EP0530933B1 - Wärmeisoliertes Elektro-Speicherheizgerät - Google Patents

Wärmeisoliertes Elektro-Speicherheizgerät Download PDF

Info

Publication number
EP0530933B1
EP0530933B1 EP92250234A EP92250234A EP0530933B1 EP 0530933 B1 EP0530933 B1 EP 0530933B1 EP 92250234 A EP92250234 A EP 92250234A EP 92250234 A EP92250234 A EP 92250234A EP 0530933 B1 EP0530933 B1 EP 0530933B1
Authority
EP
European Patent Office
Prior art keywords
insulating
slabs
storage heater
heater according
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92250234A
Other languages
English (en)
French (fr)
Other versions
EP0530933A1 (de
Inventor
Leo Kaim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kkw Kulmbacher Klimagerate-Werk GmbH
Original Assignee
Kkw Kulmbacher Klimagerate-Werk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25906874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0530933(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kkw Kulmbacher Klimagerate-Werk GmbH filed Critical Kkw Kulmbacher Klimagerate-Werk GmbH
Publication of EP0530933A1 publication Critical patent/EP0530933A1/de
Application granted granted Critical
Publication of EP0530933B1 publication Critical patent/EP0530933B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • F24H7/0408Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply
    • F24H7/0416Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply the transfer fluid being air

Definitions

  • the invention relates to an electrical storage heater with a ceramic heat storage core.
  • the storage core consists of a material with high specific heat, preferably magnesia stones. Due to the high specific heat, the storage core is able to absorb a relatively large amount of heat.
  • the memory core is heated to a temperature level of around 800 ° C. Since the storage heaters are housed in living rooms, the storage cores must be heat-insulated and protected against accidental contact, because otherwise the stored heat would be released to the ambient air undesirably quickly and, on the other hand, every touch of the storage heater for the operator entails the risk of dangerous burns would.
  • the known electric storage heaters therefore all have an essentially closed protective housing, preferably composed of a plurality of metal sheets.
  • the memory core is arranged so that it cannot be touched in this protective housing.
  • An insulating layer which preferably consists of insulating plates, is also attached between the housing inner walls and the storage core.
  • the functionality of the electric storage heaters is as follows: The ceramic storage core is heated during the low-tariff night tariff period. The stored core slowly releases this stored heat into the ambient air to be heated up during the day. For this purpose, ambient air is sucked into the storage heater, passed over the storage core and expelled from the storage heater. The storage heater is therefore effective as a heat exchanger. To accelerate the heat exchange, a blower is also provided on the storage heater to accelerate the air flow to be heated.
  • Such an electric storage heater is known for example from DE-C-36 03 615.
  • thermal insulation mats have been used in the known storage heaters.
  • mineral fiber mats were used in places that allowed any wall thickness. These mineral fiber mats are inexpensive and, with the appropriate wall thickness, also have the required insulating properties.
  • soft heat insulation mats were used in the known storage heaters in areas with limited installation space. These soft thermal insulation mats have an extremely high insulating ability and can be designed with thin walls. From DE-A-2 611 115 a boiler is known which is thermally insulated by means of elastic insulating mats. However, the soft thermal insulation mats are high quality and accordingly expensive to buy.
  • DE-C-36 03 615 therefore proposes to manufacture at least the surfaces of an insulation block arranged below the storage core and facing the air flow from non-fibrous thermal insulation material.
  • Microporous silicon oxide is known as a fiber-free material for soft material thermal insulation boards.
  • the vermiculite insulation is also made, for example Römpp-Chemie-Lexikon, 9th edition, 1992, pp.4896f. ISBN 3-13-735109-X, Thieme Verlag, Stuttgart known. Vermiculite is also characterized by its good formability and dimensional stability DE-A-37 00 478 known.
  • a disadvantage of installation as insulating plates in a storage heater is that several hard insulating plates must be arranged horizontally and vertically to one another. Gaps often remain on the abutting surfaces of a vertically arranged and horizontally arranged hard insulating plate, that is to say in the region of the abutting edges of the insulating plates. These columns act as thermal bridges, so that heat escapes from the interior of the storage heater to the outside in an uncontrolled manner. So far, the sealing properties of such hard insulating plates have not been sufficient for electrical storage heating devices.
  • the invention is based on the problem of designing the hard insulating plates in such a way that their insulating effect also satisfies in the region of the abutting edges and such hard insulating plates are also suitable for use in storage heating devices. This object is achieved by the combination of features of claim 1.
  • the electric storage heater according to the invention also has the known heat storage core and the protective housing surrounding the storage core. Between the storage core and protective housing, the thermal insulation layer consisting of several fiber-free insulating plates is also attached.
  • the abutting edges of the insulating plates are designed as abutting surfaces according to the invention. As a result of this planar formation of the abutting edges, surface contact of the individual abutting surfaces occurs between two adjacent insulating plates in the final assembly state. This surface contact, which is to be dimensioned as large as possible, is effective in the manner of a surface seal. In this way, an absolutely heat-tight connection between the insulating plates is made.
  • the abutting surfaces of the insulating plates are developed in such a way that they are formed in the manner of a matrix and a patrix and, to a certain extent, interlock in the assembled state.
  • the abutting surfaces of the insulating plates according to claim 2 are consequently complementary to each other and interlock positively in the final assembly state. This form fit is effective in the manner of a labyrinth seal, so that the sealing effect in the joint areas is further improved.
  • a deformable sealing body is between the abutting surfaces of two adjacent insulating plates. Due to the surface pressure exerted by the abutting surfaces, this sealing body clings to the abutting surfaces and thus seals fine pores and uneven surfaces.
  • Suitable sealants are, for example, plastically deformable soft material plates (claim 4). The soft material adapts to the shape of the respective abutting surface when the neighboring insulating plates are braced against each other and thus provides a particularly good gap seal.
  • Also suitable as a sealant is elastically deformable, inorganic fiber fabric, quartz silk fabric or high-melting glass silk fabric is preferably used.
  • This fiber fabric is an elastic sealant and expediently has a fiber thickness of more than 5 ⁇ m.
  • This inorganic fiber fabric according to claim 5 is further developed according to claim 6 in that it is in the form of a fabric tube. These fabric hoses are placed in the butt joints of two adjacent insulating plates and laid flat, so that a slightly resilient insulating layer is created, which additionally increases the sealing effect, in particular the gap seal.
  • Vermiculite and microporous silicon oxide are particularly suitable for this.
  • Most of the side thermal insulation boards are hard insulating boards made of inorganically bound vermiculite and the vertical, upper and lower thermal insulation boards are high-density soft-body boards made of microporous silicon oxide.
  • other arrangements, combinations and materials are also conceivable both for the hard insulating boards and for the high-insulation soft-body boards and expressly form part of this invention.
  • water glass i.e. alkali silicate
  • the plates made of microporous silicon oxide can be produced by pressing and then sintering suitable starting materials.
  • Claim 10 relates to an advantageous pair of seals between a hard insulating plate and a high-insulation soft body plate.
  • the abutting surface of the hard insulating plate slightly compresses the abutting surface of the high-insulation soft-body panel, as a result of which the abutting surface of the hard insulating plate acts as a sealing edge.
  • Claims 11 to 13 relate to thermal insulation boards with cavities. These thermal insulation boards make it possible to accommodate fibrous, well-insulating materials in the cavities. Furthermore, the cavities are also suitable for holding any highly insulating insulating materials. In particular, the design according to claims 12 and 13 allows easy filling of the cavities with the insulating material.
  • the insulating plates are designed in two parts, one insulating plate part forming a bowl-shaped hollow shell, while the other insulating plate part forms a cover-like covering shell.
  • the cover shell can be placed on the hollow shell like a pot lid on a pot. When the cover shell is attached, the cavity is completely hermetically sealed off from the surroundings.
  • claim 13 proposes to incorporate several separate cavities into the insulating plate.
  • such separate cavities can also be filled with different insulating materials. This is useful if parts of the insulating plate have to be particularly well insulated, while other parts have less insulation. The insulation can thus be variably adapted to the respective requirements.
  • Claims 14 and 15 relate to through openings for lines.
  • Such lines can, for example, for the introduction of radiator rods, temperature sensors or the like. serve.
  • the inner surfaces of the passage openings are made of fiber-free material analogous to the bowl edges forming the outer walls of the cavities.
  • the insulating plates are therefore completely fiber-free not only with respect to their outer sides but also with respect to the inner sides of the passage openings and are therefore reliable.
  • the cross-sections of the through openings which are not filled by the lines are sealed with flange-like sealing plates.
  • the sealing plates are expediently welded to the insulating plates in the final assembly state. It is also possible to provide the sealing plates with counter brackets in such a way that the flange-like sealing plates lie flat on all sides on the insulating material walls, so that no undesired thermal bridges occur at these points.
  • the electric storage heater essentially consists of the protective housing, the heat storage core and the thermal insulation layer arranged between them.
  • the protective housing is formed from the side parts 1, 1 ', the housing rear wall 2, the housing base 3, the housing cover 4 and the housing front wall, not shown in FIG. 1.
  • the hard insulating plates 5 are firmly connected to the side parts 1, 1 '.
  • the insulation in the area of the housing cover 4 is realized by the hard insulating plate 5, while the high-insulation soft-body plate 6 is arranged in the area of the housing base 3.
  • the spacer 7 is also arranged between the high-insulation soft-body panel 6 and the housing base 3, the spacer 7 being designed as an air outlet grill in the region of the front wall, which is not shown in FIG.
  • the protective housing 8 assembled in FIG. 2 again has, according to FIG. 2, the housing rear wall 2, the housing cover 4, the housing base 3 and the housing front wall 9, not shown in FIG. 1.
  • FIG. 2 further shows the hard insulating plate 5 that insulates the housing front wall 9 from the heat storage core 10.
  • the housing rear wall 2 and FIG Housing cover 4 each isolated from the environment by means of a hard insulating plate 5.
  • the housing base 3 is insulated from the heat storage core 10 by means of the high-insulation soft-body plate 6. Additional high-insulation soft-body panels 6 are also provided in the area of the housing cover 4 and the rear wall 2 of the housing.
  • an installation space 11 is kept free for additional components.
  • the installation space 11 serves as a switch room.
  • FIG. 3 shows an embodiment with a vermiculite insulating plate 12 and three silicon oxide insulating plates 13.
  • the drawing plane of FIG. 3 is spanned by the vertical direction 14 and the horizontal direction 15.
  • Two of the silicon oxide insulating plates 13 run according to their cross section in FIG. 3 in the vertical direction 14 and thus correspond to the insulating plates in the area of the housing side parts 1, 1 '.
  • the vermiculite insulating plate 12 is arranged in the horizontal direction 15.
  • the third silicon oxide insulating plate 13 resting on the vermiculite insulating plate 12 likewise runs in the horizontal direction 15.
  • the vermiculite insulating plate 12 and the silicon oxide insulating plate 13 resting thereon correspond to the housing cover 4 according to the illustration in FIG. 3.
  • the seal between the insulating plates 12 , 13 is shown on the basis of the butt joint area in the upper left corner according to the circle IV in FIG. 4.
  • the silicon oxide insulating plates 13, which are made of microporous silicon oxide, are encased with a quartz or glass fiber fabric for protection.
  • the silicon oxide insulating plate 13 running in the vertical direction 14 in FIG. 4 has the bulge 16 in its abutting surface area.
  • the bulge 16 is complementary to the cranked abutting surface 17 of the vermiculite insulating plate 12 extending in the horizontal direction 15.
  • the vermiculite insulating plate 12 fits exactly in the manner of a cover into the space between the two silicon oxide insulating plates 13 running in the vertical direction 14 In terms of its weight, the vermiculite insulating plate 12 lies with its two cranked abutting surfaces 17 in the bulges 16 of the silicon oxide insulating plates 13 arranged in the vertical direction 14.
  • the third silicon oxide insulation plate 13, which rests on the vermiculite insulation plate 12 in the horizontal direction 15, serves to weigh down the vermiculite insulation plate 12 and as additional insulation.
  • FIG. 5 shows the joint area of a hard insulating plate 5 running in the vertical direction 14 with a vermiculite insulating plate 12 running in the horizontal direction 15, the vermiculite insulating plate 12 in turn being weighted down by a silicon oxide insulating plate 13 likewise running in the horizontal direction 15.
  • Both the abutting surface 17 of the vermiculite insulating plate 12 and the hard insulating plate abutting surface 18 are made flat according to the exemplary embodiment in FIG. 5.
  • the sealing strip 19 is inserted between the abutting surface 17 of the vermiculite insulating plate 12 and the hard insulating plate abutting surface 18.
  • the sealing strip 19 is made either of quartz silk fabric or high-melting glass silk fabric.
  • 5 shows the embodiment of a flattened fabric hose as a sealing strip 19.
  • FIG. 6 shows a vermiculite insulating plate 12 running in the vertical direction 14.
  • the vermiculite insulating plate 12 has bulges 16 which are double angled at their abutting regions 20. These bulges 16 in turn form a receiving channel for the silicon oxide insulating plates 13 arranged in the horizontal direction 15.
  • the silicon oxide insulating plates 13 arranged in the horizontal direction 15 likewise have double-angled abutting surfaces 17 in the abutting regions 20.
  • the vermiculite insulating plates 12 and the silicon oxide insulating plates 13 are thus designed in the joint areas in the manner of a matrix and a matrix. In the final assembly state, a bulge 16 and an abutting surface 17 each form a wide-sealing, form-fitting surface seal.
  • the right half of Fig. 6 shows another embodiment according to the invention.
  • the vermiculite insulating plate 12 arranged in the vertical direction 14 is made in two parts according to the right half of FIG. 6 and consists of the bowl-shaped hollow shell 21 and the cover shell 22 placed on the bowl-shaped hollow shell.
  • the cavities 23 are introduced into the hollow shell 21.
  • the cavities 23 serve for recording Highly insulating materials, for example pebble, perlite, expanded clay or expanded slate etc.
  • the cavities 23 are filled with the insulating material before assembly and then the cover shell 22 is placed on the hollow shell 21 and firmly connected to it. In this way, the cavities 23 are hermetically cut off from the ambient air.
  • the passage opening 24 for the line part 25 is shown in FIG. 6.
  • the passage opening 24 breaks through both the cover shell 22 and the hollow shell 21.
  • the outer walls 26 forming the bowl edges of the bowl-shaped hollow shell 21 form the inner surfaces 27 of the passage opening 24.
  • the cavities 23 are thus also completely insulated from the passage opening 24.
  • the line part 25 can be introduced into the passage opening 24.
  • the line part 25 carries the flange-shaped sealing body 28 on its side facing the storage core 10 in the final assembly state.
  • the flange-shaped sealing body 28 is located in the flange groove 29 introduced on the storage core side on the through opening 24.
  • FIG. 7 The right-hand half of the vertically arranged, two-part vermiculite insulating plate 12 according to FIG. 6 and the silicon oxide insulating plate 13 arranged in the horizontal direction 15 is shown in FIG. 7.
  • the abutting surface 17 of the silicon oxide insulating plate 13 arranged in the horizontal direction 15 is flattened according to FIG. 7.
  • the insulating lug 30 projects from the covering shell 22 into the gusset 31 formed by the abutting surface 17 of the silicon oxide insulating plate 13 and the outer wall 26 of the hollow shell 21.
  • the insulating nose 30 snaps into the gusset 31, so to speak, according to the lock-key principle.
  • FIG. 8 shows an embodiment that differs from FIG. 7.
  • the insulating nose 30 according to FIG. 8 is a projection which only projects beyond the outer wall 26.
  • the insulating effect is achieved in this embodiment by the sealing strip 19.
  • the sealing strip 19 is positioned between the outside of the outer wall 26 of the hollow shell 21 and the side surface of the silicon oxide insulating plate 13 arranged in the horizontal direction 15 facing the hollow shell 21.
  • the sealing strip 19 from FIG. 8 otherwise corresponds to the sealing strip 19 from FIG. 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)
  • Resistance Heating (AREA)
  • Thermal Insulation (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

  • Die Erfindung betrifft ein Elektro-Speicherheizgerät mit einem keramischen Wärme-Speicherkern. Der Speicherkern besteht hierbei aus einem Werkstoff mit hoher spezifischer Wärme, vorzugsweise aus Magnesia-Steinen. Aufgrund der hohen spezifischen Wärme ist der Speicherkern in der Lage, eine relativ große Wärmemenge aufzunehmen. Der Speicherkern wird hierbei auf ein Temperaturniveau von etwa 800°C aufgeheizt. Da die Speicherheizgeräte in Wohnräumen untergebracht sind, müssen die Speicherkerne gegenüber Ihrer Umgebung wärmeisoliert und berührungsgeschützt untergebracht sein, weil sonst einerseits die gespeicherte Wärme unerwünscht schnell an die Umgebungsluft abgegeben würde und andererseits jede Berührung des Speicherheizgerätes für den Bediener das Risiko von gefährlichen Verbrennungen mit sich bringen würde.
  • Die bekannten Elektro-Speicherheizgeräte verfügen deshalb sämtlich über ein im wesentlichen geschlossenes, vorzugsweise aus mehreren Blechtafeln zusammengesetztes Schutzgehäuse. In diesem Schutzgehäuse ist der Speicherkern berührungssicher angeordnet. Zwischen den Gehäuseinnenwänden und dem Speicherkern ist des weiteren eine vorzugsweise aus Isolierplatten bestehende Isolierschicht angebracht. Die Funktionsweise der Elektro-Speicherheizgeräte ist folgende: Während der tarifgünstigen Nachttarif-Periode wird der keramische Speicherkern aufgeheizt. Diese gespeicherte Wärme gibt der Speicherkern während des Tages langsam an die aufzuheizende Umgebungsluft ab. Hierfür wird Umgebungsluft in das Speicherheizgerät eingesaugt, über den Speicherkern geführt und aus dem Speicherheizgerät ausgestoßen. Das Speicherheizgerät ist folglich als Wärmeaustauscher wirksam. Zur Beschleunigung des Wärmeaustausches ist am Speicherheizgerät des weiteren ein Gebläse vorgesehen zur Beschleunigung des zu erwärmenden Luftstromes.
  • Da der Luftstrom in das Geräteinnere eindringen muß und das Geräteinnere nach dem Wärmeaustausch auch wieder verlassen muß, ist ein Kontakt des Luftstromes auch mit dem Isoliermaterial unvermeidlich. Ein derartiges Elektro-Speicherheizgerät ist beispielsweise bekannt aus
       DE-C-36 03 615.
  • Aus DE-C-36 03 615 ist ferner bekannt, daß ein Stoffaustausch zwischen dem Isoliermaterial und dem Luftstrom unerwünscht ist. Insbesondere muß gewährleistet sein, daß keinerlei Faserstoffe in den Luftstrom gelangen und so die Umgebungsluft verschmutzen. Dies gilt um so mehr für krebserregende Faserstoffe, die in der Regel besonders leicht mit der Atemluft inhaliert werden. Derartige Faserstoffe haben in der Regel einen Durchmesser von bis zum 5µm.
  • Bislang wurden bei den bekannten Speicherheizgeräten zwei Arten von Wärmeisoliermatten verwendet. Zum einen wurden an Stellen, die eine beliebige Wandstärke zuließen, Mineralfasermatten verwendet. Diese Mineralfasermatten sind kostengünstig und weisen bei entsprechender Wandstärke auch die erforderlichen Isoliereigenschaften auf. Zum anderen wurden bei den bekannten Speicherheizgeräten in Bereichen mit begrenztem Einbauraum Weichstoff-Wärmedämmatten verwendet. Diese Weichstoff-Wärmedämmatten weisen eine extrem hohe Isolierfähigkeit auf und können entsprechend dünnwandig ausgeführt werden. Aus DE-A-2 611 115 ist ein Heizkessel bekannt, der mittels elastischen Isoliermatten wärmeisoliert wird. Die Weichstoff-Wärmedämmatten sind jedoch hochwertig und dementsprechend teuer in der Anschaffung.
  • Die erwähnten Mineralfasermatten haben sich im Hinblick auf die modernen Anforderungen, insbesondere die erforderliche Unterdrückung eines Stoffaustausches zwischen Isoliermatten und Luftstrom als ungeeignet erwiesen.
  • In DE-C-36 03 615 ist deshalb vorgeschlagen, zumindest die dem Luftstrom zugewandten Flächen eines unterhalb des Speicherkerns angeordneten Isolationsblocks aus nicht-fasrigem Wärmedämmaterial herzustellen. Als faserfreier Werkstoff für Weichstoff-Wärmedämmplatten ist mikroporöses Siliziumoxid bekannt. Für Isolierhartplatten ist ferner der Dämmstoff Vermiculite beispielsweise aus
       Römpp-Chemie-Lexikon, 9. Aufl., 1992, S.4896f.
       ISBN 3-13-735109-X, Thieme Verlag, Stuttgart bekannt. Vermiculite ist des weiteren wegen seiner guten Formbarkeit und Formbeständigkeit aus
       DE-A-37 00 478
    bekannt.
  • Aufgrund dieser hohen Formbeständigkeit sind diese Hartisolierplatten steif und inkompressibel. Nachteilig beim Einbau als Isolierplatten in ein Speicherheizgerät ist hierbei, daß mehrere Hartisolierplatten horizontal und vertikal zueinander angeordnet sein müssen. An den Stoßflächen jeweils einer vertikal angeordneten und horizontal angeordneten Hartisolierplatte, also im Bereich der Stoßkanten der Isolierplatten bleiben häufig Spalte bestehen. Diese Spalten sind als Wärmebrücken wirksam, so daß Wärme in unkontrollierter Weise aus dem Innenraum des Speicherheizgerätes nach außen gelangt. Die Dichtungseigenschaften derartiger Hartisolierplatten sind für Elektro-Speicherheizgeräte also bislang nicht ausreichend.
  • Der Erfindung liegt die Problemstellung zugrunde, die Hartisolierplatten so zu gestalten, daß ihre Isolierwirkung auch im Bereich der Stoßkanten befriedigt und sich derartige Hartisolierplatten auch für den Einsatz in Speicherheizgeräten eignen. Diese Aufgabe ist durch die Merkmalskombination des Anspruchs 1 gelöst.
  • Gemäß Anspruch 1 weist auch das erfindungsmäßige Elektro-Speicherheizgerät den bekannten Wärme-Speicherkern und das den Speicherkern umschließende Schutzgehäuse auf. Zwischen Speicherkern und Schutzgehäuse ist ferner die aus mehreren faserfreien Isolierplatten bestehende Wärmeisolierschicht angebracht. Die Stoßkanten der Isolierplatten sind gemäß der Erfindung als Stoßflächen ausgebildet. Durch diese flächige Ausbildung der Stoßkanten entsteht im Montageendzustand zwischen zwei jeweils benachbarten Isolierplatten ein Flächenkontakt der einzelnen Stoßflächen. Dieser möglichst großflächig zu bemessende Flächenkontakt ist nach Art einer Flächendichtung wirksam. Auf diese Weise ist eine absolut wärmedichte Verbindung zwischen den Isolierplatten hergestellt.
  • Nach Anspruch 2 sind die Stoßflächen der Isolierplatten derart weitergebildet, daß sie nach Art von Matritze und Patritze augebildet sind und im zusammengesetzten Zustand gewissermaßen ineinandergreifen. Die Stoßflächen der Isolierplatten nach Anspruch 2 sind folglich komplementär zueinander ausgebildet und greifen im Montageendzustand formschlüssig ineinander. Dieser Formschluß ist nach Art einer Labyrinth-Dichtung wirksam, so daß die Dichtwirkung in den Stoßbereichen weiter verbessert ist.
  • Eine zusätzliche Steigerung der Dichtwirkung ist durch die in den Ansprüchen 3 bis 6 vorgeschlagenen Maßnahmen erreichbar. Nach Anspruch 3 liegt zwischen den Stoßflächen zweier benachbarter Isolierplatten ein verformbarer Dichtkörper ein. Dieser Dichkörper schmiegt sich durch die von den Stoßflächen ausgeübte Flächenpressung an die Stoßflächen an und dichtet so auch feine Poren und Flächenunebenheiten ab. Als Dichtmittel eignen sich beispielsweise plastisch verformbare Weichmaterialplatten (Anspruch 4). Das Weichmaterial paßt sich beim Verspannen der benachbarten Isolierplatten gegeneinander der Form der jeweiligen Stoßfläche an und bewirkt somit eine besonders gute Spaltabdichtung. Ebenso als Dichtmittel geeignet ist elastisch verformbares, anorganisches Fasergewebe, wobei Quarzseidengewebe oder auch hochschmelzendes Glasseidengewebe bevorzugt Anwendung findet. Dieses Fasergewebe ist ein elastisches Dichtmittel und weist zweckmäßigerweise eine Faserstärke von mehr als 5 µm auf. Dieses anorganische Fasergewebe nach Anspruch 5 ist nach Anspruch 6 dadurch weitergebildet, daß es in Form eines Gewebeschlauches vorliegt. Diese Gewebeschläuche sind in die Stoßfugen zweier benachbarter Isolierplatten eingebracht und flachgelegt, so daß eine leicht federnde Isolierschicht entsteht, was die Dichtwirkung, insbesondere die Spaltabdichtung, zusätzlich steigert.
  • Die Ansprüche 7 bis 10 betreffen besonders geeigente Werkstoffe für die Isolierplatten. Hierfür eignen sich insbesondere Vermiculite und mikroporöses Siliziumoxid. Zumeist sind die seitlichen Wärmedämmplatten Hartisolierplatten aus anorganisch gebundenem Vermiculite und die vertikalen, oberen und unteren Wärmedämmplatten Hochdämm-Weichkörperplatten aus mikroporösem Siliziumoxid gefertigt. Jedoch sind auch andere Anordnungen, Kombinationen und Werkstoffe sowohl für die Hartisolierplatten als auch für die Hochdämm-Weichkörperplatten denkbar und ausdrücklich Bestandteil dieser Erfindung. Zum anorganischen Abbinden des Vermiculites kommt beispielsweise Wasserglas, also Alkalisilikat, in Betracht. Die Platten aus mikroporösem Siliziumoxid können durch Pressen und anschließendes Sintern geeigneter Ausgangsstoffe hergestellt werden. Anspruch 10 betrifft eine vorteilhafte Dichtungs-Paarung zwischen einer Hartisolierplatte und einer Hochdämm-Weichkörperplatte. Die Stoßfläche der Hartisolierplatte komprimiert hier die Stoßfläche der Hochdämm-Weichkörperplatte geringfügig, wodurch die Stoßfläche der Hartisolierplatte gleichsam als Dichtkante wirksam ist.
  • Die Ansprüche 11 bis 13 betreffen Wärmedämmplatten mit Hohlräumen. Diese Wärmedämmplatten ermöglichen es, in den Hohlräumen auch faserige, gut isolierende Werkstoffe aufzunehmen. Des weiteren eignen sich die Hohlräume auch zur Aufnahme jedweder hochwärmedämmender Isolierstoffe. Insbesondere die Gestaltung nach den Ansprüchen 12 und 13 gestattet ein einfaches Befüllen der Hohlräume mit dem Isolierwerkstoff. Die Isolierplatten sind hierbei zweiteilig ausgeführt, wobei ein Isolierplattenteil eine schüsselförmige Hohlschale bildet, während der andere Isolierplattenteil eine deckelartige Abdeckschale bildet. Die Abdeckschale ist hierbei auf die Hohlschale ähnlich wie ein Topfdeckel auf einen Topf aufsetzbar. Bei aufgesetzter Abdeckschale ist der Hohlraum gegenüber der Umgebung vollständig hermetisch abgeriegelt. Da zu große Hohlräume im Extremfall dazu führen könnten, daß die Isolierplatte in sich instabil wird, schlägt Anspruch 13 vor, mehrere separate Hohlräume in die Isolierplatte einzuarbeiten. Zudem können derart separate Hohlräume auch mit unterschiedlichen Isoliermaterialien befüllt werden. Dies bietet sich an, wenn Teilbereiche der Isolierplatte besonders gut isoliert sein müssen, während andere Teilbereiche mit einer weniger guten Isolierung auskommen. Die Isolierung ist somit variabel an die jeweiligen Anforderungen anpaßbar.
  • Die Ansprüche 14 und 15 betreffen Durchtrittsöffnungen für Leitungen. Derartige Leitungen können beispielsweise zur Einbringung von Heizkörperstäben, Temperaturfühlern o.dgl. dienen. Hierbei sind die Innenflächen der Durchtrittsöffnungen analog zu den die Außenwände der Hohlräume bildenden Schüsselrändern aus faserfreiem Werkstoff. Die Isolierplatten sind somit nicht nur gegenüber ihren Außenseiten sondern auch gegenüber den Innenseiten der Durchtrittsöffnungen völlig faserfrei und damit betriebssicher. Im Montageendzustand sind die von den Leitungen nicht ausgefüllten Querschnitte der Durchtrittsöffnungen mit flanschartigen Dichtungsplatten verschlossen. Die Dichtungsplatten sind hierfür zweckmäßigerweise mit den Isolierplatten im Montageendzustand verschweißt. Ebenso ist es möglich, die Dichtungsplatten mit Gegenhalterungen zu versehen derart, daß die flanschartigen Dichtungsplatten allseits plan an den Isolierstoffwänden anliegen, so daß an diesen Stellen keine unerwünschten Wärmebrücken entstehen.
  • Anhand der Zeichnungen wird die Erfindung mit weiteren wesentlichen Einzelheiten näher erläutert. Es zeigen:
  • Fig. 1
    eine Explosionsdarstellung des Schutzgehäuses und der Wärmeisolierschicht,
    Fig. 2
    eine schematische, geschnittene Seitenansicht des Elektro-Speicherheizgeräts,
    Fig. 3
    die schematische Darstellung wärmedicht aneinanderstoßender Isolierplatten.
    Fig. 4
    die Detaildarstellung des Stoßbereichs der Isolierplatten gemäß dem Kreis IV aus Fig. 3,
    Fig. 5
    den Stoßbereich zweier benachbarter Isolierplatten mit einliegendem Dichtstreifen,
    Fig. 6
    eine weitere Ausführungsform wärmedicht aneinanderstoßender Isolierplatten, teilweise mit Hohlräumen,
    Fig. 7
    die Detaildarstellung des Stoßbereichs gemäß Kreis VII aus Fig. 6,
    Fig. 8
    den Stoßbereich zweier Isolierplatten mit einliegenden Dichtstreifen.
  • Das Elektro-Speicherheizgerät besteht im wesentlichen aus dem Schutzgehäuse, dem Wärme-Speicherkern und der dazwischen angeordneten Wärmeisolierschicht. Das Schutzgehäuse ist gebildet aus den Seitenteilen 1,1', der Gehäuserückwand 2, dem Gehäuseboden 3, dem Gehäusedeckel 4 und der in Fig. 1 nicht dargestellten Gehäusevorderwand. Die Hartisolierplatten 5 sind mit den Seitenteilen 1,1' fest verbunden. Die Isolierung im Bereich des Gehäusedeckels 4 ist durch die Hartisolierplatte 5 realisiert, während im Bereich des Gehäusebodens 3 die Hochdämm-Weichkörperplatte 6 angeordnet ist. Zwischen der Hochdämm-Weichkörperplatte 6 und dem Gehäuseboden 3 ist zudem der Distanzhalter 7 angeordnet, wobei der Distanzhalter 7 im Bereich der in Fig. 1 nicht dargestellten Vorderwand als Luftauslaßgrill ausgebildet ist.
  • Das in Fig. 2 zusammengesetzte Schutzgehäuse 8 weist wiederum gemäß Fig. 2 die Gehäuserückwand 2, den Gehäusedeckel 4, den Gehäuseboden 3 sowie die in Fig. 1 nicht dargestellte Gehäusevorderwand 9 auf. Fig. 2 zeigt des weiteren die die Gehäusevorderwand 9 gegenüber dem Wärme-Speicherkern 10 isolierende Hartisolierplatte 5. Ebenso wie die Gehäusevorderwand 9 sind auch die Gehäuserückwand 2 und der Gehäusedeckel 4 jeweils mittels einer Hartisolierplatte 5 gegenüber der Umgebung isoliert. Der Gehäuseboden 3 ist mittels der Hochdämm-Weichkörperplatte 6 gegenüber dem Wärmespeicherkern 10 isoliert. Auch im Bereich des Gehäusedeckels 4 und der Gehäuserückwand 2 sind noch zusätzliche Hochdämm-Weichkörperplatten 6 vorgesehen.
  • Sowohl zwischen der Gehäuserückwand 2 und der zugeordneten Hochdämm-Weichkörperplatte 6 als auch zwischen dem Gehäuseboden 3 und der zugeordneten Hochdämm-Weichkörperplatte 6 ist jeweils ein Einbauraum 11 für zusätzliche Komponenten freigehalten. Im Bereich der Rückwand 2 dient der Einbauraum 11 als Schaltraum.
  • Fig. 3 zeigt ein Ausführungsbeispiel mit einer Vermiculite-Isolierplatte 12 und drei Siliziumoxid-Isolierplatten 13. Die Zeichenebene der Fig. 3 ist aufgespannt von der Vertikalrichtung 14 und der Horinzontalrichtung 15. Zwei der Siliziumoxid-Isolierplatten 13 verlaufen ihrem Querschnitt nach in Fig. 3 in Vertikalrichtung 14 und entsprechen so den Isolierplatten im Bereich der Gehäuseseitenteile 1,1'. In Horizontalrichtung 15 ist die Vermiculite-Isolierplatte 12 angeordnet. Ebenfalls in Horizontalrichtung 15 verläuft die auf der Vermiculite-Isolierplatte 12 aufliegende dritte Siliziumoxid-Isolierplatte 13. Die Vermiculite-Isolierplatte 12 und die darauf ruhende Siliziumoxid-Isolierplatte 13 entsprechen nach der Darstellung der Fig. 3 dem Gehäusedeckel 4. Die Abdichtung zwischen den Isolierplatten 12,13 ist anhand des Stoßfugenbereiches in der linken oberen Ecke gemäß dem Kreis IV in Fig. 4 dargestellt. Die aus mikroporösem Siliziumoxid bestehenden Siliziumoxid-Isolierplatten 13 sind zum Schutz mit einem Quarz- oder Glasfasergewebe umhüllt. Die in Fig. 4 in Vertialrichtung 14 verlaufende Siliziumoxid-Isolierplatte 13 weist in ihrem Stoßflächenbereich die Ausbuchtung 16 auf. Die Ausbuchtung 16 ist komplementär ausgebildet zur gekröpften Stoßfläche 17 der in Horizontalrichtung 15 verlaufenden Vermiculite-Isolierplatte 12. Die Ausbuchtung 16 im Stoßbereich der Siliziumoxid-Isolierplatte 13 in Fig. 4 bildet über den senkrecht zu der von der Vertikalrichtung 14 und der Horizontalrichtung 15 aufgespannten Zeichnungsebene stehenden Querschnitt des Stoßbereichs der Siliziumoxid-Isolierplatte 13 eine Aufnahmerinne für die in Horizontalrichtung 15 angeordnete Vermiculite-Isolierplatte 12. Die Vermiculite-Isolierplatte 12 paßt nach Art eines Deckels genau in den Raum zwischen den beiden in Vertikalrichtung 14 verlaufenden Siliziumoxid-Isolierplatten 13. Schon aufgrund ihres Gewichtes liegt die Vermiculite-Isolierplatte 12 mit ihren beiden gekröpften Stoßflächen 17 formschlüssig in den Ausbuchtungen 16 der in Vertikalrichtung 14 angeordneten Siliziumoxid-Isolierplatten 13 ein. Zur Beschwerung der Vermiculite-Isolierplatte 12 und als zusätzliche Isolierung dient die dritte, in Horizontalrichtung 15 auf der Vermiculite-Isolierplatte 12 ruhende Siliziumoxid-Isolierplatte 13.
  • Fig. 5 zeigt den Stoßbereich einer in Vertikalrichtung 14 verlaufenden Hartisolierplatte 5 mit einer in Horizontalrichtung 15 verlaufenden Vermiculite-Isolierplatte 12, wobei die Vermiculite-Isolierplatte 12 wiederum durch eine ebenfalls in Horizontalrichtung 15 verlaufende Siliziumoxid-Isolierplatte 13 beschwert ist. Sowohl die Stoßfläche 17 der Vermiculite-Isolierplatte 12 als auch die Hartisolierplatten-Stoßfläche 18 sind nach dem Ausführungsbeispiel der Fig. 5 plan ausgeführt. Zur Spaltabdichtung ist gemäß Fig. 5 der Dichtstreifen 19 zwischen die Stoßfläche 17 der Vermiculite-Isolierplatte 12 und die Hartisolierplatten-Stoßfläche 18 eingebracht. Der Dichtstreifen 19 ist entweder aus Quarzseidengewebe oder hochschmelzendem Glasseidengewebe gefertigt. Fig. 5 zeigt die Ausführungsform eines flachgedrückten Gewebeschlauches als Dichtstreifen 19.
  • Der linke Teil der Fig. 6 zeigt eine in Vertikalrichtung 14 verlaufende Vermiculite-Isolierplatte 12. Die Vermiculite-Isolierplatte 12 weist an ihren Stoßbereichen 20 doppelt abgewinkelte Ausbuchtungen 16 auf. Diese Ausbuchtungen 16 bilden wiederum eine Aufnahmerinne für die in Horizontalrichtung 15 angeordneten Siliziumoxid-Isolierplatten 13. Die in Horizontalrichtung 15 angeordneten Siliziumoxid-Isolierplatten 13 weisen ebenfalls doppel abgewinkelte Stoßflächen 17 in den Stoßbereichen 20 auf. Die Vermiculite-Isolierplatten 12 und die Siliziumoxid-Isolierplatten 13 sind also in den Stoßbereichen nach Art von Matritze und Patritze ausgestaltet. Im Montageendzustand bilden jeweils eine Ausbuchtung 16 und eine Stoßfläche 17 eine breit dichtende formschlüssige Flächendichtung.
  • Die rechte Hälfte von Fig. 6 zeigt ein weiteres Ausführungsbeispiel gemäß der Erfindung. Die in Vertikalrichtung 14 angeordneten Vermiculite-Isolierplatte 12 ist gemäß der rechten Hälfte von Fig. 6 zweiteilig ausgeführt und besteht aus der schüsselförmigen Hohlschale 21 und der auf die schüsselförmige Hohlschale aufgesetzten Abdeckschale 22. In die Hohlschale 21 eingebracht sind die Hohlräume 23. Die Hohlräume 23 dienen zur Aufnahme hochdämmender Werkstoffe, beispielsweise Kieselgrur, Perlite, Blähton oder Blähschiefer etc. Die Hohlräume 23 werden hierzu vor der Montage mit dem Isolierwerkstoff gefüllt und anschließend wird die Abdeckschale 22 auf die Hohlschale 21 aufgesetzt und mit dieser fest verbunden. Die Hohlräume 23 sind auf diese Weise hermetisch von der Umgebungsluft abgeschnitten.
  • Des weiteren ist in Fig. 6 die Durchtrittsöffnung 24 für das Leitungsteil 25 dargestellt. Die Durchtrittsöffnung 24 durchbricht sowohl die Abdeckschale 22 als auch die Hohlschale 21. Hierbei bilden die die Schüsselränder der schüsselartig ausgebildeten Hohlschale 21 bildenden Außenwände 26 die Innenflächen 27 der Durchtrittsöffnung 24. Die Hohlräume 23 sind somit auch gegenüber der Durchtrittsöffnung 24 vollständig isoliert.
  • In die Durchtrittsöffnung 24 einbringbar ist das Leitungsteil 25. Das Leitungsteil 25 trägt an seiner dem Speicherkern 10 im Montageendzustand zugewandten Seite den flanschförmigen Dichtkörper 28. Der flanschförmige Dichtkörper 28 liegt im Montageendzustand in der speicherkernseitig an der Durchtrittsöffnung 24 eingebrachten Flanschnut 29 ein.
  • Der Stoßbereich der vertikal angeordneten, zweiteiligen Vermiculite-Isolierplatte 12 gemäß Fig. 6, rechte Hälfte und der in Horizontalrichtung 15 angeordneten Siliziumoxid-Isolierplatte 13 ist in Fig. 7 dargestellt. Die Stoßfläche 17 der in Horizontalrichtung 15 angeordnetten Siliziumoxid-Isolierplatte 13 ist gemäß Fig. 7 abgeflacht. Entsprechend dieser Abflachung 17 ragt aus der Abdeckschale 22 die Isoliernase 30 in den von der Stoßfläche 17 der Siliziumoxid-Isolierplatte 13 und der Außenwand 26 der Hohlschale 21 gebildeten Zwickel 31 hinein. Die Isoliernase 30 rastet gewissermaßen nach dem Schloß-Schlüssel-Prinzip in den Zwickel 31 hinein.
  • Fig. 8 zeigt eine von Fig. 7 abweichende Ausführungsform. Die Isoliernase 30 gemäß Fig. 8 ist ein lediglich die Außenwand 26 überragender Vorsprung. Die Isolierwirkung wird bei dieser Ausführungsform durch den Dichtstreifen 19 erreicht. Der Dichtstreifen 19 ist zwischen der Außenseite der Außenwand 26 der Hohlschale 21 und der der Hohlschale 21 zugewandten Seitenfläche der in Horizontalrichtung 15 angeordneten Siliziumoxid-Isolierplatte 13 positioniert. Der Dichtstreifen 19 aus Fig. 8 entspricht ansonsten dem Dichtstreifen 19 aus Fig. 5.
  • Bezugszeichenliste
  • 1,1'
    Seitenteil
    2
    Gehäuserückwand
    3
    Gehäuseboden
    4
    Gehäusedeckel
    5
    Hartisolierplatte
    6
    Hochdämm-Weichkörperplatte
    7
    Distanzhalter
    8
    Schutzgehäuse
    9
    Gehäusevorderwand
    10
    Wärme-Speicherkern
    11
    Einbauraum
    12
    Vermiculite- Isolierplatte
    13
    Siliziumoxid-lsolierplatte
    14
    Vertikalrichtung
    15
    Horizontalrichtung
    16
    Ausbuchtung
    17
    Stoßfläche
    18
    Hartisolierplatten-Stoßfläche
    19
    Dichtstreifen
    20
    Stoßbereich
    21
    Hohlschale
    22
    Abdeckschale
    23
    Hohlraum
    24
    Durchtrittsöffnung
    25
    Leitungsteil
    26
    Außenwand
    27
    Innenfläche
    28
    Dichtkörper
    29
    Flanschnut
    30
    Isoliernase
    31
    Zwickel

Claims (15)

  1. Elektro-Speicherheizgerät
    a) mit einem Wärme-Speicherkern (10)
    b) mit einem den Speicherkern (10) im wesentlichen umschließenden Schutzgehäuse (8) und
    c) mit einer
    c1) den Speicherkern (10) wärmeisolierenden,
    c2) zwischen dem Speicherkern (10) und dem Schutzgehäuse (8) angeordneten,
    Wärmeisolierschicht, dadurch gekennzeichnet,
    d) daß die Wärmeisolierschicht aus mehreren Isolierplatten (5,6,12,13) besteht,
    e) daß die den Luftstrom der aufzuheizenden Luft kontaktierenden Flächen der Isolierplatten aus nicht-faserigem Werkstoff bestehen und
    f) daß die Isolierplatten im Montageendzustand an ihren Stoßflächen (17) einen wärmedichten Flächenkontakt bilden.
  2. Speicherheizgerät nach Anspruch 1,
       dadurch gekennzeichnet,
    daß die Stoßflächen (17) der Isolierplatten (5,6,12,13) nach Art von Matritze und Patritze in ihrer Querschnittsform derart aneinander angepaßt sind, daß sie im Montageendzustand formschlüssig ineinandergreifen zur wärmedichten Verbindung einander benachbarter Isolierplatten (5,6,12,13) im Stoßflächenbereich (17).
  3. Speicherheizgerät nach Anspruch 2,
       dadurch gekennzeichnet,
    daß zwischen den Stoßflächen (17) zweier benachbarter Isolierplatten (5,6,12,13) ein verformbares Dichtmittel zur Verbesserung der Spaltabdichtung einliegt.
  4. Speicherheizgerät nach Anspruch 3,
       dadurch gekennzeichnet,
    daß das Dichtmittel eine plastisch verformbare Weichmaterialplatte ist.
  5. Speicherheizgerät nach Anspruch 3,
       dadurch gekennzeichnet,
    daß das Dichtmittel ein elastisch verformbares, anorganisches Fasergewebe mit einer Faserstärke von mehr als 5 µm ist.
  6. Speicherheizgerät nach Anspruch 3,
       dadurch gekennzeichnet,
    daß das Fasergewebe ein Gewebeschlauch ist.
  7. Speicherheizgerät nach einem oder mehreren der vorhergehenden Ansprüche,
       dadurch gekennzeichnet,
    daß die Isolierplatten (5,6,12,13) als Hartisolierplatten (5) ausgebildet sind und vorzugsweise aus anorganisch gebundenem Vermiculite bestehen.
  8. Speicherheizgerät nach einem oder mehreren der vorhergehenden Ansprüche,
       dadurch gekennzeichnet,
    daß die Isolierplatten (5,6,12,13) als Hochdämm-Weichkörperplatten (6) ausgebildet sind und vorzugsweise aus mikroporösem Siliziumoxid bestehen.
  9. Speicherheizgerät nach einem oder mehreren der vorhergehenden Ansprüche,
       dadurch gekennzeichnet,
    daß die Isolierschicht teilweise aus Hartisolierplatten (5) und teilweise aus Hochdämm-Weichkörperplatten (6) besteht.
  10. Speicherheizgerät nach Anspruch 9,
       dadurch gekennzeichnet,
    daß sich die Stoßflächen (17) der Hartisolierplatten (5) im Montageendzustand an die Stoßflächen der Hochdämm-Weichkörperplatten (6) anschmiegen derart, daß die Stoßflächen (17) der Hochdämm-Weichkörperplatten (6) vom Flächendruck der Stoßflächen (17) der Hartisolierplatten (5) komprimiert sind zur Spaltabdichtung.
  11. Speicherheizgerät nach einem oder mehreren der vorhergehenden Ansprüche,
       dadurch gekennzeichnet,
    - daß in die Isolierplatten (5,6,12,13) Hohlräume (23) eingebracht sind und
    - daß die Hohlräume (23) mit hochdämmendem Isolierwerkstoff ausfüllbar sind.
  12. Speicherheizgerät nach Anspruch 11,
       dadurch gekennzeichnet,
    daß die Isolierplatten (5,6,12,13) aus einer schüsselförmigen Hohlschale (21) zur Aufnahme des Isolierwerkstoffes und aus einer deckelartigen, auf die Hohlschale (21) aufsetzbaren Abdeckschale (22) zusammensetzbar sind.
  13. Speicherheizgerät nach Anspruch 11 und/oder nach Anspruch 12,
       dadurch gekennzeichnet,
    daß die Isolierplatte (5,6,12,13) mehrere separate Hohlräume (23) aufweist.
  14. Speicherheizgerät nach Anspruch 13,
       dadurch gekennzeichnet,
    daß in die Abdeckschale (22) Durchtrittsöffnungen (24) für Leitungen (25) eingebracht sind und daß die die Schüsselränder bildenden Außenwände (26) der Hohlräume (23) die Innenfläche (27) der Durchtrittsöffnungen (24) in den Hohlschalen (21) bilden.
  15. Speicherheizgerät nach Anspruch 14
       dadurch gekennzeichnet,
    daß die Leitungen (25) mit flanschartigen Dichtkörpern (28) versehen sind zum isolierenden Verschluß der Durchtrittsöffnungen (24) im Montageendzustand.
EP92250234A 1991-08-31 1992-08-28 Wärmeisoliertes Elektro-Speicherheizgerät Expired - Lifetime EP0530933B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4128980 1991-08-31
DE4128980 1991-08-31
DE9203839U 1992-03-23
DE9203839 1992-03-23

Publications (2)

Publication Number Publication Date
EP0530933A1 EP0530933A1 (de) 1993-03-10
EP0530933B1 true EP0530933B1 (de) 1997-03-05

Family

ID=25906874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92250234A Expired - Lifetime EP0530933B1 (de) 1991-08-31 1992-08-28 Wärmeisoliertes Elektro-Speicherheizgerät

Country Status (5)

Country Link
EP (1) EP0530933B1 (de)
AT (1) ATE149666T1 (de)
DE (1) DE59208098D1 (de)
ES (1) ES2041239T1 (de)
GR (1) GR930300090T1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343056A1 (de) * 1993-12-16 1995-06-22 Wacker Chemie Gmbh Faserfreie, wärmedämmende Verbundplatte
US7672932B2 (en) 2005-08-24 2010-03-02 Yahoo! Inc. Speculative search result based on a not-yet-submitted search query

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1323627A (fr) * 1962-02-27 1963-04-12 Perfectionnement apporté aux appareils de chauflage par accumulation
GB1092621A (en) * 1964-10-20 1967-11-29 Chidlow And Company Ltd E Improvements in or relating to electrical thermal storage heaters
DE2611115C3 (de) * 1976-03-17 1979-04-19 Hans 3559 Battenberg Viessmann Isoliermantel, insbesondere für Heizungskessel
DE3603615A1 (de) * 1986-02-06 1987-08-13 Stiebel Eltron Gmbh & Co Kg Waermespeicherheizgeraet

Also Published As

Publication number Publication date
GR930300090T1 (en) 1993-09-30
EP0530933A1 (de) 1993-03-10
ATE149666T1 (de) 1997-03-15
ES2041239T1 (es) 1993-11-16
DE59208098D1 (de) 1997-04-10

Similar Documents

Publication Publication Date Title
DE19859084C1 (de) Mikroporöser Wärmedämmkörper
CH651117A5 (de) Traegerplatte fuer scheibenbremsenreibbloecke, insbesondere fuer schienenfahrzeuge.
EP1820931A1 (de) Brandschutzverglasung
DE3020326C2 (de) Strahlungsheizkörper mit einer elektrischen Heizwendel, insbesondere für eine Glaskeramik-Kochplatte
WO2001004449A1 (de) Feuerhemmendes flächenelement mit mindestens zwei lichtdurchlässigen brandschutz-glasplatten
EP0530933B1 (de) Wärmeisoliertes Elektro-Speicherheizgerät
EP0102408A1 (de) Isolierelement
DE19513373C2 (de) Außenwandelement für Gebäude
EP0562554B1 (de) Heizgerät, insbesondere elektrisches Speicherheizgerät
DE3728055A1 (de) Kombinations-schutzraum
DE19734959C2 (de) Ofenmuffeltür mit Wärmeisolationskörper zur Zwischenscheibenhalterung
DE3219392C2 (de)
DE19801079C2 (de) Kamin oder Ofen für den Hausbereich
EP0154232B1 (de) Koksofentür mit separatem Wärmeschutzschild
DE9412349U1 (de) Kühldecke
DE2346548C3 (de) Herd mit einer von Kühlluftkanälen umgebenen Backofenmuffel
DE20009866U1 (de) Be- und Entlüftungsanlage für Gebäude und Baueinheit zur Herstellung ihrer Be- und Entlüftungsleitung
DE3546265C2 (de)
DE3051009C2 (de)
DE4401692A1 (de) Wärmedämmung für ein Elektro-Speicherheizgerät
DE1149493B (de) Transportabler Sauna-Ofen
AT287980B (de) Außenverkleidung für Heizkessel oder Speicherbehälter
EP0432714A1 (de) Brandschutzvorrichtung für temperaturempfindliche Einrichtungen, insbesondere Gasleitungen aus Blei und Kabelführungen
DE202018003850U1 (de) Brandschutzvorrichtung für eine Feuerstätte.
DE29724133U1 (de) Ofenmuffeltür mit Wärmeisolationskörper zur Zwischenscheibenhalterung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT

GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
17P Request for examination filed

Effective date: 19930724

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2041239

Country of ref document: ES

Kind code of ref document: T1

17Q First examination report despatched

Effective date: 19950622

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19970305

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970305

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970305

Ref country code: GB

Effective date: 19970305

Ref country code: DK

Effective date: 19970305

REF Corresponds to:

Ref document number: 149666

Country of ref document: AT

Date of ref document: 19970315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59208098

Country of ref document: DE

Date of ref document: 19970410

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 72289

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19970605

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970924

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: STIEBEL ELTRON GMBH & CO.KG

Effective date: 19971204

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 72289

Country of ref document: IE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20001005

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100830

Year of fee payment: 19

Ref country code: AT

Payment date: 20100820

Year of fee payment: 19

Ref country code: FR

Payment date: 20100901

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100823

Year of fee payment: 19

BERE Be: lapsed

Owner name: KULMBACHER KLIMAGERATE-WERK G.M.B.H. *KKW

Effective date: 20110831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59208098

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 149666

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301