EP0550649B1 - Überwachungsvorrichtung für mobile atemgeräte - Google Patents
Überwachungsvorrichtung für mobile atemgeräte Download PDFInfo
- Publication number
- EP0550649B1 EP0550649B1 EP91918293A EP91918293A EP0550649B1 EP 0550649 B1 EP0550649 B1 EP 0550649B1 EP 91918293 A EP91918293 A EP 91918293A EP 91918293 A EP91918293 A EP 91918293A EP 0550649 B1 EP0550649 B1 EP 0550649B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- pressure
- monitoring device
- identification
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000029058 respiratory gaseous exchange Effects 0.000 title claims abstract description 45
- 238000012544 monitoring process Methods 0.000 title claims description 4
- 238000012806 monitoring device Methods 0.000 claims abstract description 65
- 238000009530 blood pressure measurement Methods 0.000 claims abstract description 13
- 230000005540 biological transmission Effects 0.000 claims description 59
- 230000006837 decompression Effects 0.000 claims description 46
- 230000009189 diving Effects 0.000 claims description 34
- 230000008859 change Effects 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 7
- 210000000707 wrist Anatomy 0.000 claims description 7
- 230000010363 phase shift Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 206010011951 Decompression Sickness Diseases 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 13
- 230000008901 benefit Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 230000006399 behavior Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 208000028048 Accommodation disease Diseases 0.000 description 1
- 101710065039 Aladin Proteins 0.000 description 1
- 102100028292 Aladin Human genes 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 241000580063 Ipomopsis rubra Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000035565 breathing frequency Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 230000000870 hyperventilation Effects 0.000 description 1
- 208000000122 hyperventilation Diseases 0.000 description 1
- 230000035987 intoxication Effects 0.000 description 1
- 231100000566 intoxication Toxicity 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/02—Divers' equipment
- B63C11/32—Decompression arrangements; Exercise equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C9/00—Life-saving in water
- B63C9/0005—Life-saving in water by means of alarm devices for persons falling into the water, e.g. by signalling, by controlling the propulsion or manoeuvring means of the boat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/02—Divers' equipment
- B63C2011/021—Diving computers, i.e. portable computers specially adapted for divers, e.g. wrist worn, watertight electronic devices for detecting or calculating scuba diving parameters
Definitions
- the present invention relates to a monitoring device for mobile breathing apparatus.
- mobile breathing devices are e.g. used by divers, firefighters in fire fighting or generally when the air is contaminated with pollutants that make free breathing impossible.
- Mobile breathing devices usually consist of one or two metal bottles, which e.g. carried on the back of the user and in which a highly compressed oxygen-gas mixture with a pressure of e.g. up to 350 bar is included. This oxygen-gas mixture is referred to in the following simply as breathing air or simply air.
- the breathing air is taken from the bottles via a shut-off valve and inhaled by the user using a so-called lung regulator.
- the duration of the necessary decompression stops is difficult to calculate because the human body has a large number of different types of tissue, which differ both in terms of their saturation and desaturation behavior depending on the depth and time of diving, and in terms of medical risk. For this reason, divers usually use diving tables in which the decompression times are given as a function of the diving depth and the diving time reached, or they use diving computers in which the saturation and desaturation behavior of a selected number of tissue types is mathematically simulated and the decompression times thus determined are given to the diver by means of corresponding ones Display facilities are shown.
- the amount of air consumed by the diver per minute is not constant, but changes e.g. with the physical strain.
- air consumption can skyrocket due to so-called hyperventilation.
- the amount of air removed is of course dependent on the respective ambient pressure and thus depends on the depths the diver visits.
- the diver therefore needs a monitoring device in order to be able to estimate the actual air consumption and the possible length of stay under water.
- the monitoring device consists of a transmitting device and a receiving device separate from it.
- This design has the advantage that the receiving device, which is generally combined directly with the display device, can be arranged in the user's field of vision without the user's freedom of movement, e.g. is unnecessarily restricted by a hose device and without special handling being necessary for reading the display device.
- the receiving device can thus be carried by the user in any manner. It is preferable that the receiving device is arranged directly on the user's wrist. Compared to an arrangement on a face mask, this has the advantage that the user has no accommodation difficulties when reading the display. In addition, he does not always have the display instruments in view, which could irritate or distract him. The arrangement on the wrist enables the user to easily read the corresponding displayed data even if he e.g. does any kind of work with your hands.
- the receiving device could produce interference signals such as e.g. are caused by movements of the diver, but also by external sources, as a pressure signal and thus indicate incorrect or more frequently changing values to the user. It is then no longer possible for the user to reliably read the data.
- a risk that should not be underestimated in the case of wireless transmission also assumes that corresponding operations or dives are generally not undertaken alone, but that several people carry out the operation or the dive together. Since identical devices are often used for all members of such a group within a rescue organization or diving center, the risk is very high that a receiving device will pick up the signals from the transmitting device of a neighbor and thus display incorrect values to the user.
- a somewhat constant reception intensity could only be achieved if the transmitter and receiver are arranged at a relatively short distance from one another and always have the same spatial allocation to one another.
- the transmitter is installed on the pressure vessel and the receiver is installed in the area of the head or, for example, a face mask of the user. In this case, just one turn of the head is enough to change the spatial assignment and thus the reception intensity.
- the transmitter is installed on the pressure vessel and the receiver is installed on the user's wrist, strong fluctuations in the reception intensity can be expected depending on the movement of the user.
- other disturbances such as air bubbles when diving, can also influence the reception intensity.
- the distance from different users e.g. when collecting objects or people together, be very small, so that the distance-related difference in intensity no longer plays a role. This applies e.g. then when a diver tries to help a colleague in difficulty.
- the monitoring device solves these problems very reliably.
- the use of an identification signal ensures that each receiving device always receives and processes only those signals that are transmitted by the assigned transmitting device. This not only prevents signals from other devices from being received; due to the rigidly predetermined identification pattern, signals from external disturbances, e.g. from any other channels. This is achieved in that the signal is only processed if it exactly corresponds to the respective identification pattern. It is very unlikely that interference signals from other, arbitrary transmitters contain corresponding identification patterns.
- the data and the identification signal are transmitted digitally.
- greater reliability of the data transmission is achieved, and it is also possible to select a large number of identification patterns by combining this signal from a correspondingly high number of individual bits.
- the transmitting part and the receiving part to be used therewith can be brought into an identification signal change mode, which enables the receiving part to record and store the identification signal of the transmitting part assigned to it.
- this assignment or pairing mode has several security levels, so that an unintentional and incorrect assignment of the transmitting part and the receiving part is avoided.
- the transmitting and receiving parts are designed so that the identification signal change mode is always triggered by a device, and preferably by the transmitting part, this device then preferably also having a fixed, unchangeable identification signal.
- the battery required both in the transmitting part and in the receiving part must be arranged pressure-tight in the respective housing and can therefore not be changed by the user himself. Since it is to be expected that the batteries of the transmitting part and receiving part will be used up at different rates, depending on the respective usage profile, both devices of such a combination would fail for the time of changing the battery of a device which can usually only be carried out by the manufacturer. This disadvantage is also avoided by the changeable assignment.
- variable assignment has the further advantage that two receiving devices can also be assigned to one transmitting device. It is then possible, for example, that a diving instructor uses two receivers with which he can observe his air supply and the air supply of a student diving with him. if the Devices are also equipped with an air consumption measurement, the diving instructor can also use this display to assess the stress level of his student.
- the manufacture of the monitoring device is significantly simplified by the changeable assignment.
- the identification signal change mode is preferably triggered in that the transmitting device is caused by a manual operation to send out a specific signal, the identification control signal, which indicates to the receiving device that an assignment process is to take place.
- the identification control signal which indicates to the receiving device that an assignment process is to take place.
- the actual assignment takes place in that the identification control signal also transmits the identification signal of the transmitting part.
- the receiving device brought into the identification signal change mode receives this identification signal and stores it in a corresponding memory until it receives another identification signal as part of a new assignment.
- a third, arbitrary transmitter is unlikely to emit a pattern that corresponds to the identification signal.
- the remaining small uncertainty factor can be greatly reduced by a further safety measure, which also serves to reduce the effect of signal interference, e.g. caused by movements of the diver.
- One of the preferred goals of the monitoring device is to calculate the breathing time still available to the user of the breathing apparatus.
- This breathing time is preferably calculated by a computing device which is installed either in the transmitting device or in the receiving device. This allows the user of the breathing apparatus to be shown how long the breathing air will still be sufficient under the current conditions.
- this computing device is installed in the receiving part and continues the air consumption calculation in the sense of a forecast if no signal is received from the transmitting part. This means that a signal received after an interruption can be checked for plausibility.
- the receiving device does not receive a signal due to a disturbance, it continues to calculate the air consumption based on the previous measurements until the next signal is reliably received. Then it is checked whether this received signal is within a certain tolerance range of the extrapolated air consumption. If this is the case, the signal is displayed as a new value. If this is not the case, there is no display. Preferably, as long as the reception situation is unclear, no display value is output.
- This design has the advantage that the receiving device can be reliably prevented from displaying an incorrect value due to an incorrectly received signal, which could irritate the user.
- the transmission of the signals from the transmitting part to the receiving part can be carried out using all methods suitable for signal transmission. If the monitoring device is used under water, the data can be transmitted using ultrasound. When used underwater, however, it is particularly preferred to use radio signals, and here in particular to use signals in the long-wave range, i.e. the use of radio signals with a frequency of 5 Hertz to 100 Kilohertz.
- Both the transmitting and the receiving part can be provided with further functions.
- the monitoring device can, according to a preferred development of the invention, be combined with a decompression computer.
- This computer is preferably housed in the receiving part and is connected to a pressure sensor which measures the hydrostatic pressure of the water and thus the depth of the dive.
- a further timer is also provided, by means of which the diving time can be measured.
- a computer circuit is used to determine the saturation or desaturation behavior for a finite number of tissue types from the measured values of depth and time, as is shown, for example, in the work by Bsselmann cited. From these values it can be determined and the diver can be shown how long the ascent to the water surface takes, and at what depths decompression stops with which length are to be inserted.
- the physiological work output is included in the decompression calculation with the aid of the monitoring device according to the invention.
- Air consumption measurement is used as a yardstick for work performance. The air consumption measurement can take place both relatively and absolutely.
- the decrease in pressure for a known bottle volume determines the amount of air the diver takes in per unit of time. This value is used to infer an average or an increased physiological work performance, which is then taken into account in the decompression calculation.
- the relative air consumption measurement only determines how high the diver's average air consumption is, which is averaged over a certain period of time. If the air consumption increases compared to this value, an increased physiological work output is assumed.
- both the absolute and the relative air consumption measurement can be continued while surfacing to further influence the decompression calculation. This makes it possible to record a physiological work performance during the decompression phase, which generally shortens the decompression time.
- the pulse frequency of the diver can also be detected by means of an appropriate sensor and transmitted to the decompression meter.
- the pulse frequency also provides a measure of the physiological work performance. If the pulse frequency is e.g. Taken off via electrodes, which are arranged in the chest area of the diver, the values can e.g. forwarded by means of a cable connection to the transmitter on the diving bottle and from there transmitted wirelessly with the monitoring device to the receiver worn on the wrist.
- the monitoring device is used for fire and disaster control, several additional functions can also be integrated in the receiving section.
- the remaining breathing time and / or the breathing frequency can be calculated and displayed.
- sensors can also be used for all other types of measurable damage (e.g. Geiger counters and the like).
- the first exemplary embodiment of the invention explained with reference to FIGS. 1 to 7 is intended to be used in connection with a diver's breathing apparatus. However, with appropriate modifications, it can also be used for breathing apparatuses, such as e.g. used in fire and disaster protection, find use.
- 1 shows a highly schematic representation of the monitoring device, which is designated overall by 1 and which has a transmitting part 2, which contains the transmitting device, and a receiving part 3, which contains the receiving device.
- the transmitting part 2 is, in the present example, (not shown in the figures) firmly attached to a diving bottle 5.
- the diving bottle is a conventional steel bottle with a volume of e.g. 7 to 18 liters and a maximum storage pressure of e.g. 350 bar, which can be closed with a manually operated shut-off valve 6.
- the shut-off valve 6 is opened during use, and the pressure of the air supplied to the user is regulated via a schematically indicated pressure regulating valve 9.
- This valve 9, which is usually referred to as a regulator, can have one of the different designs known in the prior art.
- the user then removes the air from the breathing apparatus, e.g. via a hose connection (not shown) by means of a mouthpiece.
- a pressure sensor 7 is arranged between the shut-off valve and the regulator, which detects the pressure prevailing in the bottle.
- the arrangement of the pressure sensor after the shut-off valve 6 has the advantage that the pressure sensor is not subjected to the device pressure during storage of the bottle; furthermore, as will be explained, this has advantages with regard to the security design of the monitoring device.
- the receiving part 3 When used, the receiving part 3 is used at a spatial distance from the transmitting part 2 and is coupled to a display device 4, which is usually integrated directly into the housing of the receiving part.
- the transmitter part 2 shown schematically in FIG. 2 has a housing 10 made of non-magnetic material, preferably plastic, in which the electrical and electronic components of the transmitter part are accommodated.
- the interior of the housing 10 of the transmitting part 2 is completely filled with electrically non-conductive oil, silicone or the like.
- the area of the housing 10a in which the pressure sensor 7 is arranged is designed such that it is exposed to the pressure in the bottle 5 during use. This is shown schematically by the connecting piece 11, 12.
- the remaining part 10b of the housing is also sealed to prevent water from entering.
- a battery 13 is also housed, which supplies the transmitting part with electrical energy, and which is thus also exposed to the pressure in the housing.
- the pressure sensor 7 is connected to a signal conditioning circuit 20 via electrical lines, which are only shown schematically here and below. All commercially available sensor types can be used as pressure sensors, provided that they can be operated with a battery voltage of less than 5 V and use as little energy as possible. Pressure sensors that operate on the piezoelectric principle are therefore particularly preferred.
- the analog signal of the pressure sensor is converted into a digital signal in the signal conditioning circuit 20 by means of an A / D converter.
- the signal conditioning circuit 20 is also connected to a quartz-controlled timer 21, the purpose of which will be explained below.
- the digitally processed signal is fed to a commercially available microprocessor computing unit 22.
- the microprocessor computing unit 22 is connected to a memory 23 and also receives the signals of the timer 21.
- the memory 23 (and the corresponding memory in the receiving part) can be constructed entirely from RAM memory elements. However, it is also possible to use a mixed memory consisting of ROM (read-only memory) and RAM memory elements. Since the battery voltage is permanently available, the memory contents can be saved in the long term even when volatile memory elements are used.
- the microprocessor 22 converts the pressure signal and the other signals to be transmitted into a transmission signal according to a program stored in the memory 23 and supplies it to a transmission output stage 25.
- the signal is transmitted from the transmission output stage 25 to the antenna 26.
- the antenna 26 consists of a ferrite core which is wrapped with copper wire.
- An inductance of the transmitter coil in the range between 10 and 50 mHenry has proven to be particularly favorable.
- the transmission device In time segment 41 in the left part of the figure, the transmission device is in stand-by mode. In this mode, the signal conditioning circuit is caused to carry out a pressure measurement at certain time intervals, which is characterized by columns 42. A time interval of approximately 5 seconds has emerged as the preferred time interval.
- the microprocessor 22 is always switched between two measurements in a stand-by mode in which it consumes very little energy. This makes it possible to operate the transmitter with a lithium battery for about 5 years with a typical usage profile.
- the start signal for the pressure measurement comes from the timer 21 of the transmission device.
- the mic Processor 22 is then activated and the pressure is measured by means of pressure sensor 7.
- the transmission device is switched from stand-by mode to transmission mode.
- Various criteria can be used as the switch-on criterion. It has proven to be particularly advantageous to compare the result of two successive pressure measurements and to switch to the transmit mode when the pressure rises.
- the switch-on criterion is preferably dimensioned such that the transmission mode is switched on if the pressure rises from below 5 bar to e.g. 30 bar or more is determined. This increase is achieved in any case when the user of the breathing apparatus opens the shut-off valve 6 of the bottle 5 and thus acts on the pressure sensor 7 with the bottle pressure. Random pressure fluctuations, e.g. caused by temperature changes, changes in altitude etc. are not sufficient to meet this switch-on criterion.
- the identification change mode is followed by the actual normal mode in time segment 45, which represents the actual use phase of the device. As shown schematically in FIG. 3, a measurement interval 46 and a transmission interval 47 alternate in this mode. It has proven to be advantageous to work with a time interval of the pressure measurements of 5 seconds even during normal mode. After each measurement value has been recorded, the transmission signal is then generated by the microprocessor and fed to the antenna 26 via the transmission output stage 25.
- the time interval between the pressure measurement and the transmission of the signal is not constant, but is varied by the microprocessor according to a random process within a predetermined time range.
- the signal is always sent before the next measured value is recorded.
- This time variation has the advantage that, in the case of two monitoring devices which operate simultaneously at a short distance and which monitor different breathing apparatuses, a collision of transmitted signal values can only take place accidentally. If the time interval between the measurement interval and the transmission interval were always the same, the unfavorable constellation could arise that the values emitted by two transmission parts collide with one another for a longer period of time.
- the transmitting device is switched back to the stand-by mode, which is shown in time segment 49.
- the switch-off criterion is met when there is no longer a decrease in pressure for a predetermined number of measuring intervals.
- the signal transmission from the transmitting device 2 to the receiving device 3 takes place by means of an electromagnetic radio wave of constant frequency.
- the quartz-controlled timer 21 is used to control the transmission frequency. Since the frequency of the quartz crystal is 32,768 Hz, the structure of the transmission part is simplified if a frequency is used which is derived from this frequency with the divider 2 n .
- the data signals to be transmitted are digitally encoded in the transmitting part 2.
- the frequency, the amplitude or the phase position of the carrier signal are changed.
- a known method, which could also be used for the monitoring device of the type shown, is the frequency change of the transmission signal using what is known as frequency shift keying.
- the bit information contents 0 and 1 are assigned different frequencies.
- phase shift keying PSK
- DPSK differential phase shift keying
- the transmission signal experiences a phase jump when a 1 is transmitted; if a 0 is to be sent, the send signal remains unchanged. Since with this method the first bit of the transmitted bit pattern contains an uncertainty, it must not serve as an information carrier.
- FIG. 4 An example of this digital encryption is shown in FIG. 4.
- a bit pattern consisting of bits 011010011 ... is shown in diagram 60 over a time axis 61 and a number axis 62.
- a voltage signal 67 is plotted over the scaled time axis 65 and the voltage axis 66, which has a constant frequency, but to which the bit pattern is impressed as a phase change by the DPSK modulation described above.
- a signal sequence is transmitted which, as shown in FIG. 5, is composed of a preamble, the identification signal, a data block and a postamble.
- the preamble serves to enable the receiving device to synchronize with the transmitted signal.
- the identifica tion code contains the transmitter-specific identification.
- the actual data block to be transmitted follows the identification code.
- the data block contains the measured pressure value, but in a preferred embodiment can also contain a temperature value which is detected by a corresponding temperature sensor. It is also possible to transmit the respiratory rate derived, for example, from the measurement of the pressure signal in this data block. Of course, other data can also be transmitted if this is of interest in the specific application. This is followed by the postamble, which is used, among other things, to correct errors.
- the synchronization interval comprises 16 bits, the identification code 24 bits, the data block 32 bits and the postamble 4 bits. So each signal is 76 bits long.
- the receiving part 3, separate from the transmitting part, is accommodated in a plastic housing 70 and has no mechanical connection or by means of electrical lines to the transmitting part 2.
- the plastic housing 70 is filled with electrically non-conductive oil, silicone or the like and has a battery 71 in order to supply the electrical and electronic components with electrical energy.
- a flexible wristband (not shown) is also arranged on the housing 70 and enables the user to fasten the receiving part to the wrist like a wristwatch.
- the housing is designed so that it withstands the water pressure even at the greatest depths that can be reached by divers and has no movable electrical switching devices on its outer surface facing the water.
- several electrically conductive metal pins 73 are embedded in the housing, which the diver e.g. can be bridged with his fingers, which under certain circumstances is interpreted by the receiving part as a switching event.
- the receiving part has one or two ferrite antennas 80, as shown schematically in the figure.
- the received signal is first fed to a signal processing and amplification stage 81, which is followed by a digitizing stage 82. Both components correspond to the usual design.
- the digital signal is fed to a comparator 83.
- This comparator determines whether the received and processed signal contains the identification signal or the identification control signal. If this is the case, the signal is fed to a microprocessor 85 which, controlled by a program stored in a memory 86, takes over the further processing.
- the use of the upstream comparison stage has the advantage that the microprocessor 85 is only subjected to the signal when it is certain that the individual receiving device has been addressed.
- the receiving part is timed by a timer 84.
- the data derived from the received signal and possibly further data are shown to the user on the display 87.
- the display 87 is arranged behind a transparent area in the wall of the housing 70 of the receiving part 2.
- the pressure in the bottle 5 and preferably also the remaining breathing time are shown on the display.
- a further pressure sensor 89 is required, which measures the respective ambient pressure.
- the remaining breathing time is determined in that the microprocessor determines the current air consumption from the decrease in pressure measured per unit of time, taking into account the ambient pressure.
- the air consumption can be averaged either for a short time ago or over a longer period in order to obtain realistic values. The expected time until complete air removal is then extrapolated from this.
- the respective data are shown in the display until new data are determined after a new measurement and the transfer of the values.
- the receiving device also has a switching device 88, shown only schematically, with the metal pins 73 already mentioned.
- the metal pins 73 can also be arranged at a greater distance from one another or on different sides of the housing in order to prevent accidental contact bridging.
- each transmitter part is permanently assigned an identification signal during production, which is only ever issued once.
- a 24-bit signal is used, resulting in a total of 16.7 million different identification options. This high number ensures that there are never two transmitters with the same signal.
- the identification signal of the transmitter part is stored in a read-only memory area of the memory 23 of the transmitter part 2. It is also possible to read the identification signal in a RAM memory area gene; in this case, however, the signal must be fixed elsewhere in the device, for example by using it as a manufacturer number at the same time, so that the signal can be read in correctly when the battery is changed.
- the identification change mode is started every time the transmitter is put into operation. As explained above, this is preferably done by a defined switch-on criterion, e.g. turning on the device valve 6 of the bottle 5.
- the transmitting part then goes into the identification change mode and, as shown in FIG. 6, sends a signal which consists of a preamble, an identification control signal, the actual identification signal and a postamble.
- the preamble is 16 bits
- the postamble is 4 bits
- the identification control signal and the identification signal are each 24 bits long.
- the identification control signal is understood by all receiving parts of the corresponding series. As soon as a receiving part receives this signal, it is switched to the identification change mode by the microprocessor. The processor then asks on the display whether the identification signal of the transmitting part should be adopted. If this is confirmed by the user via the switching device 88 by means of the metal pins 73, the identification signal of the transmission part is adopted and stored in the memory 86 as an identification comparison signal.
- the control program of the receiving part stored in the memory 86 can be designed such that the receiving part, as soon as it receives the identification control signal of the transmitting part in the identification change mode, checks whether its stored identification comparison signal matches the identification signal of the transmitting part. If this is the case, the receiving part can then indicate that it is set to this transmitting part so that the user knows that the two devices are assigned to one another.
- the identification change mode has several security levels in the exemplary embodiment.
- the first stage is the coupling of the start of the identification change mode to the switch-on criterion of the transmitting part.
- the identification change is only made immediately after the switch-on criterion has occurred. This reliably prevents an identification change from being started during normal use of the devices.
- an energy measurement of the signal received in the identification change mode is carried out by the receiving part with a corresponding device.
- the program of the receiving part is thus designed so that whenever the identification control signal is received, an energy measurement of the overall signal is carried out. An assignment is only possible if the transmission energy exceeds a certain limit.
- the transmission of energy from the transmitting part to the receiving part depends on the distance and, to a considerable extent, also on the respective alignment of the two antennas to one another. Only when the devices are arranged in a certain way with respect to one another in terms of space and angle does the energy absorbed by the receiving part become maximally high.
- the limit value for the energy measurement is therefore chosen so that an assignment can only take place if the transmitting and receiving parts are arranged at a small distance from one another and also have a predetermined angular orientation to one another.
- the antennas of the transmitting part and receiving part are preferably arranged in the respective housing in such a way that the maximum energy is obtained with a parallel or T-shaped arrangement of the devices to one another.
- the identification control signal is repeated several times and only assumes sufficient signal energy if the measured value is above the limit value for a certain percentage of the transmissions.
- the user must actuate the switch 88 to confirm the change of identification.
- the three metal pins are used in such a way that only two can be bridged in the identification change mode. This prevents an identification assignment under water (in this case all three metal pins would be electrically connected). It is also possible to use three metal pins in such a way that a first pair and then a second pair must first be bridged.
- the following describes how the receiving device shown checks the plausibility of the received data.
- the monitoring device should, if possible, never be wrong, not even for a short time Show values. Due to the wireless transmission, however, it may happen that the reception of the entire signal transmitted during a transmission interval or of parts of the signal is impaired, for example by strong movements of the user or the like.
- This problem can be countered by suppressing the corresponding display whenever the signal has not been recorded absolutely correctly.
- a plausibility check is provided as an additional security measure in order to rule out any risk of a false report.
- the plausibility check is carried out by calculating the expected pressure drop in the bottle of the breathing apparatus by the microprocessor of the receiving part.
- breathing air is essentially continuously extracted from the breathing apparatus, and the pressure in the bottle 5 drops correspondingly continuously, from which the current air consumption is determined. Based on the air consumption, the microprocessor calculates how the pressure drop in the bottle should continue to decrease with a continuous air extraction. With each pressure measurement, it is then determined whether the newly measured pressure is plausible compared to the previously measured pressure values. If this is the case, the new pressure value is shown on the display. If the pressure value is not plausible, or if no signal or a complete signal is not received in the predetermined time interval, then either no pressure value is displayed, or the last measured pressure value is displayed, but with an additional symbol or e.g. flashing of the display indicates that this is the result of a previous pressure measurement.
- pressure signals are received again that originate from the transmitting part assigned to the receiving part, these are displayed, but with an additional symbol, e.g. with a flashing indicator or the like, by which the user is informed that a plausibility check of these values is no longer possible.
- the monitoring device is combined with a decompression computer.
- the decompression computer could be arranged both at the sending device and at the receiving device.
- the receiving part of the monitoring device and the decompression computer are preferably combined in one housing, since the decompression computer then remains in operation even if the transmitter device fails.
- Decompression computers of the type in question are known in the prior art.
- the patent applicant has such devices in large numbers in 1989 in Europe, the USA, Japan, Australia and many other countries e.g. sold under the name "Aladin pro”.
- the current ambient pressure which is a measure of the diving depth
- the total diving time are recorded via a corresponding pressure measuring device and a time measuring device.
- These input values are used to determine the saturation and desaturation behavior of a certain number, e.g. simulated six or sixteen different tissues.
- the computing unit determines which tissue is decisive for decompression, the so-called guiding tissue, and then determines the number, depth and duration of the necessary decompression stages.
- the diver is shown on a display the total diving time, the current diving depth, the next decompression stop and the total time required to reach the water surface with a certain, prescribed rate of ascent and the decompression levels.
- the decompression computer is provided with storage devices, a so-called log book, in which the dive profile of previous dives is stored, so that the diver can note down their respective diving times etc. after leaving the water.
- a decompression computer is provided with a device to measure the air pressure before diving, so that it can also be used in lakes which are at a higher altitude than sea level, and to prevent air pressure fluctuations from being incorporated into the measurement result.
- the exemplary embodiment of the monitoring device according to the invention shown in FIG. 8 works with a transmitting part, as explained in relation to FIG. 2 and therefore is no longer shown in FIG. 8.
- the receiving part has a pressure-resistant, non-magnetic housing 100, in which, as indicated by the dash-dotted area, the receiving device 103 and the decompression computer 104 are arranged together.
- the housing is filled with oil and has an internal pressure that is equal to the pressure of the water surrounding the housing.
- the dimensions of a sample of this housing, which is intended to be worn on the wrist, are approximately 75 mm (length transverse to the arm direction) and approximately 75 mm wide, measured along the arm.
- the housing has a thickness of approx. 20 mm.
- the receiving part 103 is constructed as described above and has an antenna 110 and a first microprocessor 112 with a memory 113.
- the components essentially used for signal processing are summarized schematically in component 111.
- the decompression computer has a microprocessor 120 with a memory 121 for program and data.
- the pressure of the surrounding water is detected by a pressure sensor 125.
- the other electrical components, such as timers, etc., are summarized schematically in component 127.
- At least the battery 130 serving for the power supply, a display 132 embedded in the housing wall and a switching device 134 with four metal pins 136 are provided as common components.
- a common display control device and a common timer and the like can be used as further common components.
- the monitoring device can be coupled with displays which only become visible after leaving the water, e.g. a warning display in the form of an aircraft, which indicates to the diver that the use of an aircraft is not yet possible, a logbook display, etc.
- the decompression data are determined by the microprocessor 120 by simulating the behavior of a specific number of tissue types.
- the permissible residence time at a certain depth results from e.g. iterative approximation by dividing the pre-calculated time, which is still sufficient for the air supply, into the remaining stay time and the total surfacing time, which is necessary to emerge from this depth after the stay time has expired.
- the calculated air consumption can also be taken into account in the decompression calculation. Since air consumption is a measure of the physiological work performed by the diver, it can, according to the research results of diving medicine, the influence of physical work performance on decompression times should be taken into account.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Measuring Fluid Pressure (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft eine Überwachungsvorrichtung für mobile Atemgeräte. Derartige mobile Atemgeräte werden z.B. von Tauchern, von Feuerwehrleuten bei der Brandbekämpfung oder allgemein dann eingesetzt, wenn die Luft mit Schadstoffen belastet ist, die eine freies Atmen unmöglich machen. Mobile Atemgeräte bestehen üblicherweise aus einem oder zwei Metallflaschen, die z.B. auf dem Rücken des Benutzers mitgeführt werden und in denen ein hochkomprimiertes Sauerstoff-Gasgemisch mit einem Druck von z.B. bis 350 bar enthalten ist. Dieses Sauerstoff-Gas-Gemisch wird im folgenden vereinfacht als Atemluft oder einfach Luft bezeichnet. Die Atemluft wird den Flaschen über ein Absperrventil entnommen und vom Benutzer mittels eines sogenannten Lungenautomaten eingeatmet.
- Die Problematik der Benutzung derartiger Atemgeräte wird zunächst am Beispiel des Gerätetauchens beschrieben:
- Beim Gerätetauchen werden heute, im professionellen Einsatz, Tiefen von über hundert Metern erreicht, und auch beim Sporttauchen werden von geübten Taucher beträchtliche Tiefen erzielt.
- Mit zunehmender Wassertiefe erhöht sich der auf den Taucher wirkende hydrostatische Druck, was dazu führt, daß das Körpergewebe eine höhere Menge an inerten Gasen, d.h. insbesondere an Stickstoff aufnimmt. Beim Auftauchen und der damit einhergehenden Druckverminderung kehrt sich dieser Vorgang um. Erfolgt die Druckverminderung schneller, als das freiwerdende Gas abgeführt und abgeatmet werden kann, entsteht die Dekompressionskrankheit, die in leichteren Fällen zur vorübergehenden Gesundheitsbeeinträchtigung, in schwereren Fällen aber zu bleibenden Gesundheitsschäden und sogar zum Tode führen kann. Um ein zu schnelles Freisetzen der inerten Gase zu verhindern, müssen Taucher deshalb beim Wiederauftauchen nach längerem Aufenthalt in größerer Tiefe in bestimmten Tiefen längere Auftauchpausen einlegen, die als sogenannte Dekompressionsstops bezeichnet werden. Die Zeitdauer der notwendigen Dekompressionsstops ist schwierig zu berechnen, da der menschliche Körper eine Vielzahl von unterschiedlichen Gewebearten aufweist, die sich sowohl in bezug auf das Sättigungs- und Entsättigungsverhalten in Abhängigkeit von Tauchtiefe und Tauchzeit als auch in der medizinischen Gefährdung unterscheiden. Taucher benutzen deshalb gewöhnlicherweise Tauchtabellen, in denen die Dekompressionszeiten in Abhängigkeit von der erreichten Tauchtiefe und der Tauchzeit angegeben sind, oder sie benutzen Tauchcomputer, in denen das Sättigungs- und Entsättigungsverhalten einer ausgewählten Zahl von Gewebearten mathematisch simuliert und die damit ermittelten Dekompressionszeiten dem Taucher über entsprechende Display-Einrichtungen angezeigt werden.
- Einen Überblick über die Problematik der Dekompression gibt z.B. das Werk von A.A. Bühlmann: Decompression-Decompression Sickness, Berlin, Heidelberg, New York, Tokyo 1984, ISBN 3-540-13308-9 und zwar insbesondere die Seiten 1 - 62 vom medizinischen Aspekt, und die Seiten 63 - 67 über die Dekompressionsberechnung. Die Seiten 68 - 82 enthalten Dekompressionstafeln für Taucher.
- Bevor der Taucher also eine solchen Tauchgang unternimmt, muß er sicherstellen, daß der von ihm mitgeführte Luftvorrat für die geplante Aufenthaltsdauer und für die Aufstiegszeit ausreichend ist.
- Die Bestimmung des erforderlichen Luftvorrates stößt aber auf erhebliche Schwierigkeiten: Die vom Taucher pro Minute aufgenommene Luftmenge ist nicht konstant, sondern ändert sich z.B. mit der körperlichen Belastung. Bei Angst- und Panikzuständen kann sich der Luftverbrauch durch die sogenannte Hyperventilation sprunghaft erhöhen. Weiterhin ist die entnommene Luftmenge selbstverständlich vom jeweiligen Umgebungsdruck abhängig und hängt somit davon ab, welche Tiefen der Taucher aufsucht.
- Der Taucher bedarf deshalb einer Überwachungseinrichtung, um den tatsächlichen Luftverbrauch und die noch mögliche Aufenthaltsdauer unter Wasser abschätzen zu können.
- Derzeit verwenden Taucher zur Überwachung des Luftvorrates Druckmeßgeräte, die über einen Schlauch mit dem Atemgerät verbunden sind und den aktuellen Druck des Luftvorrates im Behälter anzeigen. Da der Druck mit zunehmender Entnahme der Luft aus der Flasche absinkt, kann damit, entsprechende Erfahrung vorausgesetzt, einigermaßen die noch verbleibende Atemzeit abgeschätzt werden.
- Es ist auch bereits vorgeschlagen worden, siehe z.B. US-Patente 4,794,803 oder 4,586,136, eine Überwachungseinrichtung in der Weise zu gestalten, daß aus dem gemessenen Flaschendruck unmittelbar die für den Taucher noch zur Verfügung stehende Restzeit ermittelt und angezeigt werden kann. Diese Vorrichtungen haben jedoch den Nachteil, daß sie über einen Schlauch mit dem Atemgerät verbunden und darum in ihrer Bedienung sehr unhandlich sind und außerdem den Bewegungsspielraum des Tauchers beeinträchtigen können.
- Um diesem Problem zu begegnen, ist in dem australischen Patentdokument AU-B-78218/87, das zur Bildung des Oberbegriffes des Anspruches 1 und des Anspruches 33 herangezogen wurde, vorgeschlagen worden, statt des Schlauches eine Ultraschallübertragung zwischen dem Drucksensor an der Flasche und einer Anzeigeeinrichtung vorzusehen. Die Empfangs- und Anzeigevorrichtung ist in diesem Fall an der Gesichtsmaske des Tauchers angeordnet.
- Die Verwendung derartiger Überwachungsvorrichtungen, insbesondere, wenn sie mit einer drahtlosen Signalübertragung arbeiten, ist aber nur zu vertreten, wenn bestimmte Sicherheitsanforderungen erfüllt sind.
- So muß sichergestellt werden, daß die Signalübertragung vom Sender zum Empfänger unter allen Umständen korrekt erfolgt, d.h., daß Bewegungen des Tauchers und des Wassers, externe Störungen usw. keinen Einfluß auf die Übertragung des Meßsignals haben.
- Dabei ist zu berücksichtigen, daß das Denkvermögen ab einer Tiefe von etwa 30 m durch den hohen N2-Partialdruck, der eine Art narkotischer Wirkung ausübt (Tiefenrausch), beeinträchtigt ist. Wenn die Überwachungseinrichtung z.B. fälschlicherweise einen zu geringen Luftvorrat anzeigt, kann dies auch bei erfahrenen Tauchern zu unüberlegten, panikartigen Reaktionen führen. Es sollte deshalb sichergestellt sein, daß die Überwachungseinrichtung möglichst nie, auch nicht kurzzeitig, ein falsches Signal anzeigt.
- Die vorstehend für das Gerätetauchen beschriebenen Probleme treffen, in entsprechend abgewandelter Weise, auch für den Einsatz von Atemgeräten der Brand- und Katastrophenbekämpfung und bei sonstigen Anwendungen zu. Auch hier benötigt der Benutzer eine exakte Angabe der noch zur Verfügung stehenden Atemzeit, um z.B. seinen Rückweg entsprechend rechtzeitig antreten zu können. Weiterhin befindet sich auch hier der Benutzer in der Regel in einem besonderen Streßzustand, und es muß darauf geachtet werden, daß Fehlmessungen und Fehlangaben soweit wie möglich vermieden werden.
- Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, eine Vorrichtung zur Überwachung von mobilen Atemgeräten zu schaffen, durch die der Benutzer zumindest über seinen Luftvorrat informiert wird und die zuverlässig und insbesondere frei von äußeren Störeinflüssen arbeitet und deren Anzeige auf einfache Weise ablesbar ist. Es ist weiterhin Aufgabe der Erfindung, ein entsprechendes Verfahren zur Überwachung von mobilen Atemgeräten zu schaffen.
- Diese Aufgabe wird erfindungsgemäß durch den Gegenstand des Anspruches 1 gelöst.
- Das erfindungsgemäße Verfahren ist Gegenstand des Anspruches 33.
- Zu bevorzugende Weiterbildungen der Vorrichtung sind Gegenstand der Unteransprüche.
- Die erfindungsgemäße Überwachungsvorrichtung besteht aus einer Sendeeinrichtung und aus einer von dieser getrennten Empfangseinrichtung. Diese Gestaltung hat den Vorteil, daß die Empfangseinrichtung, die in der Regel unmittelbar mit der Anzeigeeinrichtung kombiniert ist, im Blickfeld des Benutzers angeordnet werden kann, ohne daß dessen Bewegungsspielraum, z.B. durch eine Schlaucheinrichtung, unnötig eingeschränkt wird und ohne daß zum Ablesen der Anzeigeeinrichtung eine gesonderte Handhabung erforderlich ist.
- Die Empfangseinrichtung kann somit in beliebiger Weise vom Benutzer getragen werden. Zu bevorzugen ist, daß die Empfangseinrichtung unmittelbar am Handgelenk des Benutzers angeordnet ist. Gegenüber einer Anordung an einer Gesichtsmaske hat dies den Vorteil, daß der Benutzer keine Akkommodierungsschwierigkeiten beim Ablesen derAnzeige hat. Darüber hinaus hat er auch nicht ständig die Anzeigeinstrumente im Blickfeld, was ihn irritieren oder ablenken könnte. Die Anordnung am Handgelenk ermöglicht dem Benutzer, die entsprechenden angezeigten Daten auch dann einfach abzulesen, wenn er z.B. irgendwelche Verrichtungen mit den Händen ausführt.
- Die drahtlose Signalübertragung birgt aber andererseits erhebliche Risiken für die Sicherheit der Datenübertragung. Die Empfangseinrichtung könnte bei dieser Konzeption Störsignale, wie sie z.B. durch Bewegungen des Tauchers, aber auch durch externe Quellen verursacht werden, als Drucksignal interpretieren und damit dem Benutzer falsche, oder sich häufiger ändernde Werte anzeigen. Dem Benutzer ist es dann nicht mehr möglich, die Daten zuverlässig abzulesen.
- Eine nicht zu unterschätzende Gefahr geht bei der drahtlosen Übertragung auch davon aus, daß entsprechende Einsätze oder Tauchgänge in der Regel nicht alleine unternommen werden, sondern daß mehrere Personen den Einsatz oder den Tauchgang gemeinsam durchführen. Da innerhalb einer Rettungsorganisation oder einer Tauchbasis häufig für alle Mitglieder einer solchen Gruppe identische Geräte verwendet werden, ist die Gefahr sehr hoch, daß eine Empfangseinrichtung die Signale der Sendeeinrichtung eines Nachbarn aufnimmt und dem Benutzer somit falsche Werte anzeigt.
- Es ist möglich, das Problem der Benutzung mehrerer Überwachungsgeräte innerhalb einer Gruppe dadurch zu lösen, daß jedem Gerät eine individuelle Sendefrequenz zugewiesen wird, die nur von einem entsprechend eingestellten Empfangsgerät empfangen werden kann. Diese Gestaltung hat aber einige Nachteile. Wollte man eine größere Stückzahl derartiger Überwachungsgeräte mit unterschiedlichen Frequenzen zur Verfügung stellen, müßte das für das einzelne Gerät verbleibende Frequenzband sehr eng bemessen sein. Dies erfordert aber empfängerseitig einen verhältnismäßig hohen technischen Aufwand, um aus mehreren empfangenen Frequenzen zuverlässig die für das jeweilige Empfangsgerät bestimmte Frequenz herauszufiltern. Dadurch wird das Empfangsgerät aufwendig, und die Wahrscheinlichkeit möglicher Fehler steigt.
- Auch die Tatsache, daß die Intensität der empfangenen Signale mit der Entfernung abnimmt, ist nicht ausreichend, um in diesem Fall eine eindeutige Zuordnung der Geräte sicherzustellen.
- Zum einen würde eine einigermaßen gleichbleibende Empfangsintensität nur erreicht werden können, wenn Sender und Empfänger in verhältnismäßig kurzer Entfernung zueinander angeordnet sind und stets die gleiche räumliche Zuordnung zueinander aufweisen. Dies ist aber schon dann nicht der Fall, wenn der Sender am Druckbehälter und der Empfänger im Bereich des Kopfes oder z.B. einer Gesichtsmaske des Benutzers installiert ist. In diesem Fall reicht bereits eine Kopfdrehung aus, um die räumliche Zuordnung und damit die Empfangsintensität zu verändern. Ist der Sender am Druckbehälter und der Empfänger am Handgelenk des Benutzers installiert, ist, in Abhängigkeit von der Bewegung des Benutzers, mit starken Schwankungen der Empfangsintensität zu rechnen. Überdies können weitere Störungen, z.B. Luftblasen beim Tauchen, die Empfangsintensität zusätzlich beeinflussen.
- Des weiteren kann der Abstand von unterschiedlichen Benutzern, z.B. bei der gemeinsamen Bergung von Gegenständen oder Personen, sehr gering sein, so daß der entfernungsbedingte Intensitätsunterschied keine Rolle mehr spielt. Dies trifft z.B. dann zu, wenn ein Taucher versucht, einem in Schwierigkeiten befindlichen Kollegen zu helfen.
- Die erfindungsgemäße Überwachungsvorrichtung löst diese Probleme sehr zuverlässig. Durch die Verwendung eines Identifikationssignales ist sichergestellt, daß jedes Empfangsgerät immer nur die Signale erhält und weiterverarbeitet, die vom zugeordneten Sendegerät ausgestrahltwerden. Damit wird nicht nur verhindert, daß Signale anderer Geräte empfangen werden können; aufgrund des starr vorgegebenen Identifikationsmusters wird auch verhindert, daß Signale weiterverarbeitet werden, die von äußeren Störungen, z.B. von beliebigen anderen Sendern, stammen. Dies wird dadurch erreicht, daß das Signal nurweiterverarbeitetwird, wenn es exakt dem jeweiligen Identifikationsmuster entspricht. Daß Störsignale von anderen, beliebigen Sendern entsprechende Identifikationsmuster enthalten, ist sehr unwahrscheinlich.
- Gemäß einer bevorzugten Ausführungsform geschieht die Übertragung der Daten und des Identifikationssignales digital. Dadurch wird eine größere Zuverlässigkeit der Datenübertragung erreicht, und es ist außerdem möglich, eine hohe Zahl von Identifikationsmustern zu wählen, indem dieses Signal aus einer entsprechend hohen Anzahl einzelner Bits zusammengesetzt wird.
- Es ist möglich, daß jedem Sendeteil bereits bei der Produktion ein bestimmtes Empfangsteil bzw. umgekehrt zugeordnet wird. Dies hat jedoch den Nachteil, daß, z.B. bei einem Ausfall des Empfangsteils, das dazugehörige Sendeteil ebenfalls unbrauchbar wird und umgekehrt.
- Gemäß einer bevorzugten Weiterbildung der Erfindung wird deshalb vorgeschlagen, die Zuordnung zwischen Sendeteil und Empfangsteil veränderbar zu gestalten.
- In diesem Fall wird vorzugsweise vorgesehen, daß das Sendeteil und das jeweils damit zu verwendende Empfangsteil in einen Identifikationssigal-Änderungsmodus gebracht werden können, der es dem Empfangsteil ermöglicht, das Identifikationssignal des ihm zugeordneten Sendeteils aufzunehmen und abzuspeichern. Dieser Zuordnungs- oder Paarungsmodus hat, gemäß einer bevorzugten Weiterbildung, mehrere Sicherheitsstufen, so daß eine unbeabsichtigte und fehlerhafte Zuordnung von Sendeteil und Empfangsteil vermieden wird.
- Gemäß einer zu bevorzugenden Weiterbildung sind Sende- und Empfangsteil so gestaltet, daß der Identifikationssigal-Änderungsmodus immer von einem Gerät, und vorzugsweise vom Sendeteil, ausgelöst wird, wobei dieses Gerät dann vorzugsweise auch ein festes, unveränderbares Identifikationssignal besitzt.
- Die Möglichkeit der freien Zuordnung von Sendeteil und Empfangsteil hat im praktischen Gebrauch erhebliche Vorteile. Organisationen, wie z.B. eine Tauchbasis, eine Feuerwehreinheit und dergleichen, verfügen meist über eine Vielzahl von mobilen Atemgeräten, die bei Anwendung der erfindungsgemäßen Überwachungsvorrichtung jeweils mit einem Sendeteil und einem Empfangsteil versehen sind. Fällt in einer solchen Gruppe z.B. ein Sendeteil und ein Empfangsteil eines nicht zugeordneten Paares aus, würden bei einer nicht veränderbaren Zuordnung insgesamt zwei Überwachungsvorrichtungen unbrauchbar werden. Bei Verwendung einer veränderbaren Zuordnung könnten die verbleibenden Geräte weiterhin verwendet werden.
- Es ist schließlich auch nicht erforderlich, Empfangsteil und Sendeteil jeweils so aufzubewahren, daß eine Verwechselung der Geräte unmöglich ist. Wird festgestellt, daß die Geräte nicht zusammenpassen, kann jederzeit eine neue Zuordnung vorgenommen werden.
- Weiterhin muß, insbesondere wenn die Überwachungsvorrichtung beim Tauchen verwendet werden soll, die sowohl beim Sendeteil als auch beim Empfangsteil notwendige Batterie druckdicht in dem jeweiligen Gehäuse angeordnet werden und kann somit nicht selbst vom Benutzer gewechselt werden. Da damit zu rechnen ist, daß die Batterien von Sendeteil und Empfangsteil, abhängig vom jeweiligen Gebrauchsprofil, unterschiedlich schnell verbraucht werden, würden für die Zeit des Batteriewechsels eines Gerätes, der für gewöhnlich nur vom Hersteller vorgenommen werden kann, beide Geräte einer solchen Kombination ausfallen. Auch dieser Nachteil wird durch die veränderbare Zuordnung vermieden.
- Die variable Zuordnung hat weiter den Vorteil, daß einem Sendegerät auch zwei Empfangsgeräte zugeordnet werden können. Es ist dann z.B. möglich, daß ein Tauchlehrer zwei Empfangsgeräte verwendet, mit denen er seinen Luftvorrat und den Luftvorrat eines mit ihm tauchenden Schülers beobachten kann. Falls die Geräte zusätzlich mit einer Luftverbrauchsmessung versehen sind, kann der Tauchlehrer darüber hinaus aus dieser Anzeige den Streßzustand seines Schülers beurteilen.
- Schließlich ist es auch denkbar, daß insbesondere für die Empfangseinrichtung, die mit anderen Funktionen kombiniert werden kann, unterschiedliche Gerätemodelle angeboten werden, die der Benutzer verwenden können soll, ohne sich jeweils ein neues Sendeteil beschaffen zu müssen.
- Ferner wird die Fabrikation der Überwachungsvorrichtung durch die veränderbare Zuordnung wesentlich vereinfacht.
- Der Identifikationssigal-Änderungsmodus wird vorzugsweise ausgelöst, indem die Sendeeinrichtung durch eine manuelle Tätigkeit dazu veranlaßt wird, ein bestimmtes Signal, das Identifikations-Steuersignal, auszusenden, das dem Empfangsgerät anzeigt, daß ein Zuordnungsvorgang stattfinden soll. Um die Zuordnung von mehreren Empfangsgeräten zu einem Sendegerät zu verhindern, können seitens des Empfangsgerätes entsprechende Sicherheitsmaßnahmen vorgesehen werden.
- Die eigentliche Zuordnung geschieht, indem mit dem Identifikations-Steuersignal auch das Identifikationssignal des Sendeteils ausgestrahlt wird. Das in den Identifikationssignal-Änderungsmodus gebrachte Empfangsgerät empfängt dieses Identifikationssignal und speichert es in einem entsprechenden Speicher so lange ab, bis es im Rahmen einer neuen Zuordnung ein anderes Identifikationssignal erhält.
- Es ist unwahrscheinlich, daß ein dritter, beliebiger Sender ein Muster abstrahlt, das dem Identifikationssignal entspricht. Der verbleibende kleine Unsicherheitsfaktor kann durch eine weitere Sicherheitsmaßnahme stark reduziert werden, die auch dazu dient, die Auswirkung von Signalstörungen, wie sie z.B. durch Bewegungen des Tauchers hervorgerufen werden, zu eliminieren.
- Eines der bevorzugten Ziele der Überwachungsvorrichtung ist die Berechnung der dem Benutzer des Atemgerätes noch zur Verfügung stehenden Atemzeit. Diese Atemzeit wird vorzugsweise durch eine Recheneinrichtung berechnet, die entweder im Sendegerät oder im Empfangsgerät installiert ist. Dadurch kann dem Benutzer des Atemgerätes angezeigt werden, wie lange die Atemluft bei den aktuellen Bedingungen noch ausreichen wird.
- Gemäß einer zu bevorzugenden Weiterbildung der Erfindung ist diese Recheneinrichtung im Empfangsteil installiert und führt die Luftverbrauchsrechnung im Sinne einer Prognose fort, wenn kein Signal vom Sendeteil erhalten wird. Dadurch kann ein nach einer Unterbrechung erhaltenes Signal auf seine Plausibilität überprüft werden.
- Wenn also die Empfangseinrichtung infolge einer Störung kein Signal erhält, rechnet sie den Luftverbrauch so lange aufgrund der vorausgegangenen Messungen weiter hoch, bis das nächste Signal zuverlässig empfangen wird. Dann wird überprüft, ob dieses empfangene Signal in einem gewissen Toleranzbereich des hochgerechneten Luftverbrauches liegt. Ist dies der Fall, wird das Signal als neuer Wert angezeigt. Ist dies nicht der Fall, erfolgt keine Anzeige. Vorzugsweise wird auch, solange die Empfangssituation unklar ist, kein Anzeigewert ausgegeben.
- Diese Gestaltung hat den Vorteil, daß zuverlässig verhindert werden kann, daß die Empfangseinrichtung aufgrund eines fehlerhaft empfangenen Signals einen falschen Wert anzeigt, der den Benutzer irritieren könnte.
- Die Übertragung der Signale von Sendeteil zu Empfangsteil kann mit allen für die Signalübertragung geeigneten Verfahren erfolgen. Falls die Überwachungsvorrichtung unter Wasser eingesetzt wird, kann die Datenübertragung mit Ultraschall erfolgen. Besonders bevorzugt ist bei einem Einsatz unter Wasser jedoch die Verwendung von Funksignalen, und hier insbesondere die Verwendung von Signalen im Langwellenbereich, d.h. die Verwendung von Funksignalen mit einer Frequenz von 5 Hertz bis 100 Kilohertz.
- Untersuchungen der Erfinder haben gezeigt, daß zur elektromagnetischen Übertragung des Signals im Wasser ein Frequenzbereich zwischen 5 Hertz und 50 Kilohertz besonders geeignet ist, um die gewünschten Signale zu übertragen.
- Sowohl das Sende- als auch das Empfangsteil kann mit weiteren Funktionen versehen werden.
- Wird die Überwachungsvorrichtung beim Tauchen eingesetzt, kann sie, gemäß einer zu bevorzugenden Weiterbildung der Erfindung, mit einem Dekompressionsrechner kombiniert werden. Dieser Computer wird vorzugsweise im Empfangsteil untergebracht und ist mit einem Drucksensor verbunden, der den hydrostatischen Druck des Wassers und damit die Tauchtiefe mißt. Ferner ist ein weiterer Zeitgeber vorgesehen, durch welchen die Tauchzeit gemessen werden kann. Durch eine Rechnerschaltung wird aus den gemessenen Werten von Tauchtiefe und Tauchzeit das Sättigungs- bzw. Entsättigungsverhalten für eine endliche Anzahl von Gewebearten bestimmt, wie dies z.B. im zitierten Werk von Bühlmann dargestellt ist. Aus diesen Werten kann ermittelt und dem Taucher angezeigt werden, wie lange der Aufstieg zur Wasseroberfläche insgesamt dauert, und in welchen Tiefen dabei Dekompressionshalte mit welcher Länge einzulegen sind. Durch eine Kombination der Berechnung der Dekompressionszeiten mit der Luftverbrauchsrechnung kann dann berechnet und dem Taucher angezeigt werden, wie lange er sich noch auf der entsprechenden Tauchtiefenstufe aufhalten kann, bevor er mit dem Aufstieg beginnen muß, um genügend Luftvorrat für einen medizinisch gefahrlosen Aufstieg zur Verfügung zu haben.
- Aus der tauchmedizinischen Forschung ist bekannt, daß die Sättigung und die Entsättigung der Gewebe nicht nur von Tauchtiefe und Tauchzeit abhängt, sondern auch davon abhängig ist, ob der Taucher eine physiologische Arbeitsleistung erbringt oder nicht. Verrichtet der Taucher während des Tauchganges Arbeit, so können sich die erforderlichen Dekompressionszeiten um bis zu 50 Prozent erhöhen. Eine entsprechende Erhöhung der Dekompressionszeiten kann sich auch ergeben, wenn der Taucher, z.B. beim Sporttauchen, zwar keine eigentliche Arbeit verrichtet, aber z.B. seinen Standort gegen eine stärkere Strömung halten muß, so daß ebenfalls eine höhere physiologische Arbeitsleistung erforderlich ist.
- Gemäß einer bevorzugten Weiterbildung der vorliegenden Erfindung wird die physiologische Arbeitsleistung mit Hilfe der erfindungsgemäßen Überwachungsvorrichtung in die Dekompressionsrechnung einbezogen. Als Maßstab für die Arbeitsleistung wird die Luftverbrauchsmessung herangezogen. Dabei kann die Luftverbrauchsmessung sowohl relativ als auch absolut erfolgen.
- Bei einer absoluten Luftverbrauchsmessung wird aus der Druckabnahme bei bekanntem Flaschenvolumen ermittelt, welche Luftmenge der Taucher pro Zeiteinheit aufnimmt. Von diesem Wert wird auf eine durchschnittliche oder eine erhöhte physiologische Arbeitsleistung geschlossen, die dann bei der Dekompressionsrechnung berücksichtigt wird.
- Bei der relativen Luftverbrauchsmessung wird lediglich festgestellt, wie hoch der mittlere Luftverbrauch des Tauchers ist, was über einen bestimmten Zeitraum gemitteltwird. Erhöht sich der Luftverbrauch gegenüber diesem Wert, wird von einer erhöhten physiologischen Arbeitsleistung ausgegangen.
- Sowohl die absolute als auch die relative Luftverbrauchsmessung kann während des Auftauchens fortgeführt werden, um die Dekompressionsrechnung weiter zu beeinflussen. Dadurch ist es möglich, eine physiologische Arbeitsleistung während der Dekompressionsphase zu erfassen, die in der Regel die Dekompressionszeit verkürzt. Zusätzlich zur Luftverbrauchsmessung kann auch mittels eines entsprechenden Sensors die Pulsfrequenz des Tauchers erfaßt und an den Dekompressionsmesser übertragen werden. Die Pulsfrequenz liefert ebenfalls ein Maß für die physiologische Arbeitsleistung. Wird die Pulsfrequenz z.B. über Elektroden abgenommen, die im Brustbereich des Tauchers angeordnet sind, können die Werte z.B. mittels einer Kabelverbindung an das Sendegerät an der Tauchflasche weitergeleitet und von dort mit der Überwachungseinrichtung drahtlos zum am Handgelenk getragenen Empfangsgerät übermittelt werden.
- Bei einer Verwendung des Überwachungsgerätes bei der Brand- und Katastrophenbekämpfung können ebenfalls mehrere zusätzliche Funktionen im Empfangsteil integriert werden. So kann neben der Anzeige des aktuellen Drucks im Druckbehälter des Atemgerätes die noch verbleibende Atemzeit und/oder die Atemfrequenz berechnet und angezeigt werden. Ferner ist es möglich, in dem Empfangsgerät Meßsensoren vorzusehen, die dem Benutzer Informationen über den Zustand der ihn umgebenden Luft geben. So kann z.B. bei der Brandbekämpfung der Kohlenmonoxidanteil der Luft gemessen und angezeigt werden, so daß der Benutzer des Atemgerätes z.B. über die Gefährdung von zu rettenden Personen informiert ist. Selbstverständlich können außer Gasdetektoren aber auch Sensoren für alle anderen Arten von meßbaren Schadeinflüssen eingesetzt werden (z.B. Geigerzähler und dergleichen).
- Ein Ausführungsbeispiel der vorliegenden Erfindung wird nun in bezug auf die Figuren beschrieben. Darin zeigen:
- Fig.1: Eine schematisierte Funktions-Darstellung eines mobilen Atemgerätes mit einem Ausführungsbeispiel der erfindungsgemäßen Überwachungseinrichtung;
- Fig.2: eine schematisierte Darstellung des Sendeteils des Ausführungsbeispiels gemäß Fig. 1;
- Fig.3: eine schematische Darstellung der Funktionsmodi des Sendeteils des Ausführungsbeispiels gemäß Fig. 1;
- Fig.4: eine schematische Darstellung der Codierung des Sendesignals des Ausführungsbeispiels gemäß Fig. 1;
- Fig.5: eine schematisierte Darstellung des Aufbaus des Sendesignals im Normalbetrieb des Ausführungsbeispiels gemäß Fig. 1;
- Fig.6: eine schematisierte Darstellung des Aufbaus des Sendesignals im Identifikationsänderungs-Modus des Ausführungsbeispiels gemäß Fig. 1;
- Fig.7: eine schematisierte Darstellung des Empfangsteils des Ausführungsbeispiels gemäß Fig. 1;
- Fig.8: eine schematisierte Darstellung eines weiteren Ausführungsbeispiels der Erfindung, bei der die Empfangseinrichtung mit einem Dekompressionsrechner kombiniert ist.
- Das in bezug auf die Fig. 1 bis 7 erläuterte erste Ausführungsbeispiel der Erfindung ist dafür vorgesehen, in Verbindung mit dem Atemgerät eines Tauchers verwendet zu werden. Es kann jedoch gegenbenfalls mit entsprechenden Modifikationen ebenfalls für Atemgeräte, wie sie z.B. beim Brand- und Katastrophenschutz benutzt werden, Verwendung finden.
- Die Fig. 1 zeigt eine stark schematisierte Darstellung der Überwachungsvorrichtung, die insgesamt mit 1 bezeichnet ist und die ein Sendeteil 2, das die Sendeeinrichtung beinhaltet, und ein Empfangsteil 3, das die Empfangseinrichtung beinhaltet, aufweist.
- Das Sendeteil 2 ist, beim vorliegenden Beispiel, (in den Fig. nicht dargestellt) fest an einer Tauchflasche 5 angebracht. Die Tauchflasche ist eine konventionelle Stahlflasche mit einem Volumen von z.B. 7 bis 18 Litern und einem maximalen Speicherdruck von z.B. 350 bar, welche mit einem handbetätigten Absperrventil 6 verschließbar ist. Während der Benutzung ist das Absperrventil 6 geöffnet, und der Druck der dem Benutzer zugeführten Luft wird über ein schematisch angedeutetes Druckregelventil 9 geregelt. Dieses Ventil 9, das üblicherweise als Lungenautomat bezeichnet wird, kann eine der unterschiedlichen Bauarten aufweisen, die im Stand der Technik bekannt sind. Der Benutzer entnimmt dem Atemgerät die Luft dann z.B. über eine (nicht gezeigte) Schlauchverbindung mittels eines Mundstückes.
- Zwischen dem Absperrventil und dem Lungenautomaten ist ein Drucksensor 7 angeordnet, der den in der Flasche herrschenden Druck erfaßt. Die Anordnung des Drucksensors nach dem Absperrventil 6 hat den Vorteil, daß der Drucksensor während der Lagerung der Flasche nicht mit dem Gerätedruck beaufschlagt ist; weiterhin hat dies, wie noch erläutert wird, Vorteile bezüglich der Sicherheitsgestaltung der Überwachungsvorrichtung.
- Das Empfangsteil 3 wird bei der Benutzung in räumlichem Abstand zum Sendeteil 2 verwendet und ist mit einer Anzeigeeinrichtung 4 gekoppelt, die üblicherweise unmittelbar in das Gehäuse des Empfangsteils integriert ist.
- Das in Fig. 2 schematisch dargestellte Sendeteil 2 weist ein aus nichtmagnetischem Material, vorzugsweise Kunststoff, bestehendes Gehäuse 10 auf, in dem die elektrischen und elektronischen Bauelemente des Sendeteils aufgenommen sind. Das Innere des Gehäuses 10 des Sendeteils 2 ist vollständig mit elektrisch nicht leitendem Öl, Silikon oder dergleichen gefüllt. Der Bereich des Gehäuses 10a, in dem der Drucksensor 7 angeordnet ist, ist so gestaltet, daß er bei Gebrauch dem Druck in der Flasche 5 ausgesetzt ist. Dies ist durch die Anschlußstutzen 11,12 schematisch dargestellt. Der übrige Teil 10b des Gehäuses ist ebenfalls abgedichtet, um ein Eindringen von Wasser zu vermeiden.
- Im Gehäuse 10 ist ferner eine Batterie 13 untergebracht, die das Sendeteil mit elektrischer Energie versorgt, und die somit ebenfalls dem Druck im Gehäuse ausgesetzt ist.
- Der Aufbau der elektrischen Komponenten des Sendeteils wird nun in bezug auf die Fig. 2 beschrieben.
- Der Drucksensor 7 ist über elektrische Leitungen, die hier und im folgenden immer nur schematisch dargestellt sind, mit einer Signalaufbereitungsschaltung 20 verbunden. Als Drucksensor können alle im Handel befindliche Sensortypen verwendet werden, vorausgesetzt, daß sie mit einer Batteriespannung von unter 5 V betrieben werden können und möglichstwenig Energie verbrauchen. Besonders zu bevorzugen sind deshalb Drucksensoren, die nach dem piezoelektrischen Prinzip arbeiten.
- Das analoge Signal des Drucksensors wird in der Signalaufbereitungsschaltung 20 mittels eines A/D - Wandlers in ein digitales Signal umgewandelt. Die Signalaufbereitungsschaltung 20 ist weiterhin mit einem quarzgesteuerten Zeitgeber 21 verbunden, dessen Zweck noch nachfolgend erläutert wird. Das digital aufbereitete Signal wird einer handelsüblichen Mikroprozessor-Recheneinheit 22 zugeführt. Die Mikroprozessor-Recheneinheit 22 ist mit einem Speicher 23 verbunden und empfängt ebenfalls die Signale des Zeitgebers 21. Der Speicher 23 (und der entsprechende Speicher im Empfangsteil) kann vollständig aus RAM-Speicherelementen aufgebaut sein. Es ist aber auch möglich, einen gemischten Speicher, bestehend aus ROM- (Festwertspeicher) und RAM -Speicherelementen zu verwenden. Da die Batteriespannung dauerhaft zur Verfügung steht, können die Speicherinhalte auch bei Verwendung von flüchtigen Speicherelementen langfristig gesichert werden.
- Durch den Mikroprozessor 22 werden das Drucksignal sowie die anderen zu übertragenden Signale nach einem im Speicher 23 gespeicherten Programm in ein Sendesignal umgewandelt und einer Sendeausgangsstufe 25 zugeführt. Von der Sendeausgangsstufe 25 wird das Signal auf die Antenne 26 übertragen.
- Die Antenne 26 besteht aus einem Ferritkern, der mit Kupferdraht umwickelt ist. Als besonders günstig hat sich eine Induktivität der Sendespule im Bereich zwischen 10 und 50 mHenry erwiesen.
- Verschiedene Betriebsarten der Sendeeinrichtung werden nun in bezug auf Fig. 3 beschrieben, in der die verschiedenen Funktionsmodi des Sendeteiles über der Zeitachse 40 aufgetragen sind.
- Im Zeitabschnitt 41 im linken Teil der Figur befindet sich die Sendeeinrichtung im Stand-By-Modus. In diesem Modus wird die Signalaufbereitungsschaltung veranlaßt, in bestimmten Zeitabständen eine Druckmessung auszuführen, was durch Säulen 42 charakterisiert ist. Als zu bevorzugender Zeitabstand hat sich hier eine Zeitdauer von ca. 5 sec ergeben. Der Mikroprozessor 22 wird zwischen zwei Messungen immer in einen Stand-By-Modus geschaltet, in dem er nur sehr wenig Energie verbraucht. Dadurch ist es möglich, das Sendeteil bei einem typischen Benutzungsprofil ungefähr 5 Jahre lang mit einer Lithiumbatterie zu betreiben.
- Das Startsignal für die Druckmessung geht von dem Zeitgeber 21 der Sendeeinrichtung aus. Der Mikroprozessor 22 wird daraufhin aktiviert und der Druck mittels des Drucksensors 7 gemessen.
- Sobald ein bestimmtes Einschaltkriterium erfüllt ist, wird die Sendeeinrichtung vom Stand-By-Modus in den Sendemodus umgeschaltet. Als Einschaltkriterium können verschiedene Kriterien verwendet werden. Als besonders vorteilhaft hat es sich erwiesen, das Ergebnis zweier aufeinanderfolgender Druckmessungen zu vergleichen und bei einem Druckanstieg das Umschalten in den Sendemodus zu veranlassen. Vorzugsweise ist das Einschaltkriterium so bemessen, daß der Sendemodus eingeschaltet wird, wenn innerhalb von 5 sec ein Anstieg des Druckes von unter 5 bar auf z.B. 30 bar oder darüber festgestellt wird. Dieser Anstieg wird in jedem Falle erzielt, wenn der Benutzer des Atemgerätes das Absperrventil 6 der Flasche 5 öffnet und damit den Drucksensor 7 mit dem Flaschendruck beaufschlagt. Zufällige Druckschwankungen, wie sie z.B. durch Temperaturänderungen, Höhenänderungen etc. entstehen, reichen nicht aus, um dieses Einschaltkriterium zu erfüllen.
- Nach dem Einschalten findet im Zeitabschnitt 43 zunächst ein sogenannter Identifikationsänderungs- Modus oder Paarungsmodus statt, der später noch erläutert wird.
- Dem Identifikationsänderungs-Modus folgt der eigentliche Normal-Modus im Zeitabschnitt 45, der die eigentliche Benutzungsphase des Gerätes darstellt. Wie in der Fig. 3 schematisch dargestellt ist, wechseln sich in diesem Modus ein Meßintervall 46 und ein Sendeintervall 47 ab. Es hat sich als günstig erwiesen, auch während des Normal-Modus mit einem zeitlichen Abstand der Druckmessungen von 5 sec zu arbeiten. Nach der Aufnahme jedes Meßwertes wird dann durch den Mikroprozessor das Sendesignal generiert und über die Sendeausgangsstufe 25 der Antenne 26 zugeleitet.
- Der Zeitabstand zwischen der Druckmessung und dem Aussenden des Signals ist nicht konstant, sondern wird durch den Mikroprozessor nach einem Zufallsverfahren innerhalb eines vorgegebenen Zeitbereiches variiert. Die Aussendung des Signals erfolgt aber immer vor derAufnahme des nächsten Meßwertes. Diese Zeitvariation bringt den Vorteil, daß bei zwei gleichzeitig in geringem Abstand betriebenen Überwachungsvorrichtungen, die verschiedene Atemgeräte überwachen, eine Kollision von ausgesendeten Signalwerten nur zufällig erfolgen kann. Wäre der Zeitabstand zwischen Meßintervall und Sendeintervall immer gleich, könnte die ungünstige Konstellation entstehen, daß die von zwei Sendeteilen ausgestrahlten Werte längere Zeit miteinander kollidieren.
- Sobald ein vorgegebenes Ausschaltkriterium erfüllt ist, wird die Sendeeinrichtung in den Stand-by-Modus zurückgeschaltet, was im Zeitabschnitt 49 gezeigt ist. Das Ausschaltkriterium liegt vor, wenn für eine vorbestimmte Anzahl von Meßintervallen keine Druckabnahme mehr festgestellt wird.
- Die Signalübertragung von der Sendeeinrichtung 2 zur Empfangseinrichtung 3 erfolgt mittels einer elektromagnetischen Funkwelle konstanter Frequenz. Zur Steuerung der Sendefrequenz dient der quarzgesteuerte Zeitgeber 21. Da die Frequenz des Schwingquarzes 32.768 Hz beträgt, wird der Aufbau des Sendeteils vereinfacht, wenn eine Frequenz verwendet wird, die aus dieser Frequenz mit dem Teiler 2n abgeleitet wird. Damit sind die Frequenzen 32.768 (n=0), 16.384 (n=1), 8.192 (n=2) und 4.096 (n=3) besonders bevorzugt. Versuche haben ergeben, daß eine besonders gute Datenübertragung unter Wasser durch die Verwendung einer Trägerfrequenz von 8.192 Hertz erzielt wird.
- Im Interesse einer störunanfälligen Datenübertragung werden die zu übertragenden Datensignale im Sendeteil 2 digital codiert. Um die digitalen Werte zu übertragen, gibt es im Stand der Technik verschiedene Verfahren, bei denen die Frequenz, die Amplitude oder die Phasenlage des Trägersignals verändert werden.
- Ein bekanntes Verfahren, das auch für die Überwachungsvorrichtung der gezeigten Art angewendet werden könnte, ist die Frequenzänderung des Sendesignals mit dem sogenannten Frequency Shift Keying". Bei diesem Verfahren werden den Bitinformationsinhalten 0 und 1 unterschiedliche Frequenzen zugeordnet. Damit müssen jedoch 2 Frequenzen übertragen werden, was den Aufwand sender- und empfängerseitig erhöht.
- Als beste Möglichkeit der Übertragung hat sich die Beeinflussung der Phasenlage mit dem sogenannten "Phase Shift Keying" (PSK) erwiesen, wobei beim vorliegenden Ausführungsbeispiel noch eine besondere Variante des PSK-Verfahrens verwendet wird, nämlich das "Differential Phase Shift Keying" (DPSK).
- Bei diesem Verfahren erfährt das Sendesignal einen Phasensprung, wenn eine 1 übermittelt wird; soll eine 0 gesendetwerden, bleibt das Sendesignal unverändert. Da bei dieser Methode das erste Bit des übermittelten Bitmusters eine Unsicherheit enthält, darf es nicht als Informationsträger dienen.
- Ein Beispiel dieser digitalen Verschlüsselung ist in Fig. 4 dargestellt. Dabei ist im Diagramm 60 über einer Zeitachse 61 und einer Zahlenachse 62 ein Bitmuster, bestehend aus den Bits 011010011..., dargestellt.
- Im Diagramm 64 ist über der gleichskalierten Zeitachse 65 und der Spannungsachse 66 ein Spannungssignal 67 aufgetragen, welches eine gleichbleibende Frequenz aufweist, dem aber durch die vorbeschriebene DPSK-Modulation das Bitmuster als Phasenänderung aufgeprägt ist.
- Innerhalb jedes Sendeintervalls wird eine Signalfolge gesendet, die, wie dies die Fig. 5 zeigt, aus einer Präambel, dem Identifikationssignal, einem Datenblock und einer Postambel aufgebaut ist. Die Präambel dient dazu, der Empfangseinrichtung die Synchronisation auf das gesendete Signal zu ermöglichen. Der Identifikationscode enthält die senderspezifische Identifizierung. An den Identifikationscode schließt sich der eigentliche zu übertragende Datenblock an. Der Datenblock enthält in jedem Fall den gemessenen Druckwert, kann aber bei einer bevorzugten Ausführungsform auch noch einen Temperaturwert enthalten, der über einen entsprechenden Temperatursensor erfaßt wird. Weiterhin ist es möglich, die z.B. aus der Messung des Drucksignals abgeleitete Atemfrequenz in diesem Datenblock zu übertragen. Selbstverständlich können auch noch weitere Daten übertragen werden, wenn dies im spezifischen Anwendungsfall von Interesse ist. Daran schließt sich die Postambel an, die unter anderem zur Fehlerkorrektur dient.
- Beim dargestellten Ausführungsbeispiel umfaßt das Synchronisationsintervall 16 Bit, der Identifikationscode 24 Bit, der Datenblock 32 Bit und die Postambel 4 Bit. Jedes Signal ist also 76 Bit lang.
- Versuche haben gezeigt, daß es für die verwendete DPSK günstig ist, pro Bit insgesamt 8 Perioden der Trägerfrequenz mit 8196 Hertz auszustrahlen. Dadurch ergibt sich eine Zeitdauer der Ausstrahlung von insgesamt 0,976 msec/Bit oder eine gesamte Signaldauer von ca. 74 msec.
- In bezug auf die Fig. 7 wird nun der Aufbau des Empfangsteils beschrieben.
- Das Empfangsteil 3 ist, getrennt vom Sendeteil, in einem Kunststoffgehäuse 70 untergebracht und weist keine Verbindung mechanischer Art oder mittels elektrischer Leitungen mit dem Sendeteil 2 auf. Das Kunststoffgehäuse 70 ist mit elektrisch nicht leitendem Öl, Silikon oder dergleichen gefüllt und weist eine Batterie 71 auf, um die elektrischen und elektronischen Komponenten mit elektrischer Energie zu versorgen. Am Gehäuse 70 ist ferner ein flexibles Armband (nicht dargestellt) angeordnet, das es dem Benutzer ermöglicht, das Empfangsteil wie eine Armbanduhr am Handgelenk zu befestigen.
- Das Gehäuse ist so gestaltet, daß es dem Wasserdruck auch in den größten von Tauchern erreichbaren Tiefen standhält und weist an seiner dem Wasser zugewandten Außenfläche keine beweglichen elektrischen Schalteinrichtungen auf. Um das Gerät in Betrieb setzen zu können und um im Paarungsmodus die Zuordnung zu bestätigen, sind jedoch mehrere elektrisch leitende Metallstifte 73 im Gehäuse eingelassen, die vom Taucher z.B. mit seinen Fingern überbrückt werden können, was vom Empfangsteil unter bestimmten Umständen als Schaltereignis interpretiert wird.
- Das Empfangsteil weist eine oder zwei Ferritantennen 80 auf, wie schematisch in der Figur dargestellt ist. Das empfangene Signal wird zunächst einer Signalverarbeitungs- und Verstärkungsstufe 81 zugeführt, an die sich eine Digitalisierstufe 82 anschließt. Beide Bauteile entsprechen üblicher Bauart.
- Das digitale Signal wird einem Vergleicher 83 zugeführt. Dieser Vergleicher stellt fest, ob das empfangene und aufbereitete Signal das Identifikationssignal oder das Identifikationssteuersignal enthält. Ist dies der Fall, wird das Signal einem Mikroprozessor 85 zugeführt, der, gesteuert über ein in einem Speicher 86 abgelegtes Programm, die weitere Verarbeitung übernimmt.
- Die Verwendung der vorgeschalteten Vergleichsstufe hat den Vorteil, daß der Mikroprozessor 85 nur dann mit dem Signal beaufschlagt wird, wenn feststeht, daß die individuelle Empfangseinrichtung angesprochen ist.
- Die Zeitsteuerung des Empfangsteils erfolgt über einen Zeitgeber 84.
- Die aus dem empfangenen Signal abgeleiteten Daten sowie gegebenenfalls weitere Daten werden im Display 87 dem Benutzer angezeigt. Das Display 87 ist dazu hinter einem durchsichtigen Bereich in der Wand des Gehäuses 70 des Empfangsteiles 2 angeordnet. Auf dem Display wird der in der Flasche 5 herrschende Druck sowie vorzugsweise auch die noch verbleibende Atemzeit angezeigt. Dazu wird ein weiterer Drucksensor 89 benötigt, der den jeweiligen Umgebungsdruck mißt. Die verbleibende Atemzeit wird bestimmt, indem durch den Mikroprozessor aus der pro Zeiteinheit gemessenen Druckabnahme unter Berücksichtigung des Umgebungsdruckes der aktuelle Luftverbrauch ermittelt wird. Der Luftverbrauch kann dabei entweder für eine kurz zurückliegende Zeit oder über einen längeren Zeitraum gemittelt werden, um realistische Werte zu erhalten. Daraus wird dann die erwartete Zeit bis zur vollständigen Luftentnahme hochgerechnet.
- Die jeweiligen Daten werden im Display solange angezeigt, bis nach einer erneuten Messung und der Übertragung der Werte neue Daten ermittelt sind.
- Die Empfangseinrichtung weist ferner eine nur schematisch dargestellte Schalteinrichtung 88 mit den bereits erwähnten Metallstiften 73 auf. Die Metallstifte 73 können auch in größerem Abstand zueinander oder auch an verschiedenen Seiten des Gehäuses angeordnet sein, um eine versehentliche Kontaktüberbrückung zu verhindern.
- Nachfolgend wird nun beschrieben, wie die Zuordnung oder die Paarung von Sendeteil und Empfangsteil innerhalb des Identifikationsänderungs-Modus vorgenommen wird.
- Wie bereits dargelegt, wird jedem Sendeteil bei der Herstellung ein Identifikationssignal fest zugeordnet, das immer nur einmal vergeben wird. Beim vorstehenden Ausführungsbeispiel wird dabei ein 24-Bit-Signal verwendet, woraus sich insgesamt 16,7 Millionen verschiedene Identifkationsmöglichkeiten ergeben. Durch diese hohe Zahl ist sichergestellt, daß niemals zwei Sendeteile mit gleichem Signal existieren.
- Das Identifikationssignal des Sendeteils wird in einem Festwertspeicherbereich des Speichers 23 des Sendeteils 2 abgelegt. Es ist auch möglich, das Identifikationssignal in einem RAM-Speicherbereich abzulegen; in diesem Fall muß aber das Signal z.B. durch die gleichzeitige Verwendung als Herstellernummer im Gerät anderweitig fixiert sein, damit das Signal bei einem Batteriewechsel wieder korrekt eingelesen werden kann.
- Der Identifikationsänderungs-Modus wird jedesmal gestartet, wenn das Sendeteil in Betrieb genommen wird. Dies geschieht, wie vorstehend erläutert, vorzugsweise durch ein festgelegtes Einschaltkriterium, z.B. das Aufdrehen des Geräteventils 6 der Flasche 5. Das Sendeteil geht dann in den Identifikationsänderungs- Modus über und sendet, wie in Fig. 6 dargestellt, ein Signal, welches aus einer Präambel, einem Identifikationssteuersignal, dem eigentlichen Identifikationssignal und einer Postambel besteht. Beim Ausführungsbeispiel sind die Präambel 16 Bit, die Postambel 4 Bit und das Identif ikationssteuersignal und das ldentifikationssignal jeweils 24 Bit lang.
- Das Identifikationssteuersignal wird von allen Empfangsteilen der entsprechenden Baureihen verstanden. Sobald ein Empfangsteil dieses Signal empfängt, wird es über den Mikroprozessor in den Identifikationsänderungs-Modus umgeschaltet. Der Prozessor fragt dann über das Display an, ob das Identifikationssignal des Sendeteils übernommen werden soll. Wird dies vom Benutzer über die Schalteinrichtung 88 mittels der Metallstifte 73 bestätigt, wird das Identifikationssignal des Sendeteils übernommen und im Speicher 86 als Identifikations-Vergleichssignal abgespeichert.
- Das im Speicher 86 gespeicherte Steuerprogramm des Empfangsteils kann so gestaltet werden, daß das Empfangsteil, sobald es das Identifikations-Steuersignal des Sendeteils im Identifikationsänderungs-Modus empfängt, überprüft, ob sein abgespeichertes Identifikations-Vergleichssignal mit dem Identifikationssignal des Sendeteils übereinstimmt. Wenn dies der Fall ist, kann das Empfangsteil dann anzeigen, daß es auf dieses Sendeteil eingestellt ist, so daß der Benutzer weiß, daß die beiden Geräte einander zugeordnet sind.
- Um eine versehentliche Zuordnung von Geräten zu vermeiden, weist der Identifikationsänderungs-Modus beim Ausführungsbeispiel mehrere Sicherheitsstufen auf.
- Die erste Stufe ist die Kopplung des Beginns des Identifikationsänderungs-Modus an das Einschaltkriterium des Sendeteils. Die Identifikationsänderung wird immer nur unnmittelbar nach Auftreten des Einschaltkriteriums vorgenommen. Damit wird zuverlässig verhindert, daß eine Identifikationsänderung während der normalen Benutzung der Geräte gestartet wird.
- Als zweite Sicherheitsstufe wird vom Empfangsteil mit einer entsprechenden Einrichtung eine Energiemessung des im Identifikationsänderungs-Modus empfangenen Signals durchgeführt. Das Programm des Empfangsteils ist also so gestaltet, daß immer dann, wenn das Identifikations-Steuersignal empfangen wird, eine Engergiemessung des Gesamtsignales durchgeführt wird. Nur wenn die Sendeenergie einen bestimmten Grenzwert überschreitet, ist eine Zuordnung möglich.
- Die Übertragung der Energie vom Sendeteil zum Empfangsteil hängt, wie bekannt, vom Abstand und, in erheblichem Maße, auch von der jeweiligen Ausrichtung der beiden Antennen zueinander ab. Nur wenn die Geräte räumlich und winkelmäßig in bestimmter Weise zueinander angeordnet sind, wird die vom Empfangsteil aufgenommene Energie maximal hoch. Der Grenzwert für die Energiemessung wird deshalb so gewählt, daß eine Zuordnung nur stattfinden kann, wenn Sende- und Empfangsteil in kleinem Abstand zueinander angeordnet sind und zudem eine vorgegebene winkelmäßige Ausrichtung zueinander aufweisen. Um die winkelmäßige Zuordnung zu erleichtern, werden die Antennen von Sendeteil und Empfangsteil vorzugsweise so im jeweiligen Gehäuse angeordnet, daß sich die maximale Energie bei einer parallelen oder T-förmigen Anordnung der Geräte zueinander ergibt. Um auch hier Zufälligkeiten auszuschließen, wird das Aussenden des Identifkations-Steuersignals mehrfach wiederholt und nur dann von einer ausreichenden Signalenergie ausgegegangen, wenn der gemessene Wert bei einem bestimmten prozentualen Anteil der Aussendungen über dem Grenzwert liegt.
- Schließlich muß der Benutzer noch, und dies stellt die nächste Sicherheitsstufe dar, die Schalteinrichtung 88 betätigen, um die Identifikationsänderung zu bestätigen. Dazu müssen z.B. die drei Metallstifte in einerWeise verwendet werden, daß beim Identifikationsänderungsmodus nur zwei überbrückt sein dürfen. Damit wird ausgeschlossen, daß eine Identifikationszuordnung unter Wasser (in diesem Fall wären alle drei Metallstifte elektrisch verbunden) geschieht. Es ist auch möglich, drei Metallstifte in der Weise zu verwenden, daß zunächst ein erstes Paar und dann ein zweites Paar überbrückt werden muß.
- Eine Zuordnung findet also nur dann statt, wenn
- 1. Sende- und Empfangsteil praktisch unmittelbar nebeneinander in definierter Winkellage angeordnet sind;
- 2. in diesem Zustand das Absperrventil der Luftflasche geöffnet wird;
- 3. und die Identifikation durch den Benutzer manuell bestätigt wird.
- Nachfolgend wird beschrieben, wie die dargestellte Empfangseinrichtung die Plausibilität der empfangenen Daten überprüft.
- Wie eingangs dargelegt, sollte die Überwachungsvorrichtung möglichst nie, auch nicht kurzfristig, falsche Werte anzeigen. Aufgrund der drahtlosen übertragung kann es jedoch vorkommen, daß der Empfang des gesamten, während eines Sendeintervalls ausgesendeten Signals oder von Teilen des Signals, z.B. durch starke Bewegungen des Benutzers oder dergleichen, beinträchtigt ist.
- Wenn zwei Sendeteile in naher Entfernung zueinander arbeiten, könnte außerdem der Fall eintreten, daß die beiden Sendeteile im wesentlichen zur selben Zeit senden, so daß sich die Signale überlagern und damit nicht mehr eindeutig zu identifizieren sind.
- Weiterhin könnte es, auch wenn dies unwahrscheinlich ist, geschehen, daß durch die Überlagerung verschiedener Signale kurzfristig ein Muster entsteht, welches dem Identifikationssignal zufälligerweise entspricht.
- Diesem Problem kann begegnet werden, indem immer, wenn das Signal nicht absolut korrekt aufgenommen wurde, die entsprechende Anzeige unterdrückt wird.
- Beim gezeigten Ausführungsbeispiel ist als zusätzliche Sicherheitsmaßnahme eine Plausibilitätskontrolle vorgesehen, um jede Gefahr einer Fehlanzeige auszuschließen. Die Plausibilitätskontrolle erfolgt über die Berechnung des zu erwartenden Druckabfalls in der Flasche des Atemgerätes durch den Mikroprozessor des Empfangsteiles.
- Bei der Benutzung wird dem Atemgerät im wesentlichen kontinuierlich Atemluft entnommen, und der Druck in der Flasche 5 sinkt entsprechend kontinuierlich ab, woraus der aktuelle Luftverbrauch ermittelt wird. Anhand des Luftverbrauches wird vom Mikroprozessor berechnet, wie der Druckabfall in der Flasche bei einer kontinuierlichen Luftentnahme weiter absinken müßte. Bei jeder Druckmessung wird dann festgestellt, ob der neu gemessene Druck gegenüber den vorher gemessenen Druckwerten plausibel ist. Ist dies der Fall, wird der neue Druckwert im Display angezeigt. Ist der Druckwert nicht plausibel, oder wird kein Signal oder kein vollständiges Signal im vorbestimmten Zeitintervall empfangen, so wird entweder kein Druckwert angezeigt, oder es wird der zuletzt gemessene Druckwert angezeigt, jedoch durch ein zusätzliches Symbol oder z.B. durch ein Blinken der Anzeige darauf hingewiesen, daß dies das Ergebnis einer zurückliegenden Druckmessung ist.
- Wird mehrere Meßintervalle lang kein Drucksignal empfangen, oder ist das Signal infolge Störungen nicht eindeutig identifizierbar, wird diese Anzeige weitergeführt, bis ein im Steuerprogramm des Mikroprozessors 86 festgelegter Zeitrahmen überschritten ist. Ab diesem Zeitpunkt wird davon ausgegangen, daß zuverlässige Druckwerte nicht mehr vorhanden sind und die Berechnung des Luftverbrauches eingestellt. Dies wird im Display 87 entsprechend kenntlich gemacht.
- Werden wieder Drucksignale empfangen, die von dem dem Empfangsteil zugeordneten Sendeteil stammen, sowerden diese angezeigt, jedoch mit einem Zusatzsymbol, z.B. mit einer Blinkanzeige oder dergleichen, durch die der Benutzer informiert wird, daß eine Plausibilätskontrolle dieser Werte nicht mehr möglich ist.
- Bei einem weiteren Ausführungsbeispiel der erf indungsgemäßen Überwachungsvorrichtung, das schematisch in der Fig. 8 dargestellt ist, ist die Überwachungsvorrichtung mit einem Dekompressionsrechner kombiniert. Der Dekompressionsrechner könnte sowohl beim Sendegerät, als auch beim Empfangsgerät angeordnet sein. Vorzugsweise werden aber, wie beim gezeigten Ausführungsbeispiel, das Empfangsteil der Überwachungsvorrichtung und der Dekompressionscomputer in einem Gehäuse miteinander vereinigt, da der Dekompressionscomputer dann auch bei einem Ausfall der Sendeeinrichtung in Funktion bleibt.
- Dekompressionscomputer der hier in Rede stehenden Art sind im Stand der Technik bekannt. Die Patentanmelderin hat derartige Geräte beispielsweise in größerer Stückzahl im Jahre 1989 in Europa, USA, Japan, Australien und vielen anderen Ländern z.B. unter dem Namen "Aladin pro" vertrieben. Bei derartigen Dekompressionsrechnern werden der aktuelle Umgebungsdruck, der ein Maß für die Tauchtiefe ist, und die gesamte Tauchzeit über eine entsprechende Druckmeßeinrichtung und eine Zeitmeßeinrichtung erfaßt. Mit diesen Eingangswerten wird anhand eines in einem Speicher gespeicherten Programms mittels eines Mikroprozessors das Sättigungs- und Entsättigungsverhalten einer bestimmten Anzahl, z.B. sechs oder sechzehn verschiedener Gewebe simuliert. Durch einen Vergleich der Belastung der einzelnen Gewebe ermittelt die Recheneinheit, welches Gewebe für die Dekompression maßgebend ist, das sogenannte Führungsgewebe, und bestimmt danach die Anzahl, die Tiefe und die jeweilige Zeitdauer der notwendigen Dekompressionsstufen. Dabei werden dem Taucher auf einem Display die gesamte Tauchzeit, die aktuelle Tauchtiefe, der jeweils nächste Dekompressionshalt und die gesamte Zeitdauer angezeigt, die erforderlich ist, um mit einer bestimmten, vorgeschriebenen Aufstiegsgeschwindigkeit und den Dekompressionsstufen die Wasseroberfläche zu erreichen. Weiterhin ist der Dekompressionscomputer mit Speichereinrichtungen versehen, einem sogenannten Logbuch, in dem das Tauchprofil von vorangegangenen Tauchgängen gespeichert ist, so daß der Taucher nach Verlassen des Wassers seine jeweiligen Tauchzeiten usw. notieren kann. Des weiteren ist ein solcher Dekompressionscomputer mit einer Einrichtung versehen, um den Luftdruck vor dem Tauchen zu messen, um somit auch bei Seen, die in größerer Höhe liegen als der Meeresspiegel, einsatzfähig zu sein, und um Luftdruckschwankungen nicht in das Meßergebnis einfließen zu lassen.
- Es ist möglich, das Empfangsteil der erfindungsgemäßen Überwachungsvorrichtung und die Recheneinheit für die Dekompressionsberechnung derart zu kombinieren, daß beide von einem gemeinsamen Mikroprozessor gesteuert werden.
- Die Programmierung und die Konstruktion werden jedoch vereinfacht, wenn statt dessen eine Lösung mit zwei Mikroprozessoren angewendet wird.
- Das in Fig. 8 gezeigte Ausführungsbeispiel der erfindungsgemäßen Überwachungsvorrichtung arbeitet mit einem Sendeteil, wie es in bezug auf die Fig. 2 erläutert und deshalb in Fig. 8 nicht mehr dargestellt ist. Das Empfangsteil weist ein druckfestes, nichtmagnetisches Gehäuse 100 auf, in dem, wie durch den strichpunktierten Bereich angedeutet ist, die Empfangseinrichtung 103 und der Dekompressionsrechner 104 gemeinsam angeordnet sind. Das Gehäuse ist ölgefüllt und hat einen Innendruck, der gleich dem Druck des das Gehäuse umgebenden Wassers ist. Die Abmessungen eines Musters dieses Gehäuses, das zum Tragen am Handgelenk vorgesehen ist, betragen ca. 75 mm (Länge quer zur Armrichtung) und ca. 75 mm Breite, entlang des Armes gemessen. Das Gehäuse hat eine Dicke von ca. 20 mm.
- Das Empfangsteil 103 ist wie vorstehend beschrieben aufgebaut und weist eine Antenne 110 und einen ersten Mikroprozessor 112 mit einem Speicher 113 auf. Die im wesentlichen der Signalverarbeitung dienenden Komponenten sind schematisch im Bauteil 111 zusammengefaßt.
- Der Dekompressionsrechner weist einen Mikroprozessor 120 mit einem Speicher 121 für Programm und Daten auf. Der Druck des umgebenden Wassers wird über einen Drucksensor 125 erfaßt. Die übrigen elektrischen Komponenten, wie Zeitgeber usw., sind schematisch im Bauteil 127 zusammengefaßt.
- Als gemeinsame Bauelemente sind zumindest die der Stromversorgung dienende Batterie 130, ein in der Gehäusewand eingelassenes Display 132 und eine Schalteinrichtung 134 mit vier Metallstiften 136 vorgesehen.
- Als weitere gemeinsame Bauelemente können eine gemeinsame Display-Kontrolleinrichtung sowie ein gemeinsamer Zeitgeber und dergleichen verwendet werden.
- Die Mikroprozessoren werden jeweils über ein eigenes Programm gesteuert, tauschen jedoch über eine schematisch angedeutete Datenleitung 138 Daten aus. Daraus werden folgende Daten bestimmt und auf dem Display 132 mit Zahlen und/oder Symbolen dargestellt:
- - der Druck in der Atemluftflasche in bar oder psi;
- - die verbleibende Zeit zum Aufenthalt auf der jeweiligen Tiefenstufe, unter Berücksichtigung der für den Aufstieg erforderlichen Zeit (remaining air time) in min oder mit einem Symbol, z.B. einer auslaufenden Sanduhr;
- - die gesamte Tauchzeit seit Eintritt in das Wasser;
- - die aktuelle Tauchtiefe;
- - der nächste Dekompressionshalt und die dort zu verbringende erste Dekompressionszeit;
- - die Gesamtauftauchzeit;
- - die maximal getauchte Tiefe;
- - die momentane Aufstiegsgeschwindigkeit.
- Zusätzlich können folgende Funktionen oder Fehlfunktionen durch das Blinken der entsprechenden Werte oder durch zusätzliche optische und/oder akustische Warnungen angezeigt bzw. ausgegeben werden:
- - ein Signal, z.B. das Blinken der Druckanzeige, das anzeigt, daß der aktuelle angezeigte Flaschendruck nicht über die Luftverbrauchsprognose kontrolliert ist, da die Verbindung zwischen Sendeteil und Empfangsteil längere Zeit unterbrochen war;
- - eine Anzeige für eine kurzfristige Unterbrechung der Verbindung Sendeteil und Empfangsteil;
- - ein Signal, wenn die maximale Aufstiegsgeschwindigkeit den erlaubten Wert überschreitet (dieser Wert kann durch in kurzem zeitlichen Abstand erfolgende Druckmessungen mit dem Drucksensor 125 bestimmt werden).
- Des weiteren kann die Überwachungsvorrichtung nach diesem Ausführungsbeispiel mit Anzeigen gekoppeltwerden, die erst nach dem Verlassen des Wassers sichtbarwerden, z.B. eine Warnanzeige in Form eines Flugzeuges, die dem Taucher anzeigt, daß die Benutzung eines Flugzeuges noch nicht wieder möglich ist, einer Logbuchanzeige usw.
- Die Dekompressionsdaten werden, wie vorstehend beschrieben, vom Mikroprozessor 120 über die Simulation des Verhaltens einer bestimmten Anzahl von Gewebearten ermittelt. Die zulässige Aufenthaltszeit in einer bestimmten Tiefe ergibt sich durch eine z.B. iterativ erfolgende Näherungsrechnung, indem die vorausberechnete Zeit, die der Luftvorrat noch ausreicht, in die verbleibende Aufenthaltszeit und in die Gedamtauftauchzeit, die erforderlich ist, um nach Ablauf der Aufenthaltszeit aus dieser Tiefe aufzutauchen, unterteilt wird.
- Neben den Eingangsgrößen Druck und Zeit kann auch der errechnete Luftverbrauch in der Dekompressionsrechnung berücksichtigt werden. Da der Luftverbrauch ein Maß für die vom Taucher erbrachte physiololgische Arbeitsleistung ist, kann damit, entsprechend den Forschungsergebnissen der Tauchmedizin, der Einfluß körperlicher Arbeitsleistung auf die Dekompressionszeiten berücksichtigt werden.
Claims (33)
dadurch gekennzeichnet,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT9191918293T ATE105246T1 (de) | 1990-10-19 | 1991-10-18 | Ueberwachungsvorrichtung fuer mobile atemgeraete. |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4033292 | 1990-10-19 | ||
DE4033292A DE4033292A1 (de) | 1990-10-19 | 1990-10-19 | Ueberwachungsvorrichtung fuer mobile atemgeraete |
PCT/EP1991/001982 WO1992006889A1 (de) | 1990-10-19 | 1991-10-18 | Überwachungsvorrichtung für mobile atemgeräte |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0550649A1 EP0550649A1 (de) | 1993-07-14 |
EP0550649B1 true EP0550649B1 (de) | 1994-05-04 |
EP0550649B2 EP0550649B2 (de) | 2000-03-01 |
Family
ID=6416667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91918293A Expired - Lifetime EP0550649B2 (de) | 1990-10-19 | 1991-10-18 | Überwachungsvorrichtung für mobile atemgeräte |
Country Status (6)
Country | Link |
---|---|
US (2) | US5392771A (de) |
EP (1) | EP0550649B2 (de) |
JP (1) | JPH06504245A (de) |
DE (2) | DE4033292A1 (de) |
ES (1) | ES2056662T5 (de) |
WO (1) | WO1992006889A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5806514A (en) * | 1993-09-23 | 1998-09-15 | Uwatec Ag | Device for and method of dive monitoring |
DE102009054396B4 (de) * | 2008-11-26 | 2020-08-27 | Suunto Oy | Verfahren zum Messen des Drucks in einer Pressluftflasche, Tauchcomputersystem und Datenübertragungseinrichtung |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4033292A1 (de) * | 1990-10-19 | 1992-04-23 | Uwatec Ag | Ueberwachungsvorrichtung fuer mobile atemgeraete |
US5191317A (en) * | 1991-09-09 | 1993-03-02 | Undersea Industries, Inc. | Low air warning system for scuba divers |
US5394879A (en) | 1993-03-19 | 1995-03-07 | Gorman; Peter G. | Biomedical response monitor-exercise equipment and technique using error correction |
DE4329898A1 (de) | 1993-09-04 | 1995-04-06 | Marcus Dr Besson | Kabelloses medizinisches Diagnose- und Überwachungsgerät |
SE503155C2 (sv) * | 1994-07-28 | 1996-04-01 | Comasec International Sa | Sätt och anordning för funktionskontroll vid andningsapparat |
FI103192B (fi) * | 1995-12-21 | 1999-05-14 | Suunto Oy | Sukellustietokone |
US5832916A (en) * | 1996-02-20 | 1998-11-10 | Interspiro Ab | Method and system for checking the operability of electrical-based components in a breathing equipment |
DE19628356C2 (de) | 1996-07-13 | 2003-04-17 | Detlef Tolksdorf | Verfahren zur Normalisierung des Atemmusters von mit Atmungsgeräten ausgestatteten Personen, insbesondere von Sport- und Berufstauchern, sowie Einrichtung zur Durchführung des Verfahrens |
US6377610B1 (en) * | 1997-04-25 | 2002-04-23 | Deutsche Telekom Ag | Decoding method and decoding device for a CDMA transmission system for demodulating a received signal available in serial code concatenation |
IT1293193B1 (it) * | 1997-02-19 | 1999-02-16 | Htm Sport Spa | Dispositivo di segnalazione di condizioni di pericolo e/o di emergenza per immersioni subacquee. |
US5881723A (en) | 1997-03-14 | 1999-03-16 | Nellcor Puritan Bennett Incorporated | Ventilator breath display and graphic user interface |
IL121561A (en) * | 1997-08-18 | 2000-10-31 | Divecom Ltd | Underwater communication apparatus and communication network |
IT1297708B1 (it) * | 1997-11-28 | 1999-12-20 | Htm Sport Spa | Metodo per la valutazione del consumo di aria per sub in immersione. |
US6130859A (en) * | 1997-12-01 | 2000-10-10 | Divecom Ltd. | Method and apparatus for carrying out high data rate and voice underwater communication |
JPH11197248A (ja) * | 1998-01-19 | 1999-07-27 | Nippon Sanso Kk | 呼吸用ガス消費量のモニタリング装置及びモニタリング方法 |
DE19822412B4 (de) * | 1998-05-19 | 2008-06-05 | Deutsche Telekom Ag | System zur Überwachung von Atemschutzgeräteträgern |
US6199550B1 (en) * | 1998-08-14 | 2001-03-13 | Bioasyst, L.L.C. | Integrated physiologic sensor system |
DE19911869B4 (de) * | 1999-03-17 | 2004-03-25 | T.E.M.! Techn. Entwicklungen Und Management Gmbh | Neuartige Atemschutzmaske mit Sensor-Mikrosystem und Verfahren zum Betreiben derselben |
US6810502B2 (en) * | 2000-01-28 | 2004-10-26 | Conexant Systems, Inc. | Iteractive decoder employing multiple external code error checks to lower the error floor |
DE10008048C2 (de) * | 2000-02-22 | 2003-04-24 | Andreas Toeteberg | Überwachungssystem für den Atemschutz |
US6441747B1 (en) * | 2000-04-18 | 2002-08-27 | Motorola, Inc. | Wireless system protocol for telemetry monitoring |
US6496705B1 (en) * | 2000-04-18 | 2002-12-17 | Motorola Inc. | Programmable wireless electrode system for medical monitoring |
MXPA03000499A (es) * | 2000-07-18 | 2003-06-24 | Motorola Inc | Sistema y metodo de electrocardiografia inalambrica. |
JP4580083B2 (ja) * | 2000-10-16 | 2010-11-10 | エア・ウォーター防災株式会社 | 呼吸器 |
DE10120565C2 (de) * | 2001-04-26 | 2003-05-08 | C Con Gmbh | System zum Antrieb einer Person im Wasser und Taucherbrille |
US6856578B2 (en) | 2001-05-22 | 2005-02-15 | Daniel J. Magine | Underwater alert system |
US7933642B2 (en) * | 2001-07-17 | 2011-04-26 | Rud Istvan | Wireless ECG system |
US7263379B1 (en) * | 2002-12-23 | 2007-08-28 | Sti Licensing Corp. | Communications network for emergency services personnel |
US7398097B2 (en) * | 2002-12-23 | 2008-07-08 | Scott Technologies, Inc. | Dual-mesh network and communication system for emergency services personnel |
US7454248B2 (en) * | 2004-01-30 | 2008-11-18 | Ge Medical Systems Global Technology, Llc | Method, apparatus and product for acquiring cardiac images |
DE102004007986A1 (de) | 2004-02-18 | 2005-09-08 | Uwatec Ag | Tauchcomputer |
US8021310B2 (en) | 2006-04-21 | 2011-09-20 | Nellcor Puritan Bennett Llc | Work of breathing display for a ventilation system |
US7652571B2 (en) | 2006-07-10 | 2010-01-26 | Scott Technologies, Inc. | Graphical user interface for emergency apparatus and method for operating same |
US7310549B1 (en) | 2006-07-14 | 2007-12-18 | Johnson Outdoors Inc. | Dive computer with heart rate monitor |
US7784461B2 (en) | 2006-09-26 | 2010-08-31 | Nellcor Puritan Bennett Llc | Three-dimensional waveform display for a breathing assistance system |
NZ560653A (en) * | 2007-08-15 | 2010-07-30 | Prink Ltd | Diver monitoring and communication system |
DE102007047130A1 (de) * | 2007-10-02 | 2009-04-09 | Uemis Ag | Tauchcomputer für mehrere Benutzer |
FI121866B (fi) * | 2007-12-20 | 2011-05-13 | Suunto Oy | Kytkentä ja menetelmä mobiililaitteen langatonta lisälaitetta varten |
US8261744B2 (en) * | 2008-09-26 | 2012-09-11 | Intertechnique, S.A. | Oxygen breathing device with redundant signal transmission |
IT1392029B1 (it) | 2008-10-10 | 2012-02-09 | Mares Spa | Sistema di comunicazione subacquea |
US9119925B2 (en) | 2009-12-04 | 2015-09-01 | Covidien Lp | Quick initiation of respiratory support via a ventilator user interface |
US8924878B2 (en) | 2009-12-04 | 2014-12-30 | Covidien Lp | Display and access to settings on a ventilator graphical user interface |
US8335992B2 (en) | 2009-12-04 | 2012-12-18 | Nellcor Puritan Bennett Llc | Visual indication of settings changes on a ventilator graphical user interface |
US8499252B2 (en) | 2009-12-18 | 2013-07-30 | Covidien Lp | Display of respiratory data graphs on a ventilator graphical user interface |
US9262588B2 (en) | 2009-12-18 | 2016-02-16 | Covidien Lp | Display of respiratory data graphs on a ventilator graphical user interface |
US20110197881A1 (en) * | 2010-02-17 | 2011-08-18 | Abulrassoul Abdullah M | Underwater Breathing Apparatus |
GB2478759A (en) | 2010-03-17 | 2011-09-21 | 3M Innovative Properties Co | A powered air purifying respirator |
US8957770B2 (en) * | 2010-03-31 | 2015-02-17 | Shanghai Baolong Automotive Corporation | Automatic networking apparatus and system for vehicles |
JP2013125320A (ja) * | 2011-12-13 | 2013-06-24 | Riken Keiki Co Ltd | 可搬型ガス検知器 |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
US20140088397A1 (en) * | 2012-09-18 | 2014-03-27 | Ki Chon | Fabrication and Use of Epidermal Electrodes |
WO2014075860A2 (en) * | 2012-11-13 | 2014-05-22 | Aqwary Ab | Method and system for monitoring the status of divers |
FI125009B (fi) * | 2013-09-10 | 2015-04-30 | Suunto Oy | Vedenalainen kommunikointijärjestelmä ja kommunikointimenetelmä ja -laitteet |
DE102014104131A1 (de) * | 2014-03-25 | 2015-10-01 | Msa Europe Gmbh | Überwachungsvorrichtung und Überwachungssystem |
FI126491B (en) | 2014-09-09 | 2017-01-13 | Suunto Oy | A system and method for opening a wireless device to communicate with a laptop computer via an inductive connection |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
BR112018016441A2 (pt) * | 2016-02-12 | 2018-12-26 | Detcon Inc | sensor de detecção de gás sem fio |
US10274390B2 (en) * | 2017-01-12 | 2019-04-30 | Johnson Outdoors Inc. | Tank pressure transmitter with integrated breathing gas analyzer |
JP7057716B2 (ja) * | 2018-05-25 | 2022-04-20 | エア・ウォーター防災株式会社 | 警報システム、情報処理装置、情報処理方法、および、情報処理プログラム |
US10358199B1 (en) | 2018-09-19 | 2019-07-23 | Garmin Switzerland Gmbh | Scuba tank air pressure monitor system |
US10611445B1 (en) | 2018-09-19 | 2020-04-07 | Garmin Switzerland Gmbh | Wearable electronic device for detecting diver respiration |
US11672934B2 (en) | 2020-05-12 | 2023-06-13 | Covidien Lp | Remote ventilator adjustment |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3517316A (en) * | 1966-03-22 | 1970-06-23 | Res Instr & Controls Inc | Surveillance equipment and system |
FR2040580A5 (de) * | 1969-04-03 | 1971-01-22 | Inst Francais Du Petrole | |
US3668617A (en) * | 1969-06-09 | 1972-06-06 | Gen Time Corp | Underwater communication system |
US3696384A (en) * | 1971-07-08 | 1972-10-03 | Recognition Devices | Ultrasonic tracking and locating system |
US3764966A (en) * | 1972-03-08 | 1973-10-09 | Us Navy | Underwater earphone |
US4020449A (en) * | 1974-05-22 | 1977-04-26 | Hitachi, Ltd. | Signal transmitting and receiving device |
US4101873A (en) * | 1976-01-26 | 1978-07-18 | Benjamin Ernest Anderson | Device to locate commonly misplaced objects |
FR2454655A1 (fr) * | 1979-04-20 | 1980-11-14 | Marsollier Bruno | Console extensible multifonctions d'assistance au plongeur |
US4305143A (en) * | 1979-08-08 | 1981-12-08 | Simms Larry L | Automatic man overboard sensor and rescue system |
US4636791A (en) * | 1982-07-28 | 1987-01-13 | Motorola, Inc. | Data signalling system |
US4563758A (en) * | 1982-09-29 | 1986-01-07 | Paternostro Charles J | Underwater communicator |
US4549169A (en) * | 1982-12-06 | 1985-10-22 | Kelmar Marine Inc. | Personal ocean security system |
US4583073A (en) * | 1983-01-31 | 1986-04-15 | Hazeltine Corporation | Remote monitoring system transmitter and power supply therefor |
US4658358A (en) * | 1984-06-13 | 1987-04-14 | Battelle Memorial Institute | Underwater computer |
US4577333A (en) * | 1984-09-13 | 1986-03-18 | Gridcomm Inc. | Composite shift keying communication system |
US4634043A (en) * | 1984-09-20 | 1987-01-06 | At&T Technologies, Inc. | Engaging second articles to engaged first articles |
GB8530772D0 (en) * | 1985-12-13 | 1986-01-22 | Gradwell Paul Stephen | Communication system |
DE3625016A1 (de) * | 1986-07-24 | 1988-02-04 | Deutsche Forsch Luft Raumfahrt | Tieftauch-atemgarnitur |
US4949072A (en) * | 1987-03-03 | 1990-08-14 | Ernest Comerford | Dive parameter indicating assembly |
FR2636911B1 (fr) * | 1988-09-23 | 1990-11-02 | Thomson Csf | Systeme assurant la securite d'une personne tombee a la mer |
DE4033292A1 (de) * | 1990-10-19 | 1992-04-23 | Uwatec Ag | Ueberwachungsvorrichtung fuer mobile atemgeraete |
US5191317A (en) * | 1991-09-09 | 1993-03-02 | Undersea Industries, Inc. | Low air warning system for scuba divers |
US5185725A (en) * | 1992-04-03 | 1993-02-09 | Dynamics Technology, Inc. | Diver locator system |
-
1990
- 1990-10-19 DE DE4033292A patent/DE4033292A1/de not_active Withdrawn
-
1991
- 1991-10-18 EP EP91918293A patent/EP0550649B2/de not_active Expired - Lifetime
- 1991-10-18 US US07/861,832 patent/US5392771A/en not_active Expired - Lifetime
- 1991-10-18 DE DE59101589T patent/DE59101589D1/de not_active Expired - Lifetime
- 1991-10-18 ES ES91918293T patent/ES2056662T5/es not_active Expired - Lifetime
- 1991-10-18 WO PCT/EP1991/001982 patent/WO1992006889A1/de active IP Right Grant
- 1991-10-18 JP JP3516867A patent/JPH06504245A/ja active Pending
-
1996
- 1996-09-26 US US08/720,215 patent/US5738092A/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5806514A (en) * | 1993-09-23 | 1998-09-15 | Uwatec Ag | Device for and method of dive monitoring |
DE102009054396B4 (de) * | 2008-11-26 | 2020-08-27 | Suunto Oy | Verfahren zum Messen des Drucks in einer Pressluftflasche, Tauchcomputersystem und Datenübertragungseinrichtung |
Also Published As
Publication number | Publication date |
---|---|
DE59101589D1 (de) | 1994-06-09 |
JPH06504245A (ja) | 1994-05-19 |
ES2056662T3 (es) | 1994-10-01 |
EP0550649B2 (de) | 2000-03-01 |
EP0550649A1 (de) | 1993-07-14 |
DE4033292A1 (de) | 1992-04-23 |
WO1992006889A1 (de) | 1992-04-30 |
ES2056662T5 (es) | 2000-07-16 |
US5392771A (en) | 1995-02-28 |
US5738092A (en) | 1998-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0550649B1 (de) | Überwachungsvorrichtung für mobile atemgeräte | |
EP0720560B1 (de) | Vorrichtung und verfahren zum überwachen eines tauchganges | |
DE19822412B4 (de) | System zur Überwachung von Atemschutzgeräteträgern | |
EP1918191B1 (de) | Verfahren und Einrichtung zum Erkennen der Ertrinkungsgefahr für eine Person im Wasser | |
AT507438B1 (de) | Notrufgerät | |
EP1688899A2 (de) | Verfahren und Vorrichtung zur Überwachung Betreuung benötigender Personen | |
DE102015011085A1 (de) | Vorrichtung und Verfahren zum Schutz vor Badeunfällen, insbesondere zum frühzeitigen Erkennen von Ertrinkenden, und dergleichen | |
EP1227751B1 (de) | Mobiles ergospirometriesystem | |
DE3750697T2 (de) | System und Verfahren zur Ortung einer Person oder eines anderen Körpers. | |
DE69900861T2 (de) | Notruf- oder diagnosegerät | |
WO2006015721A1 (de) | Vorrichtung und verfahren zum auffinden von personen und objekten | |
DE102010031260A1 (de) | Arbeitsschutzsystem und Arbeitsschutzverfahren | |
EP0984414B1 (de) | Verfahren und Vorrichtung zur Abgabe eines Notrufs | |
WO2015126348A1 (de) | Ortungssystem für gesundheits- und sicherheitszwecke | |
WO2005046466A1 (de) | Sensoranordnung zur ermittlung des vitalzustands einer medizinisch zu überwachenden person | |
DE19628356C2 (de) | Verfahren zur Normalisierung des Atemmusters von mit Atmungsgeräten ausgestatteten Personen, insbesondere von Sport- und Berufstauchern, sowie Einrichtung zur Durchführung des Verfahrens | |
DE212011100096U1 (de) | Eingangskontrollverwaltungssystem zum Anzeigen eines Brandbekämpfungsstatus auf einer elektronischen Kontrolltafel und einem digitalen Druckmessgerät | |
EP0892505A2 (de) | Tragbares, satellitengestütztes Kommunikationsgerät | |
EP2907551B1 (de) | Suchgerät und Verfahren zum Betreiben eines Suchgeräts | |
EP2630934A1 (de) | Brustimplantat mit elektronischer Überwachung | |
EP0050628A1 (de) | Sicherheitsvorrichtung, insbesondere für taucher | |
EP2907552A1 (de) | Suchgerät und Verfahren zum Betreiben eines Suchgeräts | |
WO2004091725A1 (de) | Verfahren zur überwachung von zumindest zwei personen mit externer atemluftversorgung | |
DE102007047143A1 (de) | Vorrichtung zur Analyse eines Tauchgangs | |
EP0927980A2 (de) | Tragbares Sende/Empfangsgerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930414 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UWATEC AG |
|
17Q | First examination report despatched |
Effective date: 19930823 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 105246 Country of ref document: AT Date of ref document: 19940515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59101589 Country of ref document: DE Date of ref document: 19940609 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940815 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2056662 Country of ref document: ES Kind code of ref document: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: BEUCHAT DEUTSCHLAND GMBH Effective date: 19950203 Opponent name: COCHRAN CONSULTING INC. Effective date: 19950203 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: BEUCHAT DEUTSCHLAND GMBH * 950203 COCHRAN CONSULTI Effective date: 19950203 |
|
R26 | Opposition filed (corrected) |
Opponent name: BEUCHAT DEUTSCHLAND GMBH * 950203 COCHRAN CONSULTI Effective date: 19950203 |
|
PLAC | Information related to filing of opposition modified |
Free format text: ORIGINAL CODE: 0008299OPPO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20000301 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT CH DE ES FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
ITF | It: translation for a ep patent filed | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Kind code of ref document: T5 Effective date: 20000601 |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: UWATEC AG Free format text: UWATEC AG#ENGENBUEHL 130#5705 HALLWIL (CH) -TRANSFER TO- UWATEC AG#RIEDSTRASSE 368#5705 HALLWIL (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20101104 Year of fee payment: 20 Ref country code: AT Payment date: 20101014 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20101022 Year of fee payment: 20 Ref country code: CH Payment date: 20101025 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20101021 Year of fee payment: 20 Ref country code: IT Payment date: 20101026 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20101025 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59101589 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59101589 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20111017 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 105246 Country of ref document: AT Kind code of ref document: T Effective date: 20111018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20111017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20111019 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20130808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20111019 |