EP0546947A1 - Echangeur de chaleur indirect du type à plaques - Google Patents

Echangeur de chaleur indirect du type à plaques Download PDF

Info

Publication number
EP0546947A1
EP0546947A1 EP92403363A EP92403363A EP0546947A1 EP 0546947 A1 EP0546947 A1 EP 0546947A1 EP 92403363 A EP92403363 A EP 92403363A EP 92403363 A EP92403363 A EP 92403363A EP 0546947 A1 EP0546947 A1 EP 0546947A1
Authority
EP
European Patent Office
Prior art keywords
passages
heat exchanger
liquid
annex
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92403363A
Other languages
German (de)
English (en)
Other versions
EP0546947B1 (fr
Inventor
Pascal Arriulou
François Venet
Alain Grelaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9419929&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0546947(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0546947A1 publication Critical patent/EP0546947A1/fr
Application granted granted Critical
Publication of EP0546947B1 publication Critical patent/EP0546947B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/007Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger combined with mass exchange, i.e. in a so-called dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Definitions

  • the present invention relates to indirect plate heat exchangers, that is to say of the type comprising a series of parallel plates delimiting between them passages of generally flat shape containing spacer waves, a first set of these passages, constituting heat exchange passages, comprising means for entering / leaving fluids intended to exchange heat with one another.
  • heat exchangers are particularly rational to build. Indeed, it suffices to stack all their elements (plates, waves serving as spacers and fins, bars for closing the passages) and to connect them to one another in a single operation by brazing in an oven.
  • the invention aims to reduce the boiler work associated with the implementation of plate heat exchangers.
  • the subject of the invention is an indirect heat exchanger of the aforementioned type, characterized in that it comprises, over at least part of its length and width, additional passages, in reduced or almost zero heat exchange relationship with the heat exchange passages and arranged to fulfill at least one additional function of the heat exchanger, in particular a liquid storage and / or liquid recirculation function and / or liquid / vapor separation.
  • the heat exchanger shown in Figures 1 to 4 is a liquid vaporizer, of the thermosyphon type. It will be described in its application as the main evaporator-condenser of a double air distillation column, bringing the nitrogen gas at the top of the medium pressure column into heat exchange relationship, at about 6 bar absolute, and liquid oxygen from the low pressure column tank, at around 1 bar absolute, in order to vaporize the oxygen by condensing the nitrogen.
  • the exchanger 1 comprises a parallelepipedic body 2 of aluminum, assembled in a single operation by brazing in the furnace, three semi-cylindrical boxes 3 to 5 for inlet / outlet of fluids, and an upper dome 6, the elements 3 to 6 being attached to watertight seal on body 2 by welding.
  • the body 2 consists of a large number of parallel vertical plates 7 between which are delimited passages 8 of generally flat shape containing spacer waves 9 with vertical generatrices. These passages are delimited by closing bars 10 indicated by strong lines in FIGS. 2 to 4.
  • the vertical dimension of the body 2 will be called “length”, “thickness” its horizontal dimension perpendicular to the plates 7, and “width” its horizontal dimension parallel to these plates.
  • the body 2 is made up of two juxtaposed parts: on the left in FIG. 1, a part 2A for heat exchange, and on the right an annex part 2B ensuring the additional functions of liquid recirculation, liquid / vapor separation, storage liquid and uniform liquid supply from part 2A.
  • the passages 8B of part 2B, shown in FIG. 4 have the same constitution as the oxygen vaporization passages 8A-2, their lower windows 17B also communicating with the box 5. However, their vertical waves 9B are less dense that the waves 9A-1 of the passages 8A-1 and that the waves 9A-2 of the passages 8A-2, by virtue of a greater wave pitch, and / or their thickness is greater than that of the passages 8A-1 than that of the passages 8A-2.
  • box 5 extends over the entire thickness of the body of the exchanger, that is to say covers its two parts 2A and 2B, while the boxes 3 and 4 only extend over that of part 2A.
  • the dome 6 is connected all along the four sides of the upper base of the parallelepiped formed by the body 2. It is provided with a pipe 19 for supplying liquid oxygen and a pipe 20 for discharging gaseous oxygen which leaves from its summit.
  • the nitrogen gas is condensed under approximately 6 bar absolute down into passages 8A-1, and passages 8A-2 and 8B are filled with liquid oxygen under approximately 1 bar absolute, up to a level situated in dome 6, as seen in Figure 1.
  • the passages 8B therefore ensure the recirculation of the excess liquid oxygen, the separation of the two phases of the oxygen, and a storage of liquid oxygen making it possible to feed smoothly and in a manner uniform liquid oxygen vaporization passages 8A-2.
  • passages 8B In most passages 8B, the downward circulation of liquid oxygen is not hampered by any vaporization phenomenon, since these passages are not in heat exchange relationship with the nitrogen passages. The situation is slightly different for passage 8B adjacent to part 2A of body 2, but the heat exchange is reduced there considerably on the one hand by the proximity of passage 8A-2, on the other hand by the greater thickness of the passages 8B and / or by the lower density of the wave 9B, leading to a reduced fin effect.
  • Figure 5 differs from that which has just been described only in that the part 2B of the body 2 is divided into two sub-parts 2B-1 and 2B-2 surrounding the heat exchange part 2A. This shows that the auxiliary passages 8B can be distributed in different ways. However, the arrangement of FIG. 1 is currently preferred, where the heating of the passages 8B is minimal.
  • the embodiment of the heat exchanger shown in FIGS. 6 to 8 differs essentially from the previous one in that the parts 2A and 2B of the body 2 are no longer distributed according to the thickness of the exchanger, but according to its width, that is to say that part of each passage 8 is used for heat exchange and the rest for additional functions.
  • one passage in two consists, over most of its width (FIG. 7), of a nitrogen condensation passage 8A-1 having the constitution described above with regard to FIG. 2, and, on the rest of its length, of an annex passage 8B-1 open at the top and bottom and containing a simple vertical wave 9B, the passages 8A-1 and 8B-1 being sealed over the entire length of the body 2 by a vertical bar 10.
  • the other passages consist ( Figure 8) of an oxygen vaporization passage 8A-2 open at its two ends, of the same width as the passages 8A-1 and located opposite these, this passage 8A-2 containing a simple vertical wave, and an annex passage 8B-2 similar to passages 8B-1, with the interposition of a vertical bar 10 between passages 8A-2 and 8B-2.
  • the box 5 of FIG. 1, intended for the supply of liquid oxygen to the passages 8A-2, is eliminated and replaced by a lower dome 21 connected to a watertight seal at the four lower sides of the body 2.
  • the passages 8A-2 are supplied with liquid oxygen directly from below.
  • each passage 8B-1 has at its base an outlet window 17B-1 and an oblique wave 18B as in Figures 1 to 4
  • each of the passages 8B-2 has at its base an inlet window 17B-2.
  • the box 5 of Figures 2 to 4 covers all the windows 17B-1 and 17B-2.
  • the lower part of passages 8B-2 comprises a wave 23 with horizontal generators, for example, as shown, of the "serrated" type, that is to say comprising at intervals regular punctures decaved vertically by a quarter of a wave.
  • the vertical bars 10 may only be provided between the passages 8A-1 and 8B-1, no partition separating the passages 8A-2 and 8B-2, which comprise only one non-perforated vertical common wave and, in their lower part, a horizontal wave 24 of triangular shape which extends over the entire width of the exchanger.
  • the liquid oxygen in one passage out of two, the liquid oxygen follows a downward path in the zone 8B-2, horizontal along the wave 24 then ascending in the zone 8A-2.
  • the liquid oxygen is in an indirect heat exchange relationship with the nitrogen which condenses in the passages 8A-1, and the passages 8B-1 are dead zones, which can be opened upwards. and therefore filled with liquid oxygen, as shown, or alternatively, closed at both ends.
  • Figure 15 shows schematically an application of a plate heat exchanger serving as a dephlegmator, for example to produce nitrogen.
  • the air introduced at approximately 6 bar absolute, is partially condensed upward, as illustrated by the arrows 25, which produces at the bottom of these passages "rich liquid” (air enriched in oxygen) LR and, at the top of the same passages, nitrogen gas NG.
  • the rich liquid is expanded to 1 bar absolute in an expansion valve 26, which produces a flash.
  • the upper part of the aforementioned passages is used to separate the two phases, which are then recombined in the remaining passages, where the low-pressure two-phase refrigerant rich liquid circulates from top to bottom and is then discharged in the form of a vaporized rich liquid. LRV.
  • the remaining passages 60 have, from top to bottom, a vaporized rich liquid entry zone communicating with a side entry window. 52 and containing an oblique wave 53, a zone containing a vertical wave 54, a zone without wave, of low height, into which the holes emerge 43, a heat exchange zone with vertical wave 55, and a liquid outlet zone rich vaporized containing an oblique wave 56 which leads to an outlet window 57.
  • the box 51 also communicates with the windows 52, and an outlet box 58 communicates with the windows 57.
  • phase separation zone 42 it is possible to use the phase separation zone 42 to return the separated vapor phase, via the box 51 and the passages containing the wave 54, to a different level of the exchanger, for example at its end. lower.
  • the vapor phase is released laterally at said level, taken up by an outlet box and sent by the latter in other passages of the exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Les plaques (7) de cet échangeur de chaleur délimitent un premier ensemble de passages (8A) servant à l'échange thermique, et un second ensemble de passages (8B) qui se trouvent, sur au moins une partie de leur étendue, en relation d'échange thermique réduite ou à peu près nulle avec les passages (8A) dudit premier ensemble et sont agencés pour remplir une fonction annexe de l'échangeur de chaleur, notamment une fonction de stockage de liquide et/ou de recirculation de liquide et/ou de séparation liquide/vapeur. Application aux échangeurs de chaleur cryogéniques. <IMAGE>

Description

  • La présente invention est relative aux échangeurs de chaleur indirects à plaques, c'est-à-dire du type comprenant une série de plaques parallèles délimitant entre elles des passages de forme générale plate contenant des ondes-entretoises, un premier ensemble de ces passages, constituant des passages d'échange thermique, comportant des moyens d'entrée/sortie de fluides destinés à échanger entre eux de la chaleur.
  • Ces échangeurs de chaleur sont particulièrement rationnels à construire. En effet, il suffit d'empiler tous leurs éléments (plaques, ondes servant d'entretoises et d'ailettes, barrettes de fermeture des passages) et de les relier les uns aux autres en une seule opération par brasage dans un four.
  • Cependant, cet avantage est en pratique partiellement perdu par la nécessité de raccorder à l'échangeur de nombreux accessoires, tels que des tuyauteries ou des séparateurs de phases, assurant les fonctions auxiliaires de l'échangeur : recirculation du liquide, stabilisation de l'alimentation en liquide, séparation des phases des fluides diphasiques, etc. De plus, dans de nombreux cas, il est nécessaire de positionner l'échangeur dans une enceinte de rétention de liquide telle que la cuve d'une colonne de distillation. Toutes ces opérations constituent des travaux de chaudronnerie, moins performants que le brasage au four.
  • L'invention a pour but de réduire le travail de chaudronnerie associé à la mise en oeuvre des échangeurs de chaleur à plaques.
  • A cet effet, l'invention a pour objet un échangeur de chaleur indirect du type précité, caractérisé en ce qu'il comprend, sur au moins une partie de sa longueur et de sa largeur, des passages annexes, en relation d'échange thermique réduite ou à peu près nulle avec les passages d'échange thermique et agencés pour remplir au moins une fonction annexe de l'échangeur de chaleur, notamment une fonction de stockage de liquide et/ou de recirculation de liquide et/ou de séparation liquide/vapeur.
  • Suivant d'autres caractéristiques :
    • les passages annexes sont plus épais que les passages d'échange thermique;
    • les passages annexes contiennent des ondes moins denses que celles des passages d'échange thermique;
    • tous les passages annexes sont adjacents les uns aux autres;
    • les passages annexes sont distincts des passages d'échange thermique et, de même que ces derniers, s'étendent chacun sur toute la longueur et sur toute la largeur de l'échangeur;
    • au moins certains passages de l'échangeur constituent sur une partie de la largeur de celui-ci un passage d'échange thermique et sur le reste de sa largeur un passage annexe;
    • au moins certains passages de l'échangeur constituent sur une partie de la longueur de celui-ci un passage d'échange thermique et sur le reste de sa longueur un passage annexe;
    • les passages annexes comprenant des passages de séparation liquide/vapeur, ces passages de séparation contiennent un garnissage de séparation liquide/vapeur disposé en regard d'une fenêtre d'entrée de fluide diphasique;
    • le garnissage est constitué par une onde "serrated" à génératrices obliques;
    • les passages de séparation liquide/vapeur comportent à leur extrémité supérieure une fenêtre de sortie de vapeur coiffée par une boîte de sortie, cette dernière communiquant avec des passages de renvoi de vapeur à un niveau différent de l'échangeur.
  • Des exemples de réalisation de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :
    • la Figure 1 représente en perspective, avec arrachements, un échangeur de chaleur conforme à l'invention;
    • les Figures 2 à 4 représentent respectivement, en coupe verticale, les trois types de passages de cet échangeur;
    • la Figure 5 illustre schématiquement une variante du même échangeur;
    • la Figure 6 est une vue analogue à la Figure 1 d'un deuxième mode de réalisation de l'échangeur de chaleur suivant l'invention;
    • les Figures 7 et 8 représentent respectivement, en coupe verticale, les deux types de passages de cet échangeur;
    • les Figures 9 et 10 sont des vues analogues respectivement aux Figures 7 et 8 d'une variante de l'échangeur de chaleur de la Figure 6;
    • les Figures 11 et 12 sont des vues analogues respectivement aux Figures 7 et 8 d'une autre variante de l'échangeur de chaleur de la Figure 6;
    • les Figures 13 et 14 sont des vues analogues respectivement aux Figures 7 et 8 d'encore une autre variante de l'échangeur de chaleur de la Figure 6;
    • la Figure 15 illustre schématiquement une application d'un troisième mode de réalisation de l'échangeur de chaleur suivant l'invention;
    • la Figure 16 est une vue analogue à la Figure 1 de ce troisième mode de réalisation; et
    • les Figures 17 et 18 représentent respectivement, en coupe verticale, les deux types de passages de l'échangeur de la Figure 16.
  • L'échangeur de chaleur représenté aux Figures 1 à 4 est un vaporiseur de liquide, du type à thermosiphon. On le décrira dans son application en tant que vaporiseur-condenseur principal d'une double colonne de distillation d'air, mettant en relation d'échange thermique l'azote gazeux de tête de la colonne moyenne pression, sous environ 6 bars absolus, et l'oxygène liquide de cuve de la colonne basse pression, sous environ 1 bar absolu, afin de vaporiser l'oxygène en condensant l'azote.
  • L'échangeur 1 comprend un corps parallélépipédique 2 en aluminium, assemblé en une seule opération par brasage au four, trois boîtes semi-cylindriques 3 à 5 d'entrée/sortie de fluides, et un dôme supérieur 6, les éléments 3 à 6 étant fixés à joint étanche sur le corps 2 par soudage.
  • Le corps 2 est constitué d'un grand nombre de plaques verticales parallèles 7 entre lesquelles sont délimités des passages 8 de forme générale plate contenant des ondes-entretoises 9 à génératrices verticales. Ces passages sont délimités par des barrettes de fermeture 10 indiquées par des traits forts sur les Figures 2 à 4. Dans ce qui suit, on appellera "longueur" la dimension verticale du corps 2, "épaisseur" sa dimension horizontale perpendiculaire aux plaques 7, et "largeur" sa dimension horizontale parallèle à ces plaques.
  • Le corps 2 est constitué de deux parties juxtaposées : à gauche sur la Figure 1, une partie 2A d'échange de chaleur, et à droite une partie annexe 2B assurant les fonctions annexes de recirculation de liquide, de séparation liquide/vapeur, de stockage de liquide et d'alimentation uniforme en liquide de la partie 2A.
  • Les passages 8A de la partie 2A sont alternativement de deux types différents, représentés respectivement sur les Figures 2 et 3 :
    • (1) des passages 8A-1 de condensation d'azote, fermés sur toute leur largeur en haut et en bas, qui comportent latéralement à leur extrémité supérieure une fenêtre 11 d'entrée d'azote gazeux et, en regard de celle-ci, une onde oblique 12 de répartition de cet azote gazeux sur toute la largeur du passage. La boîte 3 précitée recouvre toutes les fenêtres 11 et est alimentée en azote gazeux par une conduite d'alimentation 13. Les passages 8A-1 comportent latéralement, du même côté et à leur extrémité inférieure, une fenêtre 14 de sortie d'azote liquide et, en regard de celle-ci, une onde oblique 15 de collection de cet azote liquide débouchant sur la fenêtre 14. La boîte 4 précitée recouvre toutes les fenêtres 14 pour collecter l'azote liquide sortant de celles-ci et l'évacuer via une conduite 16.
    • (2) Des passages 8A-2 de vaporisation d'oxygène, fermés sur toute leur largeur en bas mais ouverts sur toute leur largeur en haut, qui comportent latéralement à leur extrémité inférieure une fenêtre 17A d'entrée d'oxygène liquide, et en regard de celle-ci, une onde oblique 18A de répartition de cet oxygène liquide sur toute la largeur du passage. La boîte 5 précitée recouvre toutes les fenêtres 17A.
  • Les passages 8B de la partie 2B, représentés sur la Figure 4, ont la même constitution que les passages de vaporisation d'oxygène 8A-2, leurs fenêtres inférieures 17B communiquant également avec la boîte 5. Toutefois, leurs ondes verticales 9B sont moins denses que les ondes 9A-1 des passages 8A-1 et que les ondes 9A-2 des passages 8A-2, grâce à un pas d'onde supérieur, et/ou leur épaisseur est supérieure à celle des passages 8A-1 à celle des passages 8A-2.
  • Il résulte de la description ci-dessus que la boîte 5 s'étend sur toute l'épaisseur du corps de l'échangeur, c'est-à-dire recouvre ses deux parties 2A et 2B, tandis que les boîtes 3 et 4 ne s'étendent que sur celle de la partie 2A.
  • Le dôme 6 se raccorde tout le long des quatre côtés de la base supérieure du parallélépipède formé par le corps 2. Il est muni d'une conduite 19 d'alimentation en oxygène liquide et d'une conduite 20 d'évacuation d'oxygène gazeux qui part de son sommet.
  • En fonctionnement, l'azote gazeux est condensé sous environ 6 bars absolus en descendant dans les passages 8A-1, et les passages 8A-2 et 8B sont emplis d'oxygène liquide sous environ 1 bar absolu, jusqu'à un niveau situé dans le dôme 6, comme on le voit sur la Figure 1.
  • La chaleur de condensation de l'azote met en ébullition l'oxygène liquide contenu dans les passages 8A-1, ce qui provoque une circulation ascendante de l'oxygène liquide dans ces passages par effet de thermosiphon. Des bulles d'oxygène gazeux se forment progressivement de bas en haut des mêmes passages, de sorte que c'est un mélange diphasique qui déborde à l'extrémité supérieure de ces passages.
  • L'oxygène liquide ne pouvant descendre ni dans les passages 8A-2, où règne une circulation ascendante, ni dans les passages 8A-1, fermés en haut, descend dans les passages 8B et, à l'extrémité inférieure de ceux-ci, pénètre dans la boîte 5, via leurs fenêtres latérales 17B (Figure 4). Cet oxygène liquide coule ensuite le long de la boîte 5 jusqu'aux fenêtres 17A d'entrée des passages 8A-2 (Figure 3), de sorte que ceux-ci sont alimentés en oxygène liquide.
  • Les passages 8B assurent donc la recirculation de l'oxygène liquide en excès, la séparation des deux phases de l'oxygène, et un stockage d'oxygène liquide permettant d'alimenter sans à-coup et de manière uniforme en oxygène liquide les passages de vaporisation 8A-2.
  • Dans la plupart des passages 8B, la circulation descendante de l'oxygène liquide n'est entravée par aucun phénomène de vaporisation, puisque ces passages ne sont pas en relation d'échange thermique avec les passages d'azote. La situation est un peu différente pour le passage 8B adjacent à la partie 2A du corps 2, mais l'échange thermique y est réduit de façon importante d'une part par la proximité d'un passage 8A-2, d'autre part par la plus grande épaisseur des passages 8B et/ou par la moindre densité de l'onde 9B, conduisant à un effet d'ailette réduit.
  • La variante de la Figure 5 ne diffère de celle qui vient d'être décrite que par le fait que la partie 2B du corps 2 est divisée en deux sous-parties 2B-1 et 2B-2 encadrant la partie d'échange thermique 2A. Ceci montre que les passages auxiliaires 8B peuvent être répartis de différentes manières. Toutefois, on préfère actuellement l'agencement de la Figure 1, où le chauffage des passages 8B est minimal.
  • Le mode de réalisation de l'échangeur de chaleur représenté aux Figures 6 à 8 diffère essentiellement du précédent par le fait que les parties 2A et 2B du corps 2 sont réparties non plus suivant l'épaisseur de l'échangeur, mais suivant sa largeur, c'est-à-dire qu'une partie de chaque passage 8 sert à l'échange thermique et le reste aux fonctions annexes.
  • Ainsi, un passage sur deux est constitué, sur la majeure partie de sa largeur (Figure 7), d'un passage de condensation d'azote 8A-1 ayant la constitution décrite plus haut en regard de la Figure 2, et, sur le reste de sa longueur, d'un passage annexe 8B-1 ouvert en haut et en bas et contenant une simple onde verticale 9B, les passages 8A-1 et 8B-1 étant séparés de façon étanche sur toute la longueur du corps 2 par une barrette verticale 10.
  • Les autres passages sont constitués (Figure 8) d'un passage de vaporisation d'oxygène 8A-2 ouvert à ses deux extrémités, de même largeur que les passages 8A-1 et situé en regard de ceux-ci, ce passage 8A-2 contenant une simple onde verticale, et d'un passage annexe 8B-2 analogue aux passages 8B-1, avec interposition d'une barrette verticale 10 entre les passages 8A-2 et 8B-2.
  • La boîte 5 de la Figure 1, destinée à l'alimentation en oxygène liquide des passages 8A-2, est supprimée et remplacée par un dôme inférieur 21 relié à joint étanche aux quatre côtés inférieurs du corps 2. Ainsi, les passages 8A-2 sont alimentés en oxygène liquide directement par le bas.
  • En variante (Figures 9 et 10), les passages 8B-1 sont fermés en bas, et le dôme inférieur 21 est remplacé par des perforations 22 prévues dans la partie inférieure des plaques 7, dans les passages 8B-1. L'oxygène liquide passe alors dans les passages de vaporisation 8A-2 via une fenêtre latérale inférieure 17A prévue à la base d'une barrette 10 sur deux, puis est réparti par une onde oblique 18A sur la longueur des passages 8A-2, de la même manière qu'à la Figure 3.
  • Cette variante peut être modifiée de la manière illustrée aux Figures 11 et 12 : les trous 22 sont supprimés; chaque passage 8B-1 comporte à sa base une fenêtre de sortie 17B-1 et une onde oblique 18B comme aux Figures 1 à 4, et chacun des passages 8B-2 comporte à sa base une fenêtre d'entrée 17B-2. On retrouve la boîte 5 des Figures 2 à 4, qui coiffe toutes les fenêtres 17B-1 et 17B-2. De plus, la partie inférieure des passages 8B-2 comporte une onde 23 à génératrices horizontales, par exemple, comme représenté, du type "serrated", c'est-à-dire comportant à intervalles réguliers des crevés décavés verticalement d'un quart de pas d'onde.
  • En variante encore (Figures 13 et 14), les barrettes verticales 10 peuvent n'être prévues qu'entre les passages 8A-1 et 8B-1, aucune cloison ne séparant les passages 8A-2 et 8B-2, lesquels comportent seulement une onde commune verticale non perforée et, dans leur partie inférieure, une onde horizontale 24 de forme triangulaire qui s'étend sur toute la largeur de l'échangeur.
  • Dans une telle variante, dans un passage sur deux, l'oxygène liquide suit un trajet descendant dans la zone 8B-2, horizontal suivant l'onde 24 puis ascendant dans la zone 8A-2. Dans cette dernière zone, l'oxygène liquide se trouve en relation d'échange thermique indirect avec l'azote qui se condense dans les passages 8A-1, et les passages 8B-1 sont des zones mortes, qui peuvent être ouvertes vers le haut et par conséquent emplies d'oxygène liquide, comme représenté, ou bien, en variante, fermées à leurs deux extrémités.
  • La Figure 15 représente schématiquement une application d'un échangeur à plaques servant de déphlegmateur, par exemple pour produire de l'azote. Dans un passage sur deux, l'air, introduit sous environ 6 bars absolus, est partiellement condensé en montant, comme illustré par les flèches 25, ce qui produit au bas de ces passages du "liquide riche" (air enrichi en oxygène) LR et, en haut des mêmes passages, de l'azote gazeux NG.
  • Pour assurer la condensation de l'air, le liquide riche est détendu vers 1 bar absolu dans une vanne de détente 26, ce qui produit un flash. La partie supérieure des passages précités est utilisée pour séparer les deux phases, lesquelles sont ensuite recombinées dans les passages restants, où le liquide riche basse pression diphasique frigorigène circule de haut en bas puis est évacué sous forme de liquide riche vaporisé LRV.
  • La constitution de l'échangeur de chaleur est représentée sur les Figures 16 à 18.
  • Un passage sur deux (Figure 17) est subdivisé en deux parties par une barrette horizontale 27 :
    • (1) Une partie principale d'échange thermique 28, s'étendant à partir du bas de l'échangeur, qui comporte, de bas en haut, une zone 29 de distribution d'air et de collection de liquide riche, une zone de déphlegmation 30 et une zone 31 de collection et d'évacuation d'azote gazeux. La zone 29 contient une onde oblique 32 perforée débouchant sur une fenêtre latérale 33 d'entrée d'air et, sous cette onde, une onde verticale 34 qui débouche sur une fenêtre inférieure 35 de sortie de liquide riche. La zone 30 contient une onde verticale 36, et la zone 31 contient une onde oblique 37 débouchant sur une fenêtre latérale 38 d'évacuation d'azote. Des boîtes 39 d'entrée d'air, 40 de sortie de liquide riche et 41 de sortie d'azote communiquent respectivement avec les fenêtres 33, 35 et 38.
    • (2) Une partie annexe supérieure 42 formant séparateur de phases. Cette partie contient, de bas en haut, une zone de faible hauteur, sans onde, où chaque plaque verticale présente une rangée horizontale de trous 43, une première zone contenant une onde verticale 44, une zone contenant une onde "serrated" 45 à génératrices obliques, communiquant avec une fenêtre latérale d'entrée 46, une seconde zone contenant une onde verticale 47, et une zone contenant une onde oblique 48 débouchant sur une fenêtre latérale de sortie 49. Des boîtes 50 d'entrée de liquide riche diphasique et 51 de sortie de liquide riche vaporisé recouvrent les fenêtres 46 et 49 respectivement.
  • Les passages restants 60 (Figure 18) comportent, de haut en bas, une zone d'entrée de liquide riche vaporisé communiquant avec une fenêtre latérale d'entrée 52 et contenant une onde oblique 53, une zone contenant une onde verticale 54, une zone sans onde, de faible hauteur, dans laquelle débouchent les trous 43, une zone d'échange thermique à onde verticale 55, et une zone de sortie de liquide riche vaporisé contenant une onde oblique 56 qui débouche sur une fenêtre de sortie 57. La boîte 51 communique également avec les fenêtres 52, et une boîte de sortie 58 communique avec les fenêtres 57.
  • Lorsque le liquide riche détendu pénètre sous forme diphasique dans la boîte 50 puis dans les zones 42 de la Figure 17, il y rencontre une forêt de petits obstacles créés par les crevés de l'onde "serrated" 46. Ceci provoque la séparation de ses deux phases. La phase liquide se rassemble sur la barrette 27 et, en traversant les trous 43, pénètre, sous la forme d'autant de jets, dans les passages 60 adjacents de la Figure 18. En même temps, la phase vapeur est renvoyée par la boîte 51 dans les fenêtres 52 de ces passages adjacents, de sorte que cette vapeur circule vers le bas le long des ondes 54 et se recombine avec le liquide au niveau des trous 43, pour former un fluide diphasique frigorigène qui se vaporise en descendant le long des ondes 55.
  • Dans une variante non représentée, on peut utiliser la zone de séparation de phases 42 pour renvoyer la phase vapeur séparée, via la boîte 51 et les passages contenant l'onde 54, à un niveau différent de l'échangeur, par exemple à son extrémité inférieure. Dans ce cas, la phase vapeur est sortie latéralement audit niveau, reprise par une boîte de sortie et envoyée par celle-ci dans d'autres passages de l'échangeur.

Claims (10)

1 - Echangeur de chaleur indirect, du type comprenant une série de plaques parallèles (7) délimitant entre elles des passages (8A, 8B; 28, 42, 60) de forme générale plate contenant des ondes-entretoises (9; 32, 34, 36, 37, 44, 47, 48, 53 à 56), un premier ensemble (8A; 28, 60) de ces passages, constituant des passages d'échange thermique, comportant des moyens (3 à 5; 39 à 41, 51) d'entrée/sortie de fluides destinés à échanger entre eux de la chaleur, caractérisé en ce qu'il comprend, sur au moins une partie de sa longueur et de sa largeur, des passages annexes (8B; 42), en relation d'échange thermique réduite ou à peu près nulle avec les passages d'échange thermique (8A; 28, 60) et agencés pour remplir au moins une fonction annexe de l'échangeur de chaleur, notamment une fonction de stockage de liquide et/ou de recirculation de liquide et/ou de séparation liquide/vapeur.
2 - Echangeur de chaleur suivant la revendication 1, caractérisé en ce que les passages annexes (8B; 42) sont plus épais que les passages d'échange thermique (8A; 28, 60).
3 - Echangeur de chaleur suivant la revendication 1 ou 2, caractérisé en ce que les passages annexes (8B; 42) contiennent des ondes (9) moins denses que celles des passages d'échange thermique (8A; 28, 60).
4 - Echangeur de chaleur suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que tous les passages annexes (8B) sont adjacents les uns aux autres.
5 - Echangeur de chaleur suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que les passages annexes (8B) sont distincts des passages d'échange thermique (8A) et, de même que ces derniers, s'étendent chacun sur toute la longueur et sur toute la largeur de l'échangeur.
6 - Echangeur de chaleur suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'au moins certains passages de l'échangeur constituent sur une partie de la largeur de celui-ci un passage d'échange thermique (8A) et sur le reste de sa largeur un passage annexe (8B).
7 - Echangeur de chaleur suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'au moins certains passages de l'échangeur constituent sur une partie de la longueur de celui-ci un passage d'échange thermique (8A) et sur le reste de sa longueur un passage annexe (8B).
8 - Echangeur de chaleur suivant l'une quelconque des revendications 1 à 7, dans lequel les passages annexes comprennent des passages de séparation liquide/vapeur (42), caractérisé en ce que ces passages de séparation contiennent un garnissage (45) de séparation liquide/vapeur disposé en regard d'une fenêtre (46) d'entrée de fluide diphasique.
9 - Echangeur de chaleur suivant la revendication 8, caractérisé en ce que le garnissage (45) est constitué par une onde "serrated" à génératrices obliques.
10 - Echangeur de chaleur suivant la revendication 8 ou 9, caractérisé en ce que les passages de séparation liquide/vapeur (42) comportent à leur extrémité supérieure une fenêtre (49) de sortie de vapeur coiffée par une boîte de sortie (51), cette dernière communiquant avec des passages de renvoi de vapeur à un niveau différent de l'échangeur.
EP92403363A 1991-12-11 1992-12-11 Echangeur de chaleur indirect du type à plaques Revoked EP0546947B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9115381 1991-12-11
FR9115381A FR2685071B1 (fr) 1991-12-11 1991-12-11 Echangeur de chaleur indirect du type a plaques.

Publications (2)

Publication Number Publication Date
EP0546947A1 true EP0546947A1 (fr) 1993-06-16
EP0546947B1 EP0546947B1 (fr) 1996-04-17

Family

ID=9419929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92403363A Revoked EP0546947B1 (fr) 1991-12-11 1992-12-11 Echangeur de chaleur indirect du type à plaques

Country Status (7)

Country Link
US (1) US5333683A (fr)
EP (1) EP0546947B1 (fr)
JP (1) JPH05280881A (fr)
CN (1) CN1041126C (fr)
CA (1) CA2084920A1 (fr)
DE (1) DE69209994T2 (fr)
FR (1) FR2685071B1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694729A1 (fr) * 1994-07-28 1996-01-31 Daimler-Benz Aktiengesellschaft Module de vaporisation
WO1998036212A1 (fr) * 1997-02-14 1998-08-20 Aga Aktiebolag Procede et appareil utilisant un gaz condense pour refroidir un produit
FR2786858A1 (fr) * 1998-12-07 2000-06-09 Air Liquide Echangeur de chaleur
EP1179724A1 (fr) * 2000-08-08 2002-02-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur thermique à blocs échangeurs multiples à ligne d'alimentation en fluide à distribution uniforme, et vaporiseur-condenseur comportant un tel échangeur
US7093649B2 (en) 2004-02-10 2006-08-22 Peter Dawson Flat heat exchanger plate and bulk material heat exchanger using the same
DE10347880B4 (de) * 2003-10-10 2007-10-31 Gea Wtt Gmbh Plattenwärmetauscher zum Trocknen eines gasförmigen Mediums
CN104482787A (zh) * 2014-12-17 2015-04-01 苏州协宏泰节能科技有限公司 一种螺旋板式换热器
EP3159648A1 (fr) * 2015-10-20 2017-04-26 Linde Aktiengesellschaft Évaporateur-condensateur-échangeur thermique à plaques et procédé cryogénique de séparation d'air
WO2020239767A1 (fr) * 2019-05-29 2020-12-03 L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude Échangeur-réacteur avec zones de distribution perfectionnées
FR3096767A1 (fr) * 2019-05-31 2020-12-04 Safran Échangeur thermique a déflection

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9405161D0 (en) * 1994-03-16 1994-04-27 Boc Group Plc Method and apparatus for reboiling a liquified gas mixture
FR2718836B1 (fr) * 1994-04-15 1996-05-24 Maurice Grenier Echangeur de chaleur perfectionné à plaques brasées.
US5438836A (en) * 1994-08-05 1995-08-08 Praxair Technology, Inc. Downflow plate and fin heat exchanger for cryogenic rectification
FR2728670B1 (fr) * 1994-12-23 1997-03-21 Air Liquide Chambre d'entree/sortie de fluide, et appareil a circulation de fluide correspondant
IL114613A (en) * 1995-07-16 1999-09-22 Tat Ind Ltd Parallel flow condenser heat exchanger
US5755279A (en) * 1996-03-29 1998-05-26 The Boc Group, Inc. Heat exchanger
JP3100371B1 (ja) * 1999-04-28 2000-10-16 春男 上原 蒸発器
FR2798599B1 (fr) * 1999-09-21 2001-11-09 Air Liquide Vaporiseur-condenseur a thermosiphon et installation de distillation d'air correspondante
US6428627B1 (en) * 2000-03-15 2002-08-06 Hatco Corporation Flow heater
DE10021081A1 (de) 2000-04-28 2002-01-03 Linde Ag Verfahren und Vorrichtung zum Wärmeaustausch
US6349566B1 (en) 2000-09-15 2002-02-26 Air Products And Chemicals, Inc. Dephlegmator system and process
DE10151238A1 (de) 2001-10-17 2003-04-30 Autokuehler Gmbh & Co Kg Kältemittel/Luft-Wärmeaustauschernetz
US7188492B2 (en) * 2002-01-18 2007-03-13 Linde Aktiengesellschaft Plate heat exchanger
US7051798B2 (en) * 2003-02-25 2006-05-30 Linde Aktiengesellschaft Heat exchanger
EP1471322B1 (fr) * 2003-02-25 2016-06-29 Linde AG Procédé de fabrication d'un échangeur de chaleur
US7100280B2 (en) * 2003-02-25 2006-09-05 Linde Aktiengesellschaft Method for producing a heat exchanger
EP1452817A1 (fr) * 2003-02-25 2004-09-01 Linde Aktiengesellschaft Echangeur de chaleur
DE10316711A1 (de) * 2003-02-25 2004-09-02 Linde Ag Wärmetauscher
JP2005349299A (ja) * 2004-06-10 2005-12-22 Mitsubishi Heavy Ind Ltd 淡水製造装置
JP2006064281A (ja) * 2004-08-26 2006-03-09 Hisaka Works Ltd プレート式熱交換器
US7481375B2 (en) * 2005-03-04 2009-01-27 Honeywell International Inc. Apparatuses and methods for controlling the temperature of a process fluid
CN1293350C (zh) * 2005-03-09 2007-01-03 西安交通大学 多通道插入式回热器
ES2554692T3 (es) * 2005-04-01 2015-12-22 Alfa Laval Corporate Ab Un intercambiador de calor de placas
DE202005015627U1 (de) * 2005-09-28 2007-02-08 Autokühler GmbH & Co. KG Wärmeaustauschernetz und damit ausgerüsteter Wärmeaustauscher
FR2891901B1 (fr) * 2005-10-06 2014-03-14 Air Liquide Procede de vaporisation et/ou de condensation dans un echangeur de chaleur
ITUD20070025A1 (it) * 2007-02-07 2008-08-08 Ohg Ind O M I S R L Scambiatore di calore
US8079508B2 (en) * 2008-05-30 2011-12-20 Foust Harry D Spaced plate heat exchanger
SE532907C2 (sv) 2008-09-23 2010-05-04 Alfa Laval Corp Ab En plattvärmeväxlare
BE1018518A3 (nl) 2009-04-06 2011-02-01 Atlas Copco Airpower Nv Verbeterde warmtewisselaar.
DE102009057055A1 (de) * 2009-12-04 2011-06-09 Linde Ag Verfahren und Vorrichtung zur Verdampfung kryogener Medien
JP6001170B2 (ja) * 2012-06-26 2016-10-05 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー 蒸発器、内燃機関用廃熱利用装置、及び内燃機関
US10124452B2 (en) * 2013-08-09 2018-11-13 Hamilton Sundstrand Corporation Cold corner flow baffle
JP5913245B2 (ja) * 2013-09-24 2016-04-27 株式会社フィルテック 張り合わせ流体熱交換装置
CN104329832B (zh) * 2014-03-28 2017-04-26 海尔集团公司 热交换装置及具有该热交换装置的半导体冰箱
EP2944909A1 (fr) * 2014-05-13 2015-11-18 Linde Aktiengesellschaft Dispositif de transmission de la chaleur doté de canaux destinés à l'amortissement de mouvements de fluides
US10161690B2 (en) * 2014-09-22 2018-12-25 Hamilton Sundstrand Space Systems International, Inc. Multi-layer heat exchanger and method of distributing flow within a fluid layer of a multi-layer heat exchanger
CN105651085B (zh) * 2016-01-26 2017-10-27 睿能太宇(沈阳)能源技术有限公司 一种全焊接板式换热器
CN105546935A (zh) * 2016-02-05 2016-05-04 江苏建筑职业技术学院 空分膜式主冷液体分布器
CN105737647B (zh) * 2016-03-22 2017-11-03 江苏远卓设备制造有限公司 一种用于汽水分离的板式换热器
JP6911469B2 (ja) * 2017-03-31 2021-07-28 株式会社Ihi 熱処理装置
FR3084739B1 (fr) * 2018-07-31 2020-07-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur a configuration de passages amelioree, procedes d'echange de chaleur associes
US20220126263A1 (en) * 2019-02-25 2022-04-28 L'air Liquide, Société Anonyme Pour L'etude Et L'exploitation Des Precédés Georges Claude Matrix integrating at least one heat exchange function and one distillation function
FR3093170B1 (fr) * 2019-02-25 2022-04-15 L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude Matrice intégrant au moins une fonction d’échange thermique et une fonction de distillation
EP4155653B1 (fr) * 2019-09-13 2024-03-20 Alfa Laval Corporate AB Plaque pour échangeur de chaleur et echangeur de chaleur à plaques pour le traitement d'une charge liquide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633661A (en) * 1970-08-14 1972-01-11 Trane Co Crossflow plate-type heat exchanger with barrier space
FR2237158A1 (en) * 1973-07-03 1975-02-07 Teal Procedes Air Liquide Tech Heat exchanger module for several different coolants - esp. for gas liquefaction comprises one drum per coolant
US3992168A (en) * 1968-05-20 1976-11-16 Kobe Steel Ltd. Heat exchanger with rectification effect
FR2431103A1 (fr) * 1978-07-12 1980-02-08 Air Liquide Colonne de separation de melanges gazeux par fractionnement a basse temperature
EP0019508A1 (fr) * 1979-05-18 1980-11-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ensemble d'échange thermique du genre échangeur de chaleur à plaques
EP0130122A1 (fr) * 1983-06-24 1985-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d'air comprenant un tel dispositif

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1152432B (de) * 1962-04-21 1963-08-08 Linde Eismasch Ag Platten-Kondensator-Verdampfer, insbesondere fuer Gas- und Luftzerleger
BE789479A (fr) * 1971-10-01 1973-03-29 Air Liquide Echangeur de chaleur et sa mise en oeuvre
US4249595A (en) * 1979-09-07 1981-02-10 The Trane Company Plate type heat exchanger with bar means for flow control and structural support
GB2084308B (en) * 1980-07-14 1983-11-30 Cryoplants Ltd Revapourising liquefied gas
US4450903A (en) * 1982-09-20 1984-05-29 The Trane Company Plate type heat exchanger with transverse hollow slotted bar
US4715433A (en) * 1986-06-09 1987-12-29 Air Products And Chemicals, Inc. Reboiler-condenser with doubly-enhanced plates
US4715431A (en) * 1986-06-09 1987-12-29 Air Products And Chemicals, Inc. Reboiler-condenser with boiling and condensing surfaces enhanced by extrusion
US4721164A (en) * 1986-09-04 1988-01-26 Air Products And Chemicals, Inc. Method of heat exchange for variable-content nitrogen rejection units
JPH0788924B2 (ja) * 1986-12-05 1995-09-27 日本酸素株式会社 凝縮蒸発器
GB8700801D0 (en) * 1987-01-14 1987-02-18 Marston Palmer Ltd Heat exchanger
JPH0789009B2 (ja) * 1988-08-31 1995-09-27 日本酸素株式会社 凝縮蒸発器及びその運転方法
FR2665755B1 (fr) * 1990-08-07 1993-06-18 Air Liquide Appareil de production d'azote.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992168A (en) * 1968-05-20 1976-11-16 Kobe Steel Ltd. Heat exchanger with rectification effect
US3633661A (en) * 1970-08-14 1972-01-11 Trane Co Crossflow plate-type heat exchanger with barrier space
FR2237158A1 (en) * 1973-07-03 1975-02-07 Teal Procedes Air Liquide Tech Heat exchanger module for several different coolants - esp. for gas liquefaction comprises one drum per coolant
FR2431103A1 (fr) * 1978-07-12 1980-02-08 Air Liquide Colonne de separation de melanges gazeux par fractionnement a basse temperature
EP0019508A1 (fr) * 1979-05-18 1980-11-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ensemble d'échange thermique du genre échangeur de chaleur à plaques
EP0130122A1 (fr) * 1983-06-24 1985-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d'air comprenant un tel dispositif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 400 (M-756)24 Octobre 1988 & JP-A-63 143 486 ( NIPPON SANSO KK ) 15 Juin 1988 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694729A1 (fr) * 1994-07-28 1996-01-31 Daimler-Benz Aktiengesellschaft Module de vaporisation
US5823252A (en) * 1994-07-28 1998-10-20 Daimler-Benz Aktiengesellschaft Two-stage evaporator unit
WO1998036212A1 (fr) * 1997-02-14 1998-08-20 Aga Aktiebolag Procede et appareil utilisant un gaz condense pour refroidir un produit
US6250088B1 (en) 1997-02-14 2001-06-26 Aga Ab Method and apparatus for cooling a product using a condensed gas
FR2786858A1 (fr) * 1998-12-07 2000-06-09 Air Liquide Echangeur de chaleur
EP1008826A1 (fr) * 1998-12-07 2000-06-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vaporisateur à film ruisselant et installations de distillation d'air correspondantes
EP1179724A1 (fr) * 2000-08-08 2002-02-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur thermique à blocs échangeurs multiples à ligne d'alimentation en fluide à distribution uniforme, et vaporiseur-condenseur comportant un tel échangeur
FR2812935A1 (fr) * 2000-08-08 2002-02-15 Air Liquide Echangeur thermique a blocs echangeurs multiples a ligne d'alimentation en fluide a distribution uniforme, et vaporiseur-condenseur comportant un tel echangeur
DE10347880B4 (de) * 2003-10-10 2007-10-31 Gea Wtt Gmbh Plattenwärmetauscher zum Trocknen eines gasförmigen Mediums
US7789128B2 (en) 2003-10-10 2010-09-07 Gea Wtt Gmbh Plate-type heat exchanger for drying a gaseous medium
US7264039B2 (en) 2004-02-10 2007-09-04 Peter Dawson Apparatus for cleaning heat exchanger plates and a bulk material heat exchanger using the same
US7093649B2 (en) 2004-02-10 2006-08-22 Peter Dawson Flat heat exchanger plate and bulk material heat exchanger using the same
US8997841B2 (en) 2004-02-10 2015-04-07 Peter Dawson Flat heat exchanger plate and bulk material heat exchanger using the same
CN104482787A (zh) * 2014-12-17 2015-04-01 苏州协宏泰节能科技有限公司 一种螺旋板式换热器
CN104482787B (zh) * 2014-12-17 2016-09-07 苏州协宏泰节能科技有限公司 一种螺旋板式换热器
EP3159648A1 (fr) * 2015-10-20 2017-04-26 Linde Aktiengesellschaft Évaporateur-condensateur-échangeur thermique à plaques et procédé cryogénique de séparation d'air
CN106595222A (zh) * 2015-10-20 2017-04-26 林德股份公司 板式热交换器‑冷凝器蒸发器及空气低温分解方法
WO2020239767A1 (fr) * 2019-05-29 2020-12-03 L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude Échangeur-réacteur avec zones de distribution perfectionnées
FR3096768A1 (fr) * 2019-05-29 2020-12-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Echangeur-réacteur avec zones de distribution perfectionnées
FR3096767A1 (fr) * 2019-05-31 2020-12-04 Safran Échangeur thermique a déflection

Also Published As

Publication number Publication date
CN1073259A (zh) 1993-06-16
US5333683A (en) 1994-08-02
EP0546947B1 (fr) 1996-04-17
FR2685071B1 (fr) 1996-12-13
FR2685071A1 (fr) 1993-06-18
CA2084920A1 (fr) 1993-06-12
CN1041126C (zh) 1998-12-09
DE69209994D1 (de) 1996-05-23
DE69209994T2 (de) 1996-09-05
JPH05280881A (ja) 1993-10-29

Similar Documents

Publication Publication Date Title
EP0546947B1 (fr) Echangeur de chaleur indirect du type à plaques
EP1008826B1 (fr) Vaporiseur à film ruisselant et installations de distillation d&#39;air correspondantes
EP0130122B1 (fr) Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d&#39;air comprenant un tel dispositif
FR2665755A1 (fr) Appareil de production d&#39;azote.
EP0019508B1 (fr) Ensemble d&#39;échange thermique du genre échangeur de chaleur à plaques
EP0566435B1 (fr) Echangeur de chaleur à ruissellement et installation de distillation d&#39;air comportant un tel échangeur
FR2563620A1 (fr) Echangeur de chaleur du type a plaques
FR2718836A1 (fr) Echangeur de chaleur perfectionné à plaques brasées.
FR3065795B1 (fr) Echangeur de chaleur a jonction d&#39;ondes amelioree, installation de separation d&#39;air associee et procede de fabrication d&#39;un tel echangeur
EP1088578A1 (fr) Vaporiseur-condenseur à thermosiphon et installation de distillation d&#39;air correspondante
FR2728669A1 (fr) Appareil a circulation de fluide
EP0507649B1 (fr) Procédé de vaporisation d&#39;un liquide, échangeur de chaleur pour sa mise en oeuvre, et application à une installation de distillation d&#39;air à double colonne
FR2812935A1 (fr) Echangeur thermique a blocs echangeurs multiples a ligne d&#39;alimentation en fluide a distribution uniforme, et vaporiseur-condenseur comportant un tel echangeur
FR2774755A1 (fr) Condenseur a plaques brasees perfectionne et son application aux doubles colonnes de distillation d&#39;air
EP0738862B1 (fr) Echangeur de chaleur à plaques brasées
EP2368084B1 (fr) Échangeur de chaleur
FR2793548A1 (fr) Vaporiseur-condenseur a plaques fonctionnant en thermosiphon, et double colonne de distillation d&#39;air comportant un tel vaporiseur-condenseur
WO2011110782A1 (fr) Echangeur de chaleur
EP0718583B1 (fr) Appareil à circulation de fluide
FR2798598A1 (fr) Vaporiseur-condenseur a bain et appareil de distillation d&#39;air correspondant
EP3105520A2 (fr) Colonne de séparation d&#39;air par distillation cryogénique, appareil de séparation d&#39;air comportant une telle colonne et procédé de fabrication d&#39;une telle colonne
WO2020174173A1 (fr) Matrice intégrant au moins une fonction d&#39;échange thermique et une fonction de distillation
FR3132851A3 (fr) Appareil de distillation
FR2718835A1 (fr) Echangeur de chaleur à plaques brasées.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19940429

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69209994

Country of ref document: DE

Date of ref document: 19960523

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960517

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19970117

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981125

Year of fee payment: 7

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20010125

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO