EP0535319B1 - Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke - Google Patents

Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke Download PDF

Info

Publication number
EP0535319B1
EP0535319B1 EP92112630A EP92112630A EP0535319B1 EP 0535319 B1 EP0535319 B1 EP 0535319B1 EP 92112630 A EP92112630 A EP 92112630A EP 92112630 A EP92112630 A EP 92112630A EP 0535319 B1 EP0535319 B1 EP 0535319B1
Authority
EP
European Patent Office
Prior art keywords
vacuum furnace
heating chamber
vacuum
charge
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP92112630A
Other languages
English (en)
French (fr)
Other versions
EP0535319A1 (de
Inventor
Bernd Dr. Edenhofer
Albert Fleiter
Jürgen Schröder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6441930&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0535319(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Publication of EP0535319A1 publication Critical patent/EP0535319A1/de
Application granted granted Critical
Publication of EP0535319B1 publication Critical patent/EP0535319B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Definitions

  • the invention relates to a vacuum furnace for the plasma carburization of metallic workpieces in an artificially generated electric field by means of a carbon-containing gas with an electric heating device, a vacuum pump for generating a vacuum in the heating chamber and gas inlet openings by means of which cooling gas of the batch conveyed by a blower and guided via a heat exchanger is fed.
  • Vacuum furnaces for the plasma carburization of metallic workpieces using a carbon-containing gas, for example methane or propane, are known.
  • the batch is heated in the vacuum furnace to a temperature between approximately 800 and 1050 ° C.
  • the carbon-containing process gas is then fed into the furnace chamber and an electric field is applied to the batch.
  • the batch is electrically connected to an external power supply and forms the cathode, while the furnace housing takes over the function of the anode.
  • the batch is therefore placed at a high negative potential with respect to the furnace chamber, this furnace chamber usually being at earth potential.
  • the invention has for its object to provide a vacuum furnace for plasma carburizing metallic workpieces, which is much smaller than known carburizing furnaces of this type in a similar application.
  • the furnace housing designed as a pressure vessel is designed for a pressure of at least 10 bar with regard to its permissible pressure load and the drive of the blower with regard to the gas pressure achievable when cooling the batch, and the gas inlet openings carrying the cooling gas are arranged in the heating chamber and are aligned with the batch.
  • the batch is cooled during hardening by the batch flowing through the cooling gas emerging from the gas inlet openings.
  • the heat removed from the charge by the movement of the cooling gas alone is not sufficient.
  • the furnace housing as a pressure vessel and also to design the drive of the fan so that the vacuum furnace can be operated at a pressure of at least 10 bar.
  • the resulting density of the cooling gas which corresponds to a multiple of the density present at conventional pressures, leads to a significantly improved heat transfer and thus to a higher cooling capacity during hardening.
  • nozzles are provided as gas inlet openings on all sides around the heating chamber, the outlet openings of which are aligned with the batch. This results in a uniform cooling of the batch and thus an even hardening result.
  • the heating chamber is surrounded on all sides by heating elements of the electrical heating device.
  • the heating elements are advantageously arranged in a ring around the heating chamber.
  • a distributor chamber which surrounds the heating chamber in an annular manner for supplying the cooling gas to the gas inlet openings is proposed.
  • the cooling gas flow is distributed particularly uniformly over the preferably nozzle-shaped gas inlet openings.
  • the distribution chamber be enclosed by a jacket arranged in the furnace housing, an annular space for returning the cooling gas being located between the jacket and the furnace housing.
  • batch supports penetrating the jacket are fastened to the inner wall of the furnace housing, the batch supports being electrically insulated from the jacket.
  • the jacket also acts as an anode, so that only the batch and parts of the batch supports form the cathode of the electric field generated.
  • the cathode-side electrical connection be made through at least one of the batch supports. This simplifies the construction of the vacuum furnace, since no separate bushings through the jacket and the wall of the heating chamber are required for the cathode cable.
  • the furnace housing be connected via a line to a buffer container which contains helium as the cooling gas at a pressure of at least 10 bar.
  • a buffer container which contains helium as the cooling gas at a pressure of at least 10 bar.
  • the vacuum furnace for plasma carburizing in Fig. 1 consists of a furnace housing 1, which can be closed pressure-tight on one side by an furnace door 2. On the opposite end of the furnace housing 1, a powerful electric drive 4 is arranged within a pressure-resistant cap 3. Furnace housing 1, furnace door 2 and cap 3 as well as all flanges and other connecting parts are designed to be pressure-resistant in the vacuum furnace according to the exemplary embodiment and designed for an operating pressure of at least 20 bar.
  • Fig. 1 shows in connection with Fig. 2 that in the heating chamber wall 5 a plurality of gas inlet openings in the form of nozzles 9 is embedded.
  • the nozzles allow the passage of cooling gas from a distribution chamber 10 enclosing the heating chamber wall 5 into the heating chamber 6.
  • the nozzles 9 are distributed over the entire circumference of the heating chamber 6 and in each case aligned so that the cooling air jet emerging from the nozzles 9 directly onto the charge 7 reached.
  • the heating chamber can also be designed differently, with the cooling gas crossing the batch in the vertical or horizontal direction via open hatches in the heating chamber.
  • Each heating element 11 consists of a strip of graphite which is bent several times and thus takes the form of an almost closed polygon.
  • the heating elements 11 are connected to a common power supply 12.
  • a total of four heating elements 11 are provided which, because of their ring-like shape which surrounds the charge 7 on all sides, enable uniform radiation heating of the charge 7.
  • the vacuum furnace is provided for the plasma carburization of metallic workpieces and is connected to a generator 15 via current conductors 13, 14.
  • the current conductor 13 forms the positive connection and is connected directly to the furnace housing 1 and thus to the earth potential.
  • the current conductor 14 is passed in an insulated manner through one of the batch supports 8 and makes direct electrical contact with a metallic batch carrier 16 on which the batch 7 rests.
  • Insulations 17 on the batch supports 8 prevent metallic contact and thus short circuits between the negatively charged batch supports 8 and the positively charged furnace housing 1, as well as a likewise positively charged metallic jacket 18 surrounding the distribution chamber 10.
  • batch 7 When operating the vacuum furnace, batch 7 is first placed on batch supports 8 or batch carrier 16. After the oven door 2 has been closed in a pressure-tight manner, the heating elements 11 are operated via the power supply 12. This takes place as a function of signals from a central controller 19. After the operating temperature has reached between 800 ° and 1050 °, a carbon-containing gas, for example methane or propane, is introduced into the vacuum furnace via a connection 20. At the same time, the generator 15 is switched on via the controller 19, so that the electric field is formed in the heating chamber 6 and the plasma carburization begins. After the plasma carburization, which is generally operated at intervals, is completed, the power supply 12 and the generator 15 are switched off and the carbon-containing atmosphere is broken down.
  • a carbon-containing gas for example methane or propane
  • a cooling gas is then introduced into the furnace housing 1 and the electric drive 4 is put into operation.
  • Helium is used as the cooling gas in the embodiment shown in the drawing.
  • Helium shows very good heat transfer coefficients, which at a cooling gas pressure of 20 bar are about three times the values of nitrogen at a cooling gas pressure of 6 bar.
  • the helium is located in a buffer container 21 designed for a pressure of at least 10 bar and enters the interior of the furnace housing 1 via a line 23 that can be controlled by a valve 22. From there, the cooling gas is transferred to the suction side of a high one via an annular heat exchanger 24 Pressures designed fan 25 out.
  • the cooling gas conveyed by the blower 25 is distributed within the distribution chamber 10 to the individual nozzles 9 and flows under a cooling effect directly to the batch 7.
  • the cooling gas is returned to the heat exchanger 24 via an annular space 26 between the jacket 18 and the furnace housing 1.
  • the pressure of the cooling gas in the interior of the furnace here is 10 to 20 bar, but can be increased as a result of appropriate design to further increase the cooling effect can also be raised to values well above 20 bar.
  • nozzles 9 are arranged in a common radial plane which is axially offset from the radial plane defined by a heating element 11.
  • the surface available on the inside of the heating chamber wall 5 is optimally used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

  • Die Erfindung betrifft einen Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke in einem künstlich erzeugten elektrischen Feld mittels eines kohlenstoffhaltigen Gases mit einer elektrischen Heizeinrichtung, einer Vakuumpumpe zur Erzeugung eines Vakuums in der Heizkammer sowie Gaseinlaßöffnungen, mittels derer von einem Gebläse gefördertes und über einen Wärmetauscher geführtes Kühlgas der Charge zugeführt wird.
  • Vakuumöfen zur Plasmaaufkohlung metallischer Werkstücke mittels eines kohlenstoffhaltigen Gases, beispielsweise Methan oder Propan, sind bekannt. Bei der Plasmaaufkohlung wird die Charge in dem Vakuumofen auf eine Temperatur zwischen etwa 800 und 1050°C erhitzt. Anschließend wird das kohlenstoffhaltige Prozeßgas in die Ofenkammer geleitet und ein elektrisches Feld an die Charge angelegt. Hierzu wird die Charge elektrisch mit einer externen Spannungsversorgung verbunden und bildet die Kathode, während das Ofengehäuse die Funktion der Anode übernimmt. Die Charge wird also auf ein hohes negatives Potential bezüglich der Ofenkammer gelegt, wobei sich diese Ofenkammer üblicherweise auf Erdpotential befindet. Durch den Einfluß des elektrischen Feldes ionisiert das kohlenstoffhaltige Gas, wobei sich die positiv geladenen Kohlenstoffionen auf der kathodischen, also negativ geladenen Charge absetzen. Durch diesen Effekt wird die Aufkohlungsgeschwindigkeit im Vergleich zu rein thermischen Aufkohlungsverfahren wesentlich erhöht. Da die Diffusion der Kohlenstoffatome in das Werkstückgefüge wesentlich schneller abläuft, wird die gewünschte Aufkohlungstiefe in kürzerer Zeit als bei den bekannten Aufkohlungsverfahren erreicht.
  • Ein solcher Vakuumofen zur Plasmaaufkohlung ist in dem Beitrag "Plasma Carburizing - Facility Design and Operating Data" von Graham Legge in der Zeitschrift Industrial Heating, März 1988, Seiten 26 ff. beschrieben. Dieser bekannte Aufkohlungsofen besteht aus insgesamt zwei Kammern, wobei die erste Kammer die Heizkammer zur Plasmaaufkohlung bildet, während die zweite Kammer der Abkühlung der Charge dient und zu diesem Zweck ein Öl-Abschreckbad enthält. Beide Kammern sind über eine vakuumdicht verschließbare Tür miteinander verbunden. Nachteilig bei diesem Aufkohlungsofen ist, daß dieser teuer im Aufbau ist und sehr viel Raum zu seiner Aufstellung erfordert.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke zu schaffen, der bei ähnlichem Einsatzbereich wesentlich kleiner baut als bekannte Aufkohlungsöfen dieser Art.
  • Zur Lösung dieser Aufgabenstellung wird vorgeschlagen, daß das als Druckbehälter ausgebildete Ofengehäuse hinsichtlich seiner zulässigen Druckbelastung sowie der Antrieb des Gebläses hinsichtlich des beim Kühlen der Charge erreichbaren Gasdrucks auf einen Druck von mindestens 10 bar ausgelegt sind und die das Kühlgas führenden Gaseinlaßöffnungen in der Heizkammer angeordnet und auf die Charge ausgerichtet sind.
  • Mit einem solcherart ausgebildeten Vakuumofen zur Plasmaaufkohlung ist es möglich, die aufgekohlte Charge zur Vervollständigung des Wärmebehandlungsprozesses zu härten, ohne daß die Charge hierzu aus der Heizkammer entnommen werden muß. Sämtliche Schritte des Wärmebehandlungsverfahrens lassen sich ausschließlich innerhalb der Heizkammer durchführen, so daß weitere Kammern zur Wärmebehandlung sowie Einrichtungen zur Überführung der Charge zwischen diesen Kammern entfallen. Der Vakuumofen ist daher nicht nur einfach aufgebaut, sondern weist im Vergleich zu bekannten Aufkohlungsöfen auch eine wesentlich geringere Baugröße auf.
  • Die Abkühlung der Charge beim Härten erfolgt durch ein Anströmen der Charge durch das aus den Gaseinlaßöffnungen austretende Kühlgas. Allerdings ist allein die durch die Bewegung des Kühlgases von der Charge abgeführte Wärme nicht ausreichend. Mit der Erfindung wird daher vorgeschlagen, das Ofengehäuse als Druckbehälter auszubilden und weiterhin den Antrieb des Gebläses so auszulegen, daß der Vakuumofen bei einem Druck von mindestens 10 bar betrieben werden kann. Die sich dabei einstellende Dichte des Kühlgases, die dem mehrfachen der bei herkömmlichen Drücken vorliegenden Dichte entspricht, führt zu einem wesentlich verbesserten Wärmeübergang und damit zu einer höheren Kühlleistung während des Härtens.
  • Bei einer bevorzugten Ausführungsform der Erfindung sind als Gaseinlaßöffnungen allseitig um die Heizkammer herum angeordnete Düsen vorgesehen, deren Austrittsöffnungen auf die Charge ausgerichtet sind. Dadurch entsteht eine gleichmäßige Abkühlung der Charge und damit ein gleichmäßiges Härteergebnis.
  • Von Vorteil ist ferner, zusätzliche Düsen vorzusehen, welche stirnseitig in der Heizkammer angeordnet sind und das Kühlgas axial in die Heizkammer einleiten.
  • Bei einer Ausgestaltung des Vakuumofens ist die Heizkammer allseitig von Heizelementen der elektrischen Heizeinrichtung umgeben. Die Heizelemente sind vorteilhaft jeweils ringförmig um die Heizkammer herum angeordnet.
  • Um trotz der begrenzten Platzverhältnisse innerhalb der Heizkammer eine möglichst gleichmäßige Erhitzung und Abkühlung der Charge zu gewährleisten, wird mit einer Weiterbildung des Vakuumofens vorgeschlagen, daß jeweils mehrere Düsen in einer gemeinsamen radialen Ebene angeordnet sind, die zu der durch jeweils ein Heizelement definierten radialen Ebene axial versetzt ist.
  • Ferner wird eine die Heizkammer ringförmig umschließende Verteilerkammer zur Zuführung des Kühlgases zu den Gaseinlaßöffnungen vorgeschlagen. Dadurch wird der Kühlgasstrom besonders gleichmäßig auf die vorzugsweise düsenförmigen Gaseinlaßöffnungen verteilt.
  • Zur Erzielung einer kompakten Bauweise des Vakuumofens wird ferner vorgeschlagen, daß die Verteilerkammer von einem in dem Ofengehäuse angeordneten Mantel umschlossen ist, wobei sich zwischen Mantel und Ofengehäuse ein Ringraum zur Rückführung des Kühlgases befindet. In diesem Fall ist bei einer bevorzugten Ausgestaltung vorgesehen, daß an der Innenwand des Ofengehäuses den Mantel durchdringende Chargenstützen befestigt sind, wobei die Chargenstützen zum Mantel hin elektrisch isoliert sind. Auf diese Weise wirkt auch der Mantel als Anode, so daß lediglich die Charge sowie Teile der Chargenstützen die Kathode des erzeugten elektrischen Feldes bilden.
  • Ferner wird vorgeschlagen, daß der kathodenseitige elektrische Anschluß durch mindestens eine der Chargenstützen hindurch erfolgt. Hierdurch vereinfacht sich der Aufbau des Vakuumofens, da für das Kathodenkabel keine gesonderten Durchführungen durch den Mantel sowie die Wand der Heizkammer hindurch erforderlich sind.
  • Schließlich wird vorgeschlagen, daß das Ofengehäuse über eine Leitung mit einem Pufferbehälter in Verbindung steht, der als Kühlgas Helium mit einem Druck von mindestens 10 bar enthält. Bei Verwendung von Helium als Kühlgas lassen sich Wärmeübergangswerte und damit Abkühlgeschwindigkeiten erreichen, die über den entsprechenden Werten bei Verwendung von Stickstoff als Kühlgas liegen. Versuche haben gezeigt, daß die Wärmeübergangszahlen unter Verwendung von Helium mit einem Kühlgasdruck von 20 bar etwa das dreifache der bei Stickstoff mit 6 bar erzielbaren Werte betragen.
  • Ein Ausführungsbeispiel eines erfindungsgemäßen Vakuumofens zur Plasmaaufkohlung metallischer Werkstücke in einem künstlich erzeugten elektrischen Feld wird nachfolgend anhand der schematischen Zeichnungen beschrieben. In diesen zeigt:
  • Fig. 1
    einen Längsschnitt durch einen Vakuumofen
    und
    Fig. 2
    einen Querschnitt durch den Vakuumofen nach Fig. 1.
  • Der Vakuumofen zur Plasmaaufkohlung in Fig. 1 besteht aus einem Ofengehäuse 1, welches auf einer Seite durch eine Ofentür 2 druckdicht verschließbar ist. An der gegenüberliegenden Stirnseite des Ofengehäuses 1 ist innerhalb einer druckfesten Kappe 3 ein leistungsstarker Elektroantrieb 4 angeordnet. Ofengehäuse 1, Ofentür 2 und Kappe 3 sowie alle Flansche und sonstigen Verbindungsteile sind bei dem Vakuumofen nach den Ausführungsbeispiel druckfest ausgeführt und auf einen Betriebsdruck von mindestens 20 bar ausgelegt.
  • Innerhalb des Ofengehäuses 1 ist eine allseits von einer Heizkammerwand 5 umschlossene Heizkammer 6 angeordnet. Innerhalb der Heizkammer 6 befindet sich eine aufzukohlende Charge 7. Dabei liegt die Charge 7 auf Chargenstützen 8 auf, welche die Heizkammer 5 durchdringen und an der Innenwand des zylindrischen Ofengehäuses 1 befestigt sind.
  • Fig. 1 läßt in Verbindung mit Fig. 2 erkennen, daß in die Heizkammerwand 5 eine Vielzahl an Gaseinlaßöffnungen in Gestalt von Düsen 9 eingelassen ist. Die Düsen ermöglichen den Durchtritt von Kühlgas aus einer die Heizkammerwand 5 umschließenden Verteilerkammer 10 in die Heizkammer 6. Die Düsen 9 sind über den gesamten Umfang der Heizkammer 6 verteilt und jeweils so ausgerichtet, daß der aus den Düsen 9 austretende Kühlluftstrahl unmittelbar auf die Charge 7 gelangt. Jedoch läßt sich die Heizkammer auch anders ausführen, wobei das Kühlgas über geöffnete Luken in der Heizkammer in vertikaler oder horizontaler Richtung die Charge durchstreicht.
  • Knapp innerhalb der Heizkammerwand 5 befinden sich außerdem mehrere Heizelemente 11. Jedes Heizelement 11 besteht aus einem mehrfach abgeknickten und dadurch die Gestalt eines nahezu geschlossenen Vielecks einnehmenden Band aus Graphit. Die Heizelemente 11 sind an eine gemeinsame Stromversorgung 12 angeschlossen. Beim Ausführungsbeispiel sind insgesamt vier Heizelemente 11 vorgesehen, die aufgrund ihrer die Charge 7 allseitig umschließenden, ringähnlichen Gestalt eine gleichmäßige Strahlungserwärmung der Charge 7 ermöglichen.
  • Der Vakuumofen ist zur Plasmaaufkohlung metallischer Werkstücke vorgesehen und ist hierzu über Stromleiter 13,14 an einen Generator 15 angeschlossen. Der Stromleiter 13 bildet den positiven Anschluß und ist unmittelbar an das Ofengehäuse 1 und damit an das Erdpotential angeschlossen. Der Stromleiter 14 ist in isolierter Art und Weise durch eine der Chargenstützen 8 hindurchgeführt und stellt den unmittelbaren elektrischen Kontakt zu einem metallischen Chargenträger 16 her, auf dem die Charge 7 aufliegt. Bei Betrieb des Generators 15 wird in der Heizkammer 6 ein elektrisches Feld generiert, wo bei die Charge 7 die Kathode und die die Charge 7 umgebenden Bauteile die Anode dieses elektrischen Feldes bilden. Isolierungen 17 an den Chargenstützen 8 verhindern einen metallischen Kontakt und damit Kurzschlüsse zwischen den negativ geladenen Chargenstützen 8 und dem positiv geladenen Ofengehäuse 1 sowie einem ebenfalls positiv geladenen, die Verteilerkammer 10 umschließenden metallischen Mantel 18.
  • Beim Betrieb des Vakuumofens wird zunächst die Charge 7 auf den Chargenstützen 8 bzw. dem Chargenträger 16 abgesetzt. Nach druckdichtem Verschließen der Ofentür 2 werden die Heizelemente 11 über die Stromversorgung 12 betrieben. Dies erfolgt in Abhängigkeit von Signalen einer zentralen Steuerung 19. Nach Erreichen der Betriebstemperatur zwischen 800° und 1050° wird über einen Anschluß 20 ein kohlenstoffhaltiges Gas, beispielsweise Methan oder Propan, in den Vakuumofen eingeleitet. Zugleich wird über die Steuerung 19 der Generator 15 eingeschaltet, so daß sich in der Heizkammer 6 das elektrische Feld ausbildet und die Plasmaaufkohlung einsetzt. Nach Abschluß der in der Regel intervallmäßig betriebenen Plasmaaufkohlung werden die Stromversorgung 12 sowie der Generator 15 abgeschaltet und die kohlenstoffhaltige Atmosphäre abgebaut. Anschließend wird ein Kühlgas in das Ofengehäuse 1 eingeleitet und der Elektroantrieb 4 in Betrieb gesetzt. Als Kühlgas findet bei der in der Zeichnung dargestellten Ausführungsform Helium Verwendung. Helium zeigt sehr gute Wärmeübergangszahlen, die bei einem Kühlgasdruck von 20 bar in etwa das dreifache der Werte von Stickstoff bei einem Kühlgasdruck von 6 bar betragen. Das Helium befindet sich in einem auf einen Druck von mindestens 10 bar ausgelegten Pufferbehälter 21 und gelangt über eine durch ein Ventil 22 kontrollierbare Leitung 23 in das Innere des Ofengehäuses 1. Von dort wird das Kühlgas über einen ringförmigen Wärmetauscher 24 auf die Saugseite eines für hohe Drücke ausgelegten Gebläses 25 geführt. Das von dem Gebläse 25 geförderte Kühlgas wird innerhalb der Verteilerkammer 10 auf die einzelnen Düsen 9 verteilt und strömt unter Kühlwirkung unmittelbar auf die Charge 7. Die Rückführung des Kühlgases zum Wärmetauscher 24 erfolgt über einen Ringraum 26 zwischen Mantel 18 und Ofengehäuse 1. Der hierbei im Ofeninneren herrschende Druck des Kühlgases beträgt 10 bis 20 bar, kann infolge entsprechender konstruktiver Anpassung zur weiteren Erhöhung der Abkühlwirkung aber auch auf Werte deutlich oberhalb 20 bar angehoben werden.
  • Aus Fig. 1 ist erkennbar, daß jeweils mehrere Düsen 9 in einer gemeinsamen radialen Ebene angeordnet sind, die zu der durch jeweils ein Heizelement 11 definierten radialen Ebene axial versetzt ist. Dadurch wird die auf der Innenseite der Heizkammerwand 5 zur Verfügung stehende Fläche optimal ausgenutzt.
  • Bezugszeichenliste
  • 1
    Ofengehäuse
    2
    Ofentür
    3
    Kappe
    4
    Elektroantrieb
    5
    Heizkammerwand
    6
    Heizkammer
    7
    Charge
    8
    Chargenstütze
    9
    Düse
    10
    Verteilerkammer
    11
    Heizelement
    12
    Stromversorgung
    13
    Stromleiter
    14
    Stromleiter
    15
    Generator
    16
    Chargenträger
    17
    Isolierung
    18
    Mantel
    19
    Steuerung
    20
    Anschluß
    21
    Pufferbehälter
    22
    Ventil
    23
    Leitung
    24
    Wärmetauscher
    25
    Gebläse
    26
    Ringraum
    27
    Vakuumpumpe

Claims (11)

  1. Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke in einem künstlich erzeugten elektrischen Feld mittels eines kohlenstoffhaltigen Gases mit einer elektrischen Heizeinrichtung, einer Vakuumpumpe zur Erzeugung eines Vakuums in der Heizkammer sowie Gaseinlaßöffnungen, mittels derer von einem Gebläse gefördertes und über einen Wärmetauscher geführtes Kühlgas der Charge zugeführt wird,
    dadurch gekennzeichnet,
    daß das als Druckbehälter ausgebildete Ofengehäuse (1) hinsichtlich seiner zulässigen Druckbelastung sowie der Antrieb (4) des Gebläses (25) hinsichtlich des beim Kühlen der Charge (7) erreichbaren Gasdrucks auf einen Druck von mindestens 10 bar ausgelegt sind und die das Kühlgas führenden Gaseinlaßöffnungen (9) in der Heizkammer (6) angeordnet und auf die Charge (7) ausgerichtet sind.
  2. Vakuumofen nach Anspruch 1, dadurch gekennzeichnet, daß als Gaseinlaßöffnungen allseitig um die Heizkammer herum angeordnete Düsen (9) vorgesehen sind, deren Austrittsöffnungen auf die Charge (7) ausgerichtet sind.
  3. Vakuumofen nach Anspruch 2, gekennzeichnet durch zusätzliche, stirnseitig in der Heizkammer (6) angeordnete Düsen (9) zur axialen Einleitung des Kühlgases in die Heizkammer (6).
  4. Vakuumofen nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Heizkammer (6) allseitig von Heizelementen (11) der elektrischen Heizeinrichtung umgeben ist.
  5. Vakuumofen nach Anspruch 4, dadurch gekennzeichnet, daß die Heizelemente (11) jeweils ringförmig um die Heizkammer (6) herum angeordnet sind.
  6. Vakuumofen nach Anspruch 5, dadurch gekennzeichnet, daß jeweils mehrere Düsen (9) in einer gemeinsamen radialen Ebene angeordnet sind, die zu der durch jeweils ein Heizelement (11) definierten radialen Ebene axial versetzt ist.
  7. Vakuumofen nach Anspruch 1, gekennzeichnet durch eine die Heizkammer (6) ringförmig umschließende Verteilerkammer (10) zur Zuführung des Kühlgases zu den Gaseinlaßöffnungen (9).
  8. Vakuumofen nach Anspruch 7, dadurch gekennzeichnet, daß die Verteilerkammer (10) von einem in dem Ofengehäuse (1) engeordneten Mantel (18) umschlossen ist, wobei sich zwischen Mantel (18) und Ofengehäuse (1) ein Ringraum (26) zur Rückführung des Kühlgases befindet.
  9. Vakuumofen nach Anspruch 8, dadurch gekennzeichnet, daß an der Innenwand des Ofengehäuses (1) den Mantel (18) durchdringende Chargenstützen (8) befestigt sind, wobei die Chargenstützen (8) zum Mantel (18) hin elektrisch isoliert sind.
  10. Vakuumofen nach Anspruch 9, dadurch gekennzeichnet, daß der kathodenseitige elektrische Anschluß durch mindestens eine der Chargenstützen (8) hindurch erfolgt.
  11. Vakuumofen nach einen der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Ofengehäuse (1) über eine Leitung (23) mit einem Pufferbehälter (21) in Verbindung steht, der als Kühlgas Helium mit einem Druck von mindestens 10 bar enthält.
EP92112630A 1991-10-01 1992-07-23 Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke Revoked EP0535319B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4132712A DE4132712C2 (de) 1991-10-01 1991-10-01 Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke
DE4132712 1991-10-01

Publications (2)

Publication Number Publication Date
EP0535319A1 EP0535319A1 (de) 1993-04-07
EP0535319B1 true EP0535319B1 (de) 1995-06-14

Family

ID=6441930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92112630A Revoked EP0535319B1 (de) 1991-10-01 1992-07-23 Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke

Country Status (4)

Country Link
EP (1) EP0535319B1 (de)
AT (1) ATE123820T1 (de)
DE (2) DE4132712C2 (de)
ES (1) ES2074773T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157840C1 (de) * 2001-11-24 2002-10-24 Ald Vacuum Techn Ag Vakuumofen zur Wärmebehandlung von metallischen Werkstücken
US10815543B2 (en) 2016-12-29 2020-10-27 Won Ki Chung Quenching apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876118A (en) * 1995-12-08 1999-03-02 The Perkin-Elmer Corporation Calorimeter having rapid cooling of a heating vessel therein
DE19709957A1 (de) * 1997-03-11 1998-09-17 Linde Ag Verfahren zur Gasabschreckung metallischer Werkstücke nach Wärmebehandlungen
EP1318696B1 (de) 2001-11-28 2005-06-15 Ipsen International GmbH Verfahren zum elektrischen Beheizen von Öfen für die Wärmebehandlung metallischer Werkstücke
DE102009041041B4 (de) * 2009-09-10 2011-07-14 ALD Vacuum Technologies GmbH, 63450 Verfahren und Vorrichtung zum Härten von Werkstücken, sowie nach dem Verfahren gehärtete Werkstücke
US10196730B2 (en) 2009-09-10 2019-02-05 Ald Vacuum Technologies Gmbh Method and device for hardening workpieces, and workpieces hardened according to the method
CN104296524A (zh) * 2013-07-16 2015-01-21 东阳市和顺磁业有限公司 一种高真空烧结炉
CN103557710B (zh) * 2013-10-28 2016-06-15 北京泰科诺科技有限公司 一种快速循环气冷真空炉
KR102078915B1 (ko) 2018-03-26 2020-02-19 정원기 담금질 장치
CN108870983A (zh) * 2018-07-11 2018-11-23 昆山金美创机械有限公司 一种可选择进气方式的真空炉
DE102020114053B4 (de) 2020-05-26 2022-07-14 Audi Aktiengesellschaft Prozessanordnung zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124199A (en) * 1977-07-11 1978-11-07 Abar Corporation Process and apparatus for case hardening of ferrous metal work pieces
DE3736501C1 (de) * 1987-10-28 1988-06-09 Degussa Verfahren zur Waermebehandlung metallischer Werkstuecke

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157840C1 (de) * 2001-11-24 2002-10-24 Ald Vacuum Techn Ag Vakuumofen zur Wärmebehandlung von metallischen Werkstücken
US10815543B2 (en) 2016-12-29 2020-10-27 Won Ki Chung Quenching apparatus

Also Published As

Publication number Publication date
DE59202520D1 (de) 1995-07-20
ATE123820T1 (de) 1995-06-15
DE4132712A1 (de) 1993-04-08
DE4132712C2 (de) 1995-06-29
ES2074773T3 (es) 1995-09-16
EP0535319A1 (de) 1993-04-07

Similar Documents

Publication Publication Date Title
DE3736502C1 (de) Vakuumofen zur Waermebehandlung metallischer Werkstuecke
EP0535319B1 (de) Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke
EP2986751B1 (de) Verfahren und vorrichtung für das thermochemische härten von werkstücken
EP1676299B1 (de) Kristallzüchtungsanlage
DE69007733T2 (de) Vorrichtung und verfahren zur behandlung eines flachen, scheibenförmigen substrates unter niedrigem druck.
DE69426463T2 (de) Mikrowellenplasmareaktor
DE69713963T2 (de) Verfahren und Anlage zum Aufköhlen, Abschrecken und Anlassen
EP0444618B1 (de) Plasma-Behandlungsvorrichtung
DE2826310A1 (de) Autoklavofen
EP1236810A1 (de) Verfahren und Vorrichtung zur partiellen thermochemischen Vakuumbehandlung von metallischen Werkstücken
DE19907911C2 (de) Vorrichtung und Verfahren zur Behandlung von elektrisch leitfähigem Endlosmaterial
DE69223882T2 (de) Wärmebehandlungsofensystem zur gleichzeitigen Durchführung verschiedener Aufkohlungsverfahren
EP1228668B1 (de) Strahlungsheizung mit einer hohen infrarot-strahlungsleistung für bearbeitungskammern
DE9117052U1 (de) Vakuumofen zur Plasmaaufkohlung metallischer Werkstücke
DE102021104666A1 (de) Vorrichtung und Verfahren zum Plasmanitrieren einer Oberfläche eines Bauteils
DE3209245A1 (de) Drehherdofen
DE68910887T2 (de) Verfahren und Vorrichtung zum Einstellen eines homogenen austenitischen Gefüges.
EP0273975A1 (de) Plasma-induktionsofen
AT219733B (de) Einrichtung zur Durchführung von Prozessen mittels elektrischer Glimmentladungen
EP0960639A2 (de) Dünnschichtverdampfer
DE2620390A1 (de) Anordnung zum behandeln von werkstuecken mittels stromstarker glimmentladungen
DE202021106375U1 (de) Heizvorrichtung für ein stangenartiges Werkstück
DE1932703A1 (de) Plasmareaktor
DE10021583A1 (de) Verfahren und Vorrichtung zum Aufkohlen und Härten von Werkstückchargen
DD126631B1 (de) ofen fuer die oxidation schweroxydierbarer metallischer werkstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19930715

17Q First examination report despatched

Effective date: 19941125

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IPSEN INDUSTRIES INTERNATIONAL GESELLSCHAFT MIT BE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 123820

Country of ref document: AT

Date of ref document: 19950615

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950612

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59202520

Country of ref document: DE

Date of ref document: 19950720

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2074773

Country of ref document: ES

Kind code of ref document: T3

26 Opposition filed

Opponent name: ALD VACUUM TECHNOLOGIES

Effective date: 19950805

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IPSEN INTERNATIONAL GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: IPSEN INDUSTRIES INTERNATIONAL GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG TRANSFER- IPSEN INTERNATIONAL GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980724

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980729

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980731

Year of fee payment: 7

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990724

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

R26 Opposition filed (corrected)

Opponent name: ALD VACUUM TECHNOLOGIES PATENTABTEILUNG

Effective date: 19950805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 92112630.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000614

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000629

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000919

Year of fee payment: 9

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20010110

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20010110

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO