EP0519772B1 - Microwave antenna with optoelectronical controlled scanning - Google Patents

Microwave antenna with optoelectronical controlled scanning Download PDF

Info

Publication number
EP0519772B1
EP0519772B1 EP92401383A EP92401383A EP0519772B1 EP 0519772 B1 EP0519772 B1 EP 0519772B1 EP 92401383 A EP92401383 A EP 92401383A EP 92401383 A EP92401383 A EP 92401383A EP 0519772 B1 EP0519772 B1 EP 0519772B1
Authority
EP
European Patent Office
Prior art keywords
array
photoconductive elements
elements
elementary
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92401383A
Other languages
German (de)
French (fr)
Other versions
EP0519772A1 (en
Inventor
Georges Cachier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0519772A1 publication Critical patent/EP0519772A1/en
Application granted granted Critical
Publication of EP0519772B1 publication Critical patent/EP0519772B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2676Optically controlled phased array

Definitions

  • the present invention relates to a microwave antenna using, for the pointing of its beam, a network of elementary reflectors with active elements capable of modifying, at will, under the control of an optical command, the length of the path of penetration of the microwave waves in the network reflectors to generate phase shifts varying from one elementary reflector to another and ensure the pointing of the antenna beam.
  • a known antenna of this kind has a reflector produced from a substrate made of a dielectric material with low losses for microwave waves, transparent to light, such as silica oxide SiO2 or crystallized alumina AL2 O3 .
  • this substrate On the side exposed to microwave frequencies, this substrate is coated with photoconductive elements insulated from one another by an electrically insulating material, possibly covered with an opaque layer transparent to microwave frequencies, and arranged in a network with a mesh pitch equal to ⁇ / 2 to avoid multiple angles of reflection, ⁇ being the wavelength of the microwaves considered.
  • a light-transparent electrode made of an electrically conductive material such as ITO tin oxide.
  • the photoconductive elements which can be made of "intrinsic" silicon, that is to say insulating, are lit or not on command through the substrate and the transparent electrode, for example using a plated liquid crystal screen. against the substrate on the transparent electrode and lit by a light source. When lit, they become electrically conductive and reflect microwave waves before they enter the substrate. When they are not lit, they are electrically insulating and pass through the microwave waves which penetrate through the substrate and are reflected on the transparent electrode. If the propagation delay through the thicknesses of the photoconductive elements and of the substrate is close to an odd number of quarter periods of the microwave wave, the phase shift obtained between microwave waves depending on whether they meet an illuminated photoconductive element or a unlit photoconductive element is ⁇ .
  • the present invention aims to remedy these difficulties and allow obtaining phase controllers controllable in more than two phase states in a network of reflectors for microwave waves while retaining for the array of reflectors a simple three-layer structure formed of a substrate of dielectric material with low loss transparent to light carrying, on the side exposed to microwave frequencies, an array of photoconductive elements and, on the opposite side, a conductive electrode transparent to the light.
  • an optoelectronic scanning microwave antenna provided on the one hand with an array of elementary reflectors with optically controlled phase shifters comprising a substrate made of a dielectric material with low microwave losses, transparent to light, coated on the exposed side at microwave frequencies, a layer of photoconductive elements distributed in a network, and, on the opposite side, a conductive electrode transparent to light, and on the other hand, means for selective illumination of the photoconductive elements capable of passing the latter from an electrically insulating state to a conductive state and vice versa.
  • This antenna is remarkable in that the network of photoconductive elements has a mesh which oversamples the mesh of the network of elementary reflectors.
  • each elementary reflector groups together n2 photoconductive elements, n being the oversampling rate, a greater or lesser proportion of which is illuminated, which gives it different phase states staggered from a minimum value obtained when all of its photoconductive elements are lit up to a maximum value obtained when all of its photoconductive elements are in the dark.
  • the microwave antenna shown in Figure 1 operates around 94 GHz. It comprises a horn 1 which illuminates with a microwave wave a plane array 2 of elementary reflectors placed in front of a liquid crystal screen 3 lit by a light source 4 through a focusing optic 5.
  • the network of elementary reflectors is in the form of a flat disc about 10 cm in diameter. It consists of a substrate 20 made of a dielectric material with low microwave losses, transparent to light, such as Silica oxide Si 02 or crystallized alumina AL2 03. On the side facing the horn 1, which is exposed to microwave frequencies, this substrate 20 carries a layer 21 of photoconductive elements such as silicon or gallium arsenide which are isolated from one another and distributed over the surface of the substrate to oversample the mesh of a network of elementary reflectors with the step of ⁇ / 2 here, approximately 1.5 mm. On the side opposite the horn 1, the substrate 20 is coated with a conductive electrode 22 transparent to light which is, for example, made of tin oxide.
  • the liquid crystal screen 3 is pressed against the conductive electrode 22 of the substrate 20. It comprises an array of pixels which faithfully reproduce the distribution of the photoconductive elements 21 carried by the substrate 20 and which can be made, on command, either transparent , or opaque in order to selectively cause the lighting of the photoconductive elements placed in their extension.
  • the light source 4 can be a network of light-emitting diodes or of lasers providing a power of 30 to 50 Watts continuously at a wavelength of about 0.8 "m.
  • FIG. 2 represents the variations of the reflection coefficient under normal incidence and of the phase shift at reflection, as a function of the resistivity, for silicon used as photoconductor. It shows that it is possible to pass from a total reflection to an almost total transmission of microwave waves with silicon whose resistivity varies from about 0.1 ohm.cm to more than 1000 ohm.cm depending on its illumination. It also shows that there is a lighting condition for which the silicon completely absorbs the microwave frequencies. This effect can be used to make the antenna absorbent, therefore stealthy for a detection system.
  • FIG. 4 gives an example of distribution of the photoconductive elements on the surface of the substrate 20.
  • These oversample the mesh of the network of elementary reflectors at the pitch of ⁇ / 2 represented in solid lines, with a mesh four times finer represented in dotted lines .
  • each elementary reflector is formed by a paving of 16 photoconductive elements 1a; ..., 4d which it is possible to illuminate individually via the pixels of the liquid crystal screen in order to make them at will. insulators or conductors.
  • a horizontal polarization and a vertical polarization see the same phase shift if the photoconductive surface made conductive has a shape preserved in a rotation of ⁇ / 2.

Description

La présente invention concerne une antenne hyperfréquence utilisant, pour le pointage de son faisceau, un réseau de réflecteurs élémentaires à éléments actifs capables de modifier, à volonté, sous le contrôle d'une commande optique, la longueur du trajet de pénétration des ondes hyperfréquences dans les réflecteurs du réseau pour engendrer des déphasages variant d'un réflecteur élémentaire à l'autre et assurer le pointage du faisceau d'antenne.The present invention relates to a microwave antenna using, for the pointing of its beam, a network of elementary reflectors with active elements capable of modifying, at will, under the control of an optical command, the length of the path of penetration of the microwave waves in the network reflectors to generate phase shifts varying from one elementary reflector to another and ensure the pointing of the antenna beam.

Une antenne connue de ce genre possède un réflecteur réalisé à partir d'un substrat en un matériau diélectrique à faibles pertes pour les ondes hyperfréquences, transparent à la lumière, tel que de l'oxyde de silice SiO₂ ou de l'alumine cristallisée AL₂ O₃. Du côté exposé aux hyperfréquences ce substrat est revêtu d'éléments photoconducteurs isolés entre eux par un matériau électriquement isolant, éventuellement recouverts d'une couche opaque transparente aux hyperfréquences, et disposés en réseau avec un pas de maillage égal à λ/2 pour éviter les angles multiples de réflexion, λ étant la longueur d'onde des hyperfréquences considérées. Du côté opposé, non exposé aux hyperfréquences, il est revêtu d'une électrode transparente à la lumière réalisée en un matériau électriquement conducteur tel que de l'oxyde d'étain ITO.A known antenna of this kind has a reflector produced from a substrate made of a dielectric material with low losses for microwave waves, transparent to light, such as silica oxide SiO₂ or crystallized alumina AL₂ O₃ . On the side exposed to microwave frequencies, this substrate is coated with photoconductive elements insulated from one another by an electrically insulating material, possibly covered with an opaque layer transparent to microwave frequencies, and arranged in a network with a mesh pitch equal to λ / 2 to avoid multiple angles of reflection, λ being the wavelength of the microwaves considered. On the opposite side, not exposed to microwave frequencies, it is coated with a light-transparent electrode made of an electrically conductive material such as ITO tin oxide.

Les éléments photoconducteurs, qui peuvent être en silicium "intrinsèque" c'est à dire isolant, sont éclairés ou non sur commande au travers du substrat et de l'électrode transparente, par exemple à l'aide d'un écran à cristaux liquides plaqué contre le substrat sur l'électrode transparente et éclairé par une source lumineuse. Lorsqu'ils sont éclairés, ils deviennent électriquement conducteurs et réfléchissent les ondes hyperfréquences avant qu'elles ne pénètrent dans le substrat. Lorsqu'ils ne sont pas éclairés, ils sont électriquement isolants et se laissent traverser par les ondes hyperfréquences qui pénètrent au travers du substrat et se réfléchissent sur l'électrode transparente. Si le retard de propagation à travers les épaisseurs des éléments photoconducteurs et du substrat est proche d'un nombre impair de quarts de période de l'onde hyperfréquence, le déphasage obtenu entre des ondes hyperfréquences selon qu'elles rencontrent un élément photoconducteur éclairé ou un élément photoconducteur non éclairé est de ¶.The photoconductive elements, which can be made of "intrinsic" silicon, that is to say insulating, are lit or not on command through the substrate and the transparent electrode, for example using a plated liquid crystal screen. against the substrate on the transparent electrode and lit by a light source. When lit, they become electrically conductive and reflect microwave waves before they enter the substrate. When they are not lit, they are electrically insulating and pass through the microwave waves which penetrate through the substrate and are reflected on the transparent electrode. If the propagation delay through the thicknesses of the photoconductive elements and of the substrate is close to an odd number of quarter periods of the microwave wave, the phase shift obtained between microwave waves depending on whether they meet an illuminated photoconductive element or a unlit photoconductive element is ¶.

On réalise ainsi un réseau de réflecteurs élémentaires, avec un maillage au pas de la moitié de la longueur d'onde des hyperfréquences, qui sont capables chacun d'engendrer à volonté des déphasages de 0 ou ¶ sous contrôle d'une commande optique. Cependant, les performances d'une antenne hyperfréquence à balayage concernant le gain, le niveau de lobes secondaires et le diffus nécessitent, en général, pour être acceptables, l'utilisation d'un déphaseur commandable à plus de deux états de phase au niveau de chaque réflecteur élémentaire.One thus realizes a network of elementary reflectors, with a mesh with the step of half of the wavelength of the microwaves, which are each capable of generating at will phase shifts of 0 or ¶ under the control of an optical command. However, the performance of a scanning microwave antenna concerning the gain, the level of secondary lobes and the diffuse generally requires, to be acceptable, the use of a phase shifter controllable with more than two phase states at the level of each elementary reflector.

Pour satisfaire cette exigence, il a été proposé d'empiler des couches de silicium photoconducteur et de substrat diélectrique à faible perte devant l'électrode conductrice transparente pour présenter à l'onde hyperfréquence, au sein de chaque réflecteur élémentaire, différents chemins de longueurs échelonnées qui correspondent à diverses valeurs de déphasage comprises entre 0 et 2¶ et qui sont fonctions de la profondeur dans l'empilement de la première couche de silicium photoconducteur rendue conductrice par éclairement. On rencontre alors des difficultés pour l'illumination sélective des différentes couches de silicium photoconducteur qui se masquent les unes les autres.To meet this requirement, it has been proposed to stack layers of photoconductive silicon and low loss dielectric substrate in front of the transparent conductive electrode in order to present to the microwave wave, within each elementary reflector, different paths of staggered lengths. which correspond to various phase shift values between 0 and 2¶ and which are a function of the depth in the stack of the first photoconductive silicon layer made conductive by illumination. Difficulties are then encountered in the selective illumination of the different photoconductive silicon layers which mask each other.

La présente invention a pour but de remédier à ces difficultés et de permettre l'obtention de déphaseurs commandables à plus de deux états de phase dans un réseau de réflecteurs pour onde hyperfréquence tout en conservant pour le réseau de réflecteurs une structure simple à trois couches formée d'un substrat en matériau diélectrique à faible perte transparent à la lumière portant, du côté exposé aux hyperfréquences, un réseau d'éléments photoconducteurs et, du côté opposé, une électrode conductrice transparente à la lumière.The present invention aims to remedy these difficulties and allow obtaining phase controllers controllable in more than two phase states in a network of reflectors for microwave waves while retaining for the array of reflectors a simple three-layer structure formed of a substrate of dielectric material with low loss transparent to light carrying, on the side exposed to microwave frequencies, an array of photoconductive elements and, on the opposite side, a conductive electrode transparent to the light.

Elle a pour objet une antenne hyperfréquence à balayage optoélectronique pourvue d'une part, d'un réseau de réflecteurs élémentaires à déphaseurs commandés optiquement comportant un substrat en un matériau diélectrique à faibles pertes en hyperfréquences, transparent à la lumière, revêtu, du côté exposé aux hyperfréquences, d'une couche d'éléments photoconducteurs répartis en réseau, et, du côté opposé, d'une électrode conductrice transparente à la lumière, et d'autre part, de moyens d'éclairement sélectif des éléments photoconducteurs aptes à faire passer ces derniers d'un état électriquement isolant à un état conducteur et réciproquement. Cette antenne est remarquable en ce que le réseau d'éléments photoconducteurs présente un maillage qui suréchantillonne le maillage du réseau de réflecteurs élémentaires. Ainsi, chaque réflecteur élémentaire regroupe n² éléments photoconducteurs, n étant le taux de suréchantillonnage, dont une proportion plus ou moins grande est éclairée ce qui lui procure différents états de phase échelonnés depuis une valeur minimale obtenue lorsque tous ses éléments photoconducteurs sont éclairés jusqu'à une valeur maximale obtenue lorsque tous ses éléments photoconducteurs sont dans l'obscurité.It relates to an optoelectronic scanning microwave antenna provided on the one hand with an array of elementary reflectors with optically controlled phase shifters comprising a substrate made of a dielectric material with low microwave losses, transparent to light, coated on the exposed side at microwave frequencies, a layer of photoconductive elements distributed in a network, and, on the opposite side, a conductive electrode transparent to light, and on the other hand, means for selective illumination of the photoconductive elements capable of passing the latter from an electrically insulating state to a conductive state and vice versa. This antenna is remarkable in that the network of photoconductive elements has a mesh which oversamples the mesh of the network of elementary reflectors. Thus, each elementary reflector groups together n² photoconductive elements, n being the oversampling rate, a greater or lesser proportion of which is illuminated, which gives it different phase states staggered from a minimum value obtained when all of its photoconductive elements are lit up to a maximum value obtained when all of its photoconductive elements are in the dark.

D'autres caractéristiques et avantages de l'invention ressortiront de la description d'un mode de réalisation donné à titre d'exemple. Cette description sera faite ci-après, en regard du dessin dans lequel :

  • une figure 1 représente, de manière schématique et partiellement démontée, une antenne hyperfréquence à balayage optoélectronique selon l'invention ;
  • une figure 2 est un diagramme qui représente les variations du coefficient de réflexion sous incidence normale et du déphasage à la réflexion, en fonction de la résistivité, pour du silicium utilisé comme photoconducteur ;
  • une figure 3 est un diagramme qui représente les variations du déphasage à la transmission et à la réflexion du silicium en fonction de la fréquence et
  • une figure 4 illustre un exemple de répartition d'éléments photoconducteurs à la surface d'un réflecteur élémentaire de l'antenne représentée à la figure 1.
Other characteristics and advantages of the invention will emerge from the description of an embodiment given by way of example. This description will be made below, with reference to the drawing in which:
  • Figure 1 shows, schematically and partially disassembled, an optoelectronic scanning microwave antenna according to the invention;
  • FIG. 2 is a diagram which represents the variations of the reflection coefficient under normal incidence and phase shift to reflection, as a function of the resistivity, for silicon used as photoconductor;
  • FIG. 3 is a diagram which represents the variations of the phase shift during transmission and at reflection of the silicon as a function of the frequency and
  • FIG. 4 illustrates an example of distribution of photoconductive elements on the surface of an elementary reflector of the antenna shown in FIG. 1.

L'antenne hyperfréquence représentée à la figure 1 fonctionne aux environs de 94 GHz. Elle comporte un cornet 1 qui illumine avec une onde hyperfréquence un réseau plan 2 de réflecteurs élémentaires placé devant un écran à cristaux liquides 3 éclairé par une source lumineuse 4 au travers d'une optique de focalisation 5.The microwave antenna shown in Figure 1 operates around 94 GHz. It comprises a horn 1 which illuminates with a microwave wave a plane array 2 of elementary reflectors placed in front of a liquid crystal screen 3 lit by a light source 4 through a focusing optic 5.

Le réseau de réflecteurs élémentaires se présente sous la forme d'un disque plat d'environ 10 cm de diamètre. Il est constitué d'un substrat 20 en un matériau diélectrique à faibles pertes en hyperfréquences, transparent à la lumière, tel que de l'oxyde de Silice Si 0₂ ou de l'alumine cristallisée AL₂ 0₃. Du côté tourné vers le cornet 1, qui est exposé aux hyperfréquences, ce substrat 20 porte une couche 21 d'éléments photoconducteurs tel que du silicium ou de l'arséniure de gallium qui sont isolés entre eux et répartis à la surface du substrat de manière à suréchantillonner le maillage d'un réseau de réflecteurs élémentaires au pas de λ /2 ici, environ 1,5 mm. Du côté opposé au cornet 1, le substrat 20 est revêtu d'une électrode conductrice 22 transparente à la lumière qui est, par exemple, en oxyde d'étain.The network of elementary reflectors is in the form of a flat disc about 10 cm in diameter. It consists of a substrate 20 made of a dielectric material with low microwave losses, transparent to light, such as Silica oxide Si 0₂ or crystallized alumina AL₂ 0₃. On the side facing the horn 1, which is exposed to microwave frequencies, this substrate 20 carries a layer 21 of photoconductive elements such as silicon or gallium arsenide which are isolated from one another and distributed over the surface of the substrate to oversample the mesh of a network of elementary reflectors with the step of λ / 2 here, approximately 1.5 mm. On the side opposite the horn 1, the substrate 20 is coated with a conductive electrode 22 transparent to light which is, for example, made of tin oxide.

L'écran à cristaux liquides 3 est plaqué contre l'électrode conductrice 22 du substrat 20. Il comporte un réseau de pixels qui reproduisent fidèlement la répartition des éléments photoconducteurs 21 portés par le substrat 20 et qui peuvent être rendus, sur commande, soit transparents, soit opaques afin de provoquer, de manière sélective, l'éclairage des éléments photoconducteurs placés dans leur prolongement.The liquid crystal screen 3 is pressed against the conductive electrode 22 of the substrate 20. It comprises an array of pixels which faithfully reproduce the distribution of the photoconductive elements 21 carried by the substrate 20 and which can be made, on command, either transparent , or opaque in order to selectively cause the lighting of the photoconductive elements placed in their extension.

La source lumineuse 4 peut être un réseau de diodes électroluminescentes ou de lasers fournissant une puissance de 30 à 50 Watts en continu à une longueur d'ondes de 0,8 »m environ. L'intensité lumineuse arrivant sur un élément photoconducteur en silicium, lorsque le pixel de l'écran de cristaux liquides qui lui est associé est transparent, est alors suffisante pour rendre ledit élément conducteur.The light source 4 can be a network of light-emitting diodes or of lasers providing a power of 30 to 50 Watts continuously at a wavelength of about 0.8 "m. The light intensity arriving on a silicon photoconductive element, when the pixel of the liquid crystal screen associated therewith is transparent, is then sufficient to make said element conductive.

La figure 2 représente les variations du coefficient de réflexion sous incidence normale et du déphasage à la réflexion, en fonction de la résistivité, pour du silicium utilisé comme photoconducteur. Elle montre qu'il est possible de passer d'une réflexion totale à une transmission quasi totale des ondes hyperfréquences avec du silicium dont la résistivité varie de 0,1 ohm.cm environ à plus de 1000 ohm.cm en fonction de son éclairement. Elle montre également qu'il existe une condition d'éclairement pour laquelle le silicium absorbe complétement les hyperfréquences. Cet effet peut être utilisé pour rendre l'antenne absorbante, donc furtive pour un système de détection.FIG. 2 represents the variations of the reflection coefficient under normal incidence and of the phase shift at reflection, as a function of the resistivity, for silicon used as photoconductor. It shows that it is possible to pass from a total reflection to an almost total transmission of microwave waves with silicon whose resistivity varies from about 0.1 ohm.cm to more than 1000 ohm.cm depending on its illumination. It also shows that there is a lighting condition for which the silicon completely absorbs the microwave frequencies. This effect can be used to make the antenna absorbent, therefore stealthy for a detection system.

La figure 3 représente la réponse en fréquence du déphasage à la transmission (P=1000 ohm.cm) et à la réflexion (P=0,18 ohm.cm) du silicium. Elle montre que le déphasage à la transmission est pratiquement nul pour une onde hyperfréquence de 94 GHz.FIG. 3 represents the frequency response of the phase shift to the transmission (P = 1000 ohm.cm) and to the reflection (P = 0.18 ohm.cm) of the silicon. It shows that the phase shift during transmission is practically zero for a 94 GHz microwave wave.

La figure 4 donne un exemple de répartition des éléments photoconducteurs à la surface du substrat 20. Ceux-ci suréchantillonnent le maillage du réseau de réflecteurs élémentaires au pas de λ/2 représenté en traits pleins, avec un maillage quatre fois plus fin représenté en pointillés. Ainsi, chaque réflecteur élémentaire est formé d'un dallage de 16 éléments photoconducteurs 1a;...,4d qu'il est possible d'éclairer individuellement par l'intermédiaire des pixels de l'écran à cristaux liquides afin de les rendre à volonté isolants ou conducteurs. On peut alors choisir une forme variable de la surface photoconductrice éclairée dans chaque réflecteur élémentaire pour définir une phase variable. Cela revient à l'introduction, dans un guide d'onde hyperfréquence matérialisé par le contour d'un réflecteur élémentaire, d'un iris conducteur qui est équivalent à une susceptance dont on sait calculer la phase en réflexion. Cette susceptance variable peut être la même pour plusieurs polarisations hyperfréquences si celles-ci voient des surfaces équivalentes.FIG. 4 gives an example of distribution of the photoconductive elements on the surface of the substrate 20. These oversample the mesh of the network of elementary reflectors at the pitch of λ / 2 represented in solid lines, with a mesh four times finer represented in dotted lines . Thus, each elementary reflector is formed by a paving of 16 photoconductive elements 1a; ..., 4d which it is possible to illuminate individually via the pixels of the liquid crystal screen in order to make them at will. insulators or conductors. We can then choose a variable shape of the illuminated photoconductive surface in each elementary reflector to define a variable phase. This amounts to the introduction, into a microwave waveguide materialized by the contour of an elementary reflector, of a conductive iris which is equivalent to a susceptance for which we know how to calculate the phase in reflection. This variable susceptance can be the same for several microwave polarizations if they see equivalent surfaces.

Par exemple, une polarisation horizontale et une polarisation verticale voient le même déphasage si la surface de photoconducteur rendue conductrice a une forme conservée dans une rotation de ¶/2.For example, a horizontal polarization and a vertical polarization see the same phase shift if the photoconductive surface made conductive has a shape preserved in a rotation of ¶ / 2.

Dans le cas illustré par la figure 4 où un réflecteur élémentaire est constitué d'un dallage de 16 éléments photoconducteurs 1a,...,4d on peut adopter cinq configurations différentes conservées par une rotation de ¶/2 :

  • une première configuration où aucun élément photoconducteur n'est éclairé ;
  • une deuxième configuration, qui est celle représentée, où seuls les éléments photoconducteurs en coin 1a, 4a, 4d et 1d sont éclairés ;
  • une troisième configuration où les éléments photoconducteurs 2a, 4b, 3d et 1c sont éclairés en plus des éléments photoconducteurs en coin 1a, 4a, 4d, et 1d ;
  • une quatrième configuration où tous les éléments photoconducteurs du pourtour 1a, 2a, 3a, 4a, 4b, 4d, 3d, 2d, 1d, 1c, et 1b sont éclairés ;
  • une cinquième configuration où tous les éléments photoconducteurs sont éclairés.
In the case illustrated by FIG. 4 where an elementary reflector consists of a paving of 16 photoconductive elements 1a, ..., 4d, five different configurations can be adopted, preserved by a rotation of ¶ / 2:
  • a first configuration where no photoconductive element is lit;
  • a second configuration, which is that shown, where only the corner photoconductive elements 1a, 4a, 4d and 1d are lit;
  • a third configuration where the photoconductive elements 2a, 4b, 3d and 1c are lit in addition to the corner photoconductive elements 1a, 4a, 4d, and 1d;
  • a fourth configuration where all the photoconductive elements of the periphery 1a, 2a, 3a, 4a, 4b, 4d, 3d, 2d, 1d, 1c, and 1b are lit;
  • a fifth configuration where all the photoconductive elements are illuminated.

Si les épaisseurs des éléments photoconducteurs et du substrat sont de l'ordre de la moitié de la longueur d'onde des hyperfréquences utilisées on obtient avec les quatre dernières configurations un déphaseur commandé à deux bits indépendant de la polarisation.If the thicknesses of the photoconductive elements and of the substrate are of the order of half of the wavelength of the microwaves used, a two-bit controlled phase shifter independent of the polarization is obtained with the last four configurations.

Bien évidemment, on peut adopter un taux de suréchantillonnage moindre par exemple de deux ou trois mais on a alors un moindre choix de configurations ou supérieur mais on se heurte alors à des difficultés de réalisation dues à la petitesse des éléments photoconducteurs et des pixels de l'écran à cristaux liquides qui doivent leur correspondre.Obviously, we can adopt a lower oversampling rate, for example two or three, but we then has a lesser choice of configurations or higher but we then come up against production difficulties due to the smallness of the photoconductive elements and of the pixels of the liquid crystal screen which must correspond to them.

Claims (3)

  1. Optoelectronic scanning microwave antenna provided, on the one hand, with an array (2) of optically-controlled elementary reflectors comprising a substrate (20) made of a dielectric material having low loss at microwave frequencies and being transparent to light, the said substrate being coated, on the side exposed to the microwaves, with a layer (21) of photoconductive elements distributed in an array and, on the opposite side, with a conductive electrode (22) transparent to light and, on the other hand, with means (3, 4, 5) for selective illumination of the photoconductive elements, capable of making these elements pass from an electrically insulating state to a conductive state and vice versa, characterized in that the array of photoconductive elements forms a lattice which subdivides the lattice of the array of elementary reflectors.
  2. Antenna according to Claim 1, characterized in that the array of photoconductive elements forms a lattice which subdivides the lattice of the array of elementary reflectors by a subdivision factor equal to four, each elementary reflector containing a tiling arrangement of sixteen photoconductive elements.
  3. Antenna according to Claim 1, characterized in that the photoconductive elements belonging to an elementary reflector are illuminated selectively so as to form configurations of conductive elements and electrically insulating elements which are invariant under rotations π/2.
EP92401383A 1991-06-18 1992-05-21 Microwave antenna with optoelectronical controlled scanning Expired - Lifetime EP0519772B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9107422A FR2678112B1 (en) 1991-06-18 1991-06-18 MICROWAVE ANTENNA WITH OPTOELECTRONIC SCANNING.
FR9107422 1991-06-18

Publications (2)

Publication Number Publication Date
EP0519772A1 EP0519772A1 (en) 1992-12-23
EP0519772B1 true EP0519772B1 (en) 1995-06-21

Family

ID=9413948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92401383A Expired - Lifetime EP0519772B1 (en) 1991-06-18 1992-05-21 Microwave antenna with optoelectronical controlled scanning

Country Status (4)

Country Link
US (1) US5262796A (en)
EP (1) EP0519772B1 (en)
DE (1) DE69203044T2 (en)
FR (1) FR2678112B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9400863A (en) * 1994-05-26 1996-01-02 Hollandse Signaalapparaten Bv Adjustable microwave antenna
EP0680111B1 (en) * 1994-04-29 2001-11-21 Thales Nederland B.V. Adjustable microwave antenna
FR2763746B1 (en) 1997-05-23 1999-07-30 Thomson Csf METHOD AND DEVICE FOR CONNECTING TWO MILLIMETER ELEMENTS
FR2769130B1 (en) 1997-09-30 2001-06-08 Thomson Csf METHOD FOR COATING AN ELECTRONIC CHIP AND ELECTRONIC CARD COMPRISING AT LEAST ONE COATED CHIP ACCORDING TO THIS PROCESS
US6091371A (en) * 1997-10-03 2000-07-18 Motorola, Inc. Electronic scanning reflector antenna and method for using same
US6232931B1 (en) 1999-02-19 2001-05-15 The United States Of America As Represented By The Secretary Of The Navy Opto-electronically controlled frequency selective surface
US6597327B2 (en) * 2000-09-15 2003-07-22 Sarnoff Corporation Reconfigurable adaptive wideband antenna
US6621459B2 (en) 2001-02-02 2003-09-16 Raytheon Company Plasma controlled antenna
GB0323123D0 (en) * 2003-10-03 2003-11-05 Roke Manor Research Electronically steerable fresnel zone antenna
GB0706301D0 (en) * 2007-03-30 2007-05-09 E2V Tech Uk Ltd Reflective means
US8044866B2 (en) * 2007-11-06 2011-10-25 The Boeing Company Optically reconfigurable radio frequency antennas
US9595757B2 (en) * 2013-12-24 2017-03-14 The Boeing Company Integral RF-optical phased array module
US9966647B1 (en) * 2016-06-20 2018-05-08 The United States Of America, As Represented By The Secretary Of The Navy Optically defined antenna

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2264434B1 (en) * 1974-03-12 1976-07-16 Thomson Csf
FR2346897A1 (en) * 1975-01-22 1977-10-28 Thomson Csf HYPERFREQUENCY MILLIMETRIC CIRCUIT
FR2346854A1 (en) * 1975-10-02 1977-10-28 Thomson Csf INTEGRATED CIRCUIT INCLUDING A SOURCE OF MILLIMETRIC WAVES, AND METHOD OF MANUFACTURING THE SAID CIRCUIT
FR2351503A1 (en) * 1976-05-11 1977-12-09 Thomson Csf PROCESS FOR MAKING A CIRCUIT FOR MILLIMETRIC WAVES INCLUDING A SEMICONDUCTOR DIODE AND ANOTHER SEMICONDUCTOR COMPONENT, AND DEVICES MADE BY THIS PROCEDURE
FR2368151A1 (en) * 1976-10-15 1978-05-12 Thomson Csf SOLID STATE MILLIMETRIC WAVES SOURCE WITH AN INTEGRATED DIRECTIVE AERIAL
FR2421478A2 (en) * 1978-03-31 1979-10-26 Thomson Csf SOLID STATE MILLIMETRIC WAVE SOURCE CONTAINING A DIRECTIVE AERIAL
FR2423088A1 (en) * 1978-04-14 1979-11-09 Thomson Csf MILLIMETRIC WAVE SOURCE INCLUDING AN OSCILLATOR MODULE AND A VARIABLE CAPACITY TUNING MODULE, AND EMITTER INCLUDING SUCH SOURCE
FR2452201A1 (en) * 1979-03-23 1980-10-17 Thomson Csf SYMMETRIC MIXER FOR MILLIMETER WAVES AND RECEIVER USING SUCH A MIXER
FR2458819A1 (en) * 1979-06-12 1981-01-02 Thomson Csf SIMULTANEOUS EMISSION AND RECEPTION HEAD, MILLIMETER WAVE EMITTER-RECEIVER AND RADAR USING SUCH HEAD
US4479131A (en) * 1980-09-25 1984-10-23 Hughes Aircraft Company Thermal protective shield for antenna reflectors
JP2508707B2 (en) * 1987-04-28 1996-06-19 三菱電機株式会社 Light control antenna device
FR2628893B1 (en) * 1988-03-18 1990-03-23 Thomson Csf MICROWAVE SWITCH
GB2225122B (en) * 1988-11-09 1992-12-23 Emi Plc Thorn An apparatus for producing a phase shift in a beam of electromagnetic radiation
US5014069A (en) * 1989-09-15 1991-05-07 The United States Of America As Represented By The Secretary Of The Air Force Photoconductive antenna modulator
NL9000369A (en) * 1990-02-16 1991-09-16 Hollandse Signaalapparaten Bv ANTENNA SYSTEM WITH VARIABLE BUNDLE WIDTH AND BUNDLE ORIENTATION.

Also Published As

Publication number Publication date
DE69203044D1 (en) 1995-07-27
EP0519772A1 (en) 1992-12-23
FR2678112A1 (en) 1992-12-24
DE69203044T2 (en) 1995-11-02
FR2678112B1 (en) 1993-12-03
US5262796A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
EP0519772B1 (en) Microwave antenna with optoelectronical controlled scanning
EP0539297B1 (en) Device with adjustable frequency selective surface
EP0667984B1 (en) Monopolar wire-plate antenna
CA2074657C (en) Microwave antenna array
EP0145597A2 (en) Plane periodic antenna
EP0206846B1 (en) Microwave phase shifter, especially in the millimeter wave range, with a piezoelectric control
CA2460820C (en) Broadband or multiband antenna
EP0548876B1 (en) An active offset antenna having two reflectors
WO2001039325A1 (en) Active electronic scan microwave reflector
FR2656468A1 (en) MAGIC MICROWAVE RADIATION SOURCE AND ITS APPLICATION TO AN ELECTRONIC SCAN ANTENNA.
FR2512280A1 (en) Solid state microwave antenna sweep reflector - has number of addressable diodes in matrix selectively switched to form transparent or reflective panel
EP1305846A1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
EP0595726A1 (en) Phase shifter for electromagnetic waves and application in an antenna with electronic scanning
FR2685550A1 (en) HYPERFREQUENCY REFLECTIVE ELEMENT.
CA2023210C (en) Spiral-antennae system
WO1991018428A1 (en) Planar orientable antenna operating in the microwave band
EP1157444B1 (en) Antenna with double-band electronic scanning, with active microwave reflector
EP0762534B1 (en) Method for enlarging the radiation diagram of an antenna array with elements distributed in a volume
EP0524878A1 (en) Microwave semiconductor absorber with optical command
FR2747842A1 (en) Microwave lens with panel of stacked phase shifting channels
EP0088681B1 (en) Dual-reflector antenna with incorporated polarizer
EP4189772A1 (en) Metasurface device
EP1133000B1 (en) Active microwave reflector for antenna with electronic scanning
FR2689320A1 (en) Radar aerial comprising reflective elements using electronic scanning - has array of reflectors, each comprising set of interlinked orthogonal bars
FR2677493A1 (en) NETWORK OF RADIANT ELEMENTS WITH AUTOCOMPLEMENTARY TOPOLOGY, AND ANTENNA USING SUCH A NETWORK.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19930113

K1C3 Correction of patent application (complete document) published

Effective date: 19921223

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19941107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69203044

Country of ref document: DE

Date of ref document: 19950727

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030507

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030508

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030519

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030529

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050521