermatrix aus einer sauerstoffundurchlässigen Silberlegierung besteht.
  5. Zündkerze nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Nickelfasern aus einer Nickellegierung mit Magnesium- und Siliziumanteilen bestehen.
EP93101658A 1992-02-05 1993-02-03 Zündkerze Expired - Lifetime EP0554852B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4203249 1992-02-05
DE4203249A DE4203249A1 (de) 1992-02-05 1992-02-05 Zuendkerze

Publications (3)

Publication Number Publication Date
EP0554852A2 EP0554852A2 (de) 1993-08-11
EP0554852A3 EP0554852A3 (en) 1993-11-24
EP0554852B1 true EP0554852B1 (de) 1996-05-01

Family

ID=6450989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93101658A Expired - Lifetime EP0554852B1 (de) 1992-02-05 1993-02-03 Zündkerze

Country Status (4)

Country Link
EP (1) EP0554852B1 (de)
JP (1) JPH0676916A (de)
DE (2) DE4203249A1 (de)
ES (1) ES2087582T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422939C2 (de) * 1994-06-30 2000-05-31 Bosch Gmbh Robert Zündkerze für eine Brennkraftmaschine
US5675209A (en) * 1995-06-19 1997-10-07 Hoskins Manufacturing Company Electrode material for a spark plug
EP0758152B1 (de) * 1995-08-09 2002-11-27 Ngk Spark Plug Co., Ltd Zündkerze
DE19623989C2 (de) * 1996-06-15 1998-07-30 Bosch Gmbh Robert Zündkerze für eine Brennkraftmaschine
DE19946298C2 (de) * 1999-09-28 2002-09-26 Aichelin Gmbh Elektrodeneinrichtung mit Elektrodenstab
DE10119310B4 (de) * 2001-04-19 2004-01-29 Beru Ag Gleitfunkenzündkerze
DE10319698A1 (de) * 2003-05-02 2004-11-18 Volkswagen Ag Zündkerze
DE102004050291B4 (de) * 2004-10-15 2009-09-24 Bayerische Motoren Werke Aktiengesellschaft Zündkerze für einen Wasserstoffmotor
DE102015121862B4 (de) 2015-12-15 2017-12-28 Federal-Mogul Ignition Gmbh Zündkerze

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2361274C3 (de) * 1973-12-08 1980-10-09 G. Rau, Gmbh & Co, 7530 Pforzheim Drahtförmige Elektrode, insbesondere Mittelelektrode, für Zündkerzen für Brennkraftmaschinen

Also Published As

Publication number Publication date
EP0554852A2 (de) 1993-08-11
ES2087582T3 (es) 1996-07-16
EP0554852A3 (en) 1993-11-24
DE59302402D1 (de) 1996-06-05
DE4203249A1 (de) 1993-08-12
JPH0676916A (ja) 1994-03-18

Similar Documents

Publication Publication Date Title
DE19650728B4 (de) Zündkerze
EP0675272B1 (de) Vorkammerzündeinrichtung
DE3872027T2 (de) Zuendkerze fuer verbrennungsmotor.
DE69112330T2 (de) Zündkerze für Verbrennungsmotor.
DE69702424T2 (de) Zündkerze für Verbrennungsmotor
EP0260575B1 (de) Zündvorrichtung für eine luftverdichtende Brennkraftmaschine
DE102010010109A1 (de) Vorkammerzündkerze
EP0554852B1 (de) Zündkerze
DE4414545A1 (de) Zündkerze
DE19738915A1 (de) Glühkerze
DE69924344T2 (de) Zündkerze für Verbrennungsmotor mit einer verbesserten Selbstreinigungsfunktion
DE102018120382A1 (de) Zündkerze
DE69225686T2 (de) Zündkerzenelektrode und Herstellungsverfahren
DE102020110395A1 (de) Fremd gezündete Hubkolben-Brennkraftmaschine mit einem Vorkammerzündsystem
EP0554853A1 (de) Elektrode aus Faserverbundwerkstoff für Zündkerze
DE102019133218A1 (de) Vorkammerzündkerze
DE69024480T2 (de) Zündkerze mit einer massenelektrode in form eines offenen ringes
DE69921929T2 (de) Zündkerze
DE102020134429A1 (de) Doppelzündkerze
DE69820452T2 (de) Zündkerze
WO1998026481A1 (de) Zündkerze
DE4203250A1 (de) Silber-nickel-verbundwerkstoff fuer elektrische kontakte und elektroden
DE3407951C2 (de)
DE68917573T2 (de) Zündkerzen für Verbrennungsmotoren.
DE3732827A1 (de) Hochspannungs-zuendanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19940201

17Q First examination report despatched

Effective date: 19950227

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL SE

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59302402

Country of ref document: DE

Date of ref document: 19960605

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2087582

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2087582

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020116

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020214

Year of fee payment: 10

Ref country code: FR

Payment date: 20020214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020307

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030204

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050203