EP1305846A1 - Active dual-polarization microwave reflector, in particular for electronically scanning antenna - Google Patents

Active dual-polarization microwave reflector, in particular for electronically scanning antenna

Info

Publication number
EP1305846A1
EP1305846A1 EP01958154A EP01958154A EP1305846A1 EP 1305846 A1 EP1305846 A1 EP 1305846A1 EP 01958154 A EP01958154 A EP 01958154A EP 01958154 A EP01958154 A EP 01958154A EP 1305846 A1 EP1305846 A1 EP 1305846A1
Authority
EP
European Patent Office
Prior art keywords
reflector
phase shift
network
guides
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01958154A
Other languages
German (de)
French (fr)
Other versions
EP1305846B1 (en
Inventor
Claude Thales Intellectual Property CHEKROUN
Serge Thales Intellectual Property DRABOWITCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1305846A1 publication Critical patent/EP1305846A1/en
Application granted granted Critical
Publication of EP1305846B1 publication Critical patent/EP1305846B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • Active bipolar microwave reflector especially for electronic scanning antenna
  • the present invention relates to an active microwave reflector with electronic bipolarization scanning, capable of being illuminated by a microwave wave source to form an antenna.
  • antennas comprising an active microwave reflector.
  • the latter also called “reflect array” in Anglo-Saxon literature, is a network of electronically controllable phase shifters.
  • This network extends in a plane and comprises a network of phase control elements, or phase network, disposed in front of reflective means, constituted for example by a metallic ground plane forming a ground plane.
  • the reflective grating comprises in particular elementary cells each carrying out the reflection and the phase shift, variable on electronic control, of the microwave wave which it receives.
  • a primary source for example a horn, placed in front of the reflective network emits microwave waves towards the latter.
  • An object of the invention is in particular to allow the production of an electronic scanning antenna using an active reflective network and operating according to two independent polarizations.
  • the invention relates to an active microwave reflector, capable of receiving an electromagnetic wave comprising two nested waveguide networks. The bottom of each guide is closed by a circuit carrying out the reflection and the phase shift of the wave which it receives, one network being intended to receive a polarization and the other network being intended to receive a polarization perpendicular to the previous one.
  • An embodiment can be such that:
  • a first network comprises several sets of aligned guides, a line extending in a direction Ox and all the lines extending in a perpendicular direction Oy, for the same line, the centers C of two consecutive guides being separated by 'a distance d, two consecutive lines being separated by a distance h, according to Oy, and offset from each other by the distance d / 2, according to Ox;
  • the second network includes several sets of guides aligned in the same way as in the first network, the lines being angularly offset by 90 ° relative to those of the first network;
  • a guide from one network is only contiguous to guides from the other network.
  • the invention also relates to an electronic scanning antenna comprising a reflector as defined above.
  • This antenna can for example be of the “Reflect Array” type or of the Cassegrain type.
  • the invention has in particular the advantage that it makes it possible to obtain a compact and low-weight reflector, that it is simple to implement and that it is economical.
  • FIG. 1 schematically illustrates an exemplary embodiment of an electronic scanning antenna with an active reflective array facing an orthonormal reference mark Oxyz.
  • the microwave distribution is for example of the so-called optical type, that is to say for example ensured by means of a primary source illuminating the reflective network.
  • the antenna comprises a primary source 1, for example a horn.
  • the primary source 1 emits microwave waves 3 towards the active reflecting network 4, arranged in the Oxy plane.
  • This reflective network 4 comprises a set of elementary cells performing the reflection and the phase shift of the waves they receive.
  • the primary source 1 can be double polarized.
  • FIG. 2 illustrates the principle of production of a reflector according to the invention.
  • the latter comprises two nested waveguide networks 21, 22. These guides are seen along F, that is to say according to a front view of the reflector 4. The figure therefore represents in particular the section of the guides in the plane Oxy, the walls of the guides extending in the direction Oz.
  • Each guide belongs to an elementary cell as mentioned above.
  • a first network of guides 21 is intended to receive the vertical polarization and a second network of guides 22 is intended to receive the horizontal polarization.
  • the incident 3 microwave waves penetrate the guides.
  • Each guide 21, 22 is short-circuited by a phase shifter as described for example in French patent application No. 97 01326, controllable according to two to four bits or more.
  • FIG. 3 schematically illustrates a phase shift cell.
  • the latter therefore comprises a guide 21, 22 and a phase shift circuit 31, the latter being disposed at the bottom of the guide in the plane Oxy.
  • a phase shifting circuit 31 comprises at least one conducting wire 32, 33 itself carrying at least two semiconductors Di, D 2 , for example diodes, with two states.
  • the conducting wires and the diodes are placed on a support dielectric 34, the opposite face of which comprises a conductive plane reflecting the microwave wave.
  • This conducting plane is for example in electrical contact with the walls of the guide 21, 22.
  • An elementary cell 31 therefore performs the reflection and the phase shift of the microwave wave 3 which it receives for the component of the wave whose polarization is substantially parallel to the conductive wires 32, 33.
  • the cell as illustrated in FIG. 3 acts on a wave polarized in the direction Oy parallel to the direction of the conductive wires 32, 33 of the cell.
  • horizontal polarization only the guides intended to receive this polarization are active, the others being short-circuited.
  • vertical polarization only the guides intended to receive this polarization are active, the others being short-circuited.
  • FIG. 4a presents three guides 21 of the first network, representing a mesh, intended for example to receive the vertical polarization.
  • FIG. 4b presents three guides 22 of the second network, representing a mesh, intended for example to receive the horizontal polarization.
  • the two networks are intended to receive waves of crossed polarizations, the second network of guides 22 being assigned to a polarization perpendicular to the polarization of the first network of guides 21.
  • the section of each guide has a midpoint C. Since this section is angular, the midpoint C is the intersection of its two midlines.
  • the guide sections are shown in the Oxy plane of the reflector.
  • the axis Ox corresponds to the direction of a first polarization.
  • the axis Oy corresponds to the direction of the second polarization, crossed with respect to the previous one.
  • FIG. 4a therefore presents a first network of guides 21 intended to receive the vertical polarizations.
  • the network includes several sets of aligned guides.
  • a line of guides extends in the horizontal direction Ox and the set of lines extends in the direction vertical Oy.
  • the centers C of two consecutive guides 21 are separated by a distance d.
  • Two consecutive lines are separated by a distance h, according to Oy, and offset relative to each other by the distance d / 2, according to Ox.
  • two consecutive center lines 41, 42 are spaced from h, the center lines being the center lines of the guides taken along Ox. Between two consecutive lines, there is an offset of d / 2 from the midpoints of the guides.
  • FIG. 4b shows the second network of guides 22 intended to receive the horizontal polarization.
  • the arrangement of the guides is similar to that of the network of FIG. 4a, but with a rotation of the assembly of 90 °.
  • the lines extend along the axis Oy and the set of lines extends along the axis Ox.
  • the centers C of two consecutive guides 22 are separated by a distance d.
  • Two consecutive lines are separated by a distance h, along Ox, and offset relative to each other by the distance d / 2, along Oy.
  • two consecutive middle lines 43, 44 are distant of h, the midlines being the midlines of the guides taken along Oy. Between two consecutive lines, there is an offset of d / 2 from the midpoints of the guides.
  • FIG. 4c defines the nesting of the two networks of guides by showing how a guide 22 of one network is positioned relative to the guides 21 of the other network.
  • This guide 22 is only contiguous to guides 21 of the other network.
  • the guide 22 is contiguous to four guides 21 of the other network.
  • the midpoint C of this guide 22 is aligned with the midpoints of the two pairs of guides 21 framing the guide 22.
  • the distance d between the midpoints C of two consecutive guides of the same line is then for example equal ⁇ and the distance h between the medians 41, 42, 43, 44 of two consecutive lines is for example of ⁇ / 2.
  • the internal dimensions of a waveguide are 1.8 cm and 0.9 cm, and the distances d and h are respectively 3 cm and 1.5 cm. This mesh allows in particular a deflection of the beam reflected by the reflector 4 on a cone of about 60 °.
  • Figure 5 shows in a sectional view the possible constituent layers of a reflector according to the invention. It comprises at least three layers 51, 52, 53.
  • a first layer 51 comprises the microwave phase shift circuits, that is to say in particular the diodes Di, D 2 , the conductive wires which carry them and the associated connection circuits .
  • the microwave circuits are for example supported by a substrate 54. On the face opposite to the microwave circuits, this substrate is covered with a metallized layer 56, forming a conducting plane, which in particular has the function of reflecting the microwave waves 3.
  • the thickness ⁇ h of the substrate is for example of the order of 3 mm, the relative dielectric constant ⁇ r being of the order of 2.5.
  • a second layer 52 comprises the control circuits 55 of the diodes Di, D 2 of the phase shifters. This layer also provides the connection between the control circuits and the diodes. To this end, it has for example the structure of a multilayer printed circuit comprising interconnection planes from the control circuits to the microwave circuits.
  • a third layer 53, placed opposite the microwave circuits D ⁇ D 2 comprises the two networks of waveguides.
  • FIG. 6 shows a possible embodiment of the layer of waveguides 53.
  • This embodiment is in particular easy to implement.
  • the walls of the guides 21, 22 are produced by metallized holes 61, 62 oriented in the direction Oz. These metallized holes could be replaced by conductive wires, that is to say rectilinear electrical conductors, oriented in the direction Oz.
  • the guides thus produced have for example parts of common walls, that is to say that metallized holes 63, 64 are common to two guides. In this case, two neighboring guides have metallized holes in common.
  • the metallized holes are produced in a plate of dielectric material of thickness e g , this thickness constituting the length of the guides. The metallized holes are close enough to play the role of walls of wave guides.
  • metallized holes 61, 62 therefore cross the entire third layer 53. They extend into the microwave layer 51 to reach the conductive plane 56. They thus also allow electromagnetic decoupling of each phase shift circuit 32, 33, Dt, D from its neighbors by forming an electromagnetic shield. There is then no wave propagation from one cell to another.
  • certain metallized holes 61, 64 can extend into the layer 52 comprising the control circuits. These holes which extend allow in particular to electrically connect the control circuits to the diodes of the phase shift circuits of the microwave layer 51. These metallized holes 61, 64 thus convey the control of the diodes as well as the electrical supply of the circuits. They are for example connected to the various interconnection planes of the control layer 52.
  • the metallized holes 61, 64 shown in black are also used for supplying and controlling the microwave circuits. These holes 61, 64 pass through in particular (the conductive plane 56 without electrical contact with the latter.
  • the other holes 62, 63 stop for example at this conductive plane 56, in electrical contact with the latter.
  • the thickness e g of the waveguide layer is for example of the order of a centimeter, for example it is necessary to provide recesses in this layer 53 of guides to house the diodes Di, D 2 of the microwave layer 51.
  • the The weight of a reflector according to the invention is low due to the low weight of the different layers, moreover, despite the waveguide layer, the reflector still remains compact.
  • FIG. 7 illustrates a complementary embodiment making it possible in particular to reduce the standing wave rate (TOS) active in the guides.
  • the entry of the guides 21, 22 comprises an iris 71 of rectangular opening, the assembly being closed by a dielectric strip 72.
  • the layer of waveguides 53 can be covered with a layer forming the irises, the whole being closed by a dielectric layer.
  • a reflector according to the invention can be used for different types of antennas. It can be used as shown in Figure 1 to form a "reflect array” type antenna. Similarly, it can be used in a Cassegrain type antenna. In the latter case, the primary source is placed in the center of the reflector and illuminates an auxiliary reflector. The latter in turn illuminates, by reflection, the reflector according to the invention.
  • a reflector or an antenna according to the invention are simple to implement. They are also economical because the components and technologies used are inexpensive. The invention also provides all the advantages associated with bipolarization.
  • An antenna according to the invention can thus for example be used for polarimetry measurements on targets, in particular by transmitting according to one polarization and by receiving on the other polarization. It can be used in telecommunications applications, for example dual-band.

Abstract

The invention concerns an active dual-polarization electronically scanning microwave reflector, adapted to be illuminated by a microwave source to form an antenna. The reflector comprises two interleaved waveguide arrays (21, 22), the base of each guide being closed by a phase-shifting circuit producing reflection and phase shift of the wave it receives, one array being designed to receive a polarization and the other array being designed to receive a polarization perpendicular to the former.

Description

Réflecteur hyperfréquence actif à bipolarisation, notamment pour antenne à balayage électronique Active bipolar microwave reflector, especially for electronic scanning antenna
La présente invention concerne un réflecteur hyperfréquence actif à balayage électronique à bipolarisation, susceptible d'être illuminé par une source d'onde hyperfréquence pour former une antenne.The present invention relates to an active microwave reflector with electronic bipolarization scanning, capable of being illuminated by a microwave wave source to form an antenna.
Il est connu de réaliser des antennes comportant un réflecteur hyperfréquence actif. Ce dernier, par ailleurs nommé « reflect array » dans la littérature anglo-saxonne, est un réseau de déphaseurs commandables électroniquement. Ce réseau s'étend dans un plan et comporte un réseau d'éléments à contrôle de phase, ou réseau phase, disposé devant des moyens réflecteurs, constitués par exemple par un plan de masse métallique formant plan de masse. Le réseau réflecteur comporte notamment des cellules élémentaires réalisant chacune la réflexion et le déphasage, variable sur commande électronique, de l'onde hyperfréquence qu'elle reçoit. Une telle antenne apporte une grande agilité de faisceau. Une source primaire, par exemple un cornet, disposée devant le réseau réflecteur émet vers ce dernier les ondes hyperfréquence.It is known to produce antennas comprising an active microwave reflector. The latter, also called "reflect array" in Anglo-Saxon literature, is a network of electronically controllable phase shifters. This network extends in a plane and comprises a network of phase control elements, or phase network, disposed in front of reflective means, constituted for example by a metallic ground plane forming a ground plane. The reflective grating comprises in particular elementary cells each carrying out the reflection and the phase shift, variable on electronic control, of the microwave wave which it receives. Such an antenna provides great beam agility. A primary source, for example a horn, placed in front of the reflective network emits microwave waves towards the latter.
Un but de l'invention est notamment de permettre la réalisation d'une antenne à balayage électronique utilisant un réseau réflecteur actif et fonctionnant selon deux polarisations indépendantes. A cet effet, l'invention a pour objet un réflecteur hyperfréquence actif, susceptible de recevoir une onde électromagnétique comportant deux réseaux de guide d'ondes imbriqués. Le fond de chaque guide est fermé par un circuit réalisant la réflexion et le déphasage de l'onde qu'elle reçoit, un réseau étant destiné à recevoir une polarisation et l'autre réseau étant destiné à recevoir une polarisation perpendiculaire à la précédente. Un mode de réalisation peut être tel que :An object of the invention is in particular to allow the production of an electronic scanning antenna using an active reflective network and operating according to two independent polarizations. To this end, the invention relates to an active microwave reflector, capable of receiving an electromagnetic wave comprising two nested waveguide networks. The bottom of each guide is closed by a circuit carrying out the reflection and the phase shift of the wave which it receives, one network being intended to receive a polarization and the other network being intended to receive a polarization perpendicular to the previous one. An embodiment can be such that:
- un premier réseau comporte plusieurs ensembles de guides alignés, une ligne s'étendant selon une direction Ox et l'ensemble des lignes s'étendant selon une direction perpendiculaire Oy, pour une même ligne, les centres C de deux guides consécutifs étant séparés d'une distance d, deux lignes consécutives étant séparées d'une distance h, selon Oy, et décalées l'une par rapport à l'autre de la distance d/2, selon Ox ;- A first network comprises several sets of aligned guides, a line extending in a direction Ox and all the lines extending in a perpendicular direction Oy, for the same line, the centers C of two consecutive guides being separated by 'a distance d, two consecutive lines being separated by a distance h, according to Oy, and offset from each other by the distance d / 2, according to Ox;
- le deuxième réseau comporte plusieurs ensembles de guides alignés de la même façon que dans le premier réseau, les lignes étant décalées angulairement de 90° par rapport à celles du premier réseau ;- The second network includes several sets of guides aligned in the same way as in the first network, the lines being angularly offset by 90 ° relative to those of the first network;
- un guide d'un réseau est uniquement contigu à des guides de l'autre réseau.- a guide from one network is only contiguous to guides from the other network.
L'invention a également pour objet une antenne à balayage électronique comportant un réflecteur tel que défini précédemment. Cette antenne peut être par exemple du type « Reflect Array » ou du type Cassegrain.The invention also relates to an electronic scanning antenna comprising a reflector as defined above. This antenna can for example be of the “Reflect Array” type or of the Cassegrain type.
L'invention a notamment pour avantage qu'elle permet d'obtenir un réflecteur compact et de faible poids, qu'elle est simple à mettre en oeuvre et qu'elle est économique.The invention has in particular the advantage that it makes it possible to obtain a compact and low-weight reflector, that it is simple to implement and that it is economical.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :Other characteristics and advantages of the invention will become apparent from the following description given with reference to the accompanying drawings which represent:
- la figure 1 , un exemple de réalisation d'une antenne à balayage électronique à réflecteur hyperfréquence actif ;- Figure 1, an embodiment of an electronic scanning antenna with active microwave reflector;
- la figure 2, une illustration du principe de réalisation d'un réflecteur selon l'invention ; - la figure 3, un exemple de réalisation d'une cellule de déphasage ;- Figure 2, an illustration of the principle of embodiment of a reflector according to the invention; - Figure 3, an embodiment of a phase shift cell;
- les figures 4a, 4b et 4c, une illustration d'un mode d'imbrication possible des réseaux de guides d'un réflecteur selon l'invention ; - la figure 5, par une vue en coupe, les couches constitutives possibles d'un réflecteur selon l'invention ;- Figures 4a, 4b and 4c, an illustration of a possible nesting mode of the guide arrays of a reflector according to the invention; - Figure 5, in a sectional view, the possible constituent layers of a reflector according to the invention;
- la figure 6, un mode de réalisation possible des réseaux de guides d'un réflecteur selon l'invention ;- Figure 6, a possible embodiment of the guide networks of a reflector according to the invention;
- la figure 7, un mode de réalisation complémentaire permettant notamment de réduire le taux d'ondes stationnaires. La figure 1 illustre de façon schématique un exemple de réalisation d'une antenne à balayage électronique à réseau réflecteur actif en regard d'un repère orthonormé Oxyz. Dans cet exemple de réalisation, la distribution hyperfréquence est par exemple du type dit optique, c'est-à-dire par exemple assurée à l'aide d'une source primaire illuminant le réseau réflecteur. A cet effet, l'antenne comporte une source primaire 1 , par exemple un cornet. La source primaire 1 émet des ondes hyperfréquence 3 vers le réseau réflecteur actif 4, disposé dans le plan Oxy. Ce réseau réflecteur 4 comporte un ensemble de cellules élémentaires réalisant la réflexion et le déphasage des ondes qu'elles reçoivent. Ainsi, par commande des déphasages imprimés à l'onde reçue par chaque cellule, il est possible ainsi qu'il est connu, de former un faisceau hyperfréquence dans la direction souhaitée. Avec un réflecteur selon l'invention, la source primaire 1 peut être à double polarisation.- Figure 7, a complementary embodiment allowing in particular to reduce the standing wave rate. FIG. 1 schematically illustrates an exemplary embodiment of an electronic scanning antenna with an active reflective array facing an orthonormal reference mark Oxyz. In this exemplary embodiment, the microwave distribution is for example of the so-called optical type, that is to say for example ensured by means of a primary source illuminating the reflective network. For this purpose, the antenna comprises a primary source 1, for example a horn. The primary source 1 emits microwave waves 3 towards the active reflecting network 4, arranged in the Oxy plane. This reflective network 4 comprises a set of elementary cells performing the reflection and the phase shift of the waves they receive. Thus, by controlling the phase shifts printed on the wave received by each cell, it is possible, as is known, to form a microwave beam in the desired direction. With a reflector according to the invention, the primary source 1 can be double polarized.
La figure 2 illustre le principe de réalisation d'un réflecteur selon l'invention. Ce dernier comporte deux réseaux de guides d'onde 21 , 22 imbriqués. Ces guides sont vus selon F, c'est-à-dire selon une vue de face du réflecteur 4. La figure représente donc notamment la section des guides dans le plan Oxy, les parois des guides s'étendant dans la direction Oz. Chaque guide appartient à une cellule élémentaire telle qu'évoquée précédemment. Un premier réseau de guides 21 est destiné à recevoir la polarisation verticale et un second réseau de guides 22 est destiné à recevoir la polarisation horizontale. Les ondes hyperfréquence 3 incidentes pénètrent dans les guides. Chaque guide 21 , 22 est court-circuité par un déphaseur tel que décrit par exemple dans la demande de brevet français n° 97 01326, commandable selon deux à quatre bits ou plus.FIG. 2 illustrates the principle of production of a reflector according to the invention. The latter comprises two nested waveguide networks 21, 22. These guides are seen along F, that is to say according to a front view of the reflector 4. The figure therefore represents in particular the section of the guides in the plane Oxy, the walls of the guides extending in the direction Oz. Each guide belongs to an elementary cell as mentioned above. A first network of guides 21 is intended to receive the vertical polarization and a second network of guides 22 is intended to receive the horizontal polarization. The incident 3 microwave waves penetrate the guides. Each guide 21, 22 is short-circuited by a phase shifter as described for example in French patent application No. 97 01326, controllable according to two to four bits or more.
La figure 3 illustre de façon schématique une cellule de déphasage. Celle-ci comporte donc un guide 21 , 22 et un circuit de déphasage 31 , ce dernier étant disposé au fond du guide dans le plan Oxy. Un circuit déphaseur 31 comporte au moins un fil conducteur 32, 33 portant lui-même au moins deux semi-conducteurs D-i, D2, par exemple des diodes, à deux états. Les fils conducteurs et les diodes sont placés sur un support diélectrique 34 dont la face opposée comporte un plan conducteur réfléchissant l'onde hyperfréquence. Ce plan conducteur est par exemple au contact électrique des parois du guide 21, 22. Une cellule élémentaire 31 réalise donc la réflexion et le déphasage de l'onde hyperfréquence 3 qu'elle reçoit pour la composante de l'onde dont la polarisation est sensiblement parallèle aux fils conducteurs 32, 33. A titre d'exemple, la cellule telle qu'illustrée par la figure 3 agit sur une onde polarisée selon la direction Oy parallèle à la direction des fils conducteurs 32, 33 de la cellule. En polarisation horizontale, seuls les guides destinés à recevoir cette polarisation sont actifs, les autres étant court-circuités. De même, en polarisation verticale, seuls les guides destinés à recevoir cette polarisation sont actifs, les autres étant court-circuités.FIG. 3 schematically illustrates a phase shift cell. The latter therefore comprises a guide 21, 22 and a phase shift circuit 31, the latter being disposed at the bottom of the guide in the plane Oxy. A phase shifting circuit 31 comprises at least one conducting wire 32, 33 itself carrying at least two semiconductors Di, D 2 , for example diodes, with two states. The conducting wires and the diodes are placed on a support dielectric 34, the opposite face of which comprises a conductive plane reflecting the microwave wave. This conducting plane is for example in electrical contact with the walls of the guide 21, 22. An elementary cell 31 therefore performs the reflection and the phase shift of the microwave wave 3 which it receives for the component of the wave whose polarization is substantially parallel to the conductive wires 32, 33. By way of example, the cell as illustrated in FIG. 3 acts on a wave polarized in the direction Oy parallel to the direction of the conductive wires 32, 33 of the cell. In horizontal polarization, only the guides intended to receive this polarization are active, the others being short-circuited. Similarly, in vertical polarization, only the guides intended to receive this polarization are active, the others being short-circuited.
Les figures 4a, 4b et 4c illustrent un mode d'imbrication possible des deux réseaux de guides. La figure 4a présente trois guides 21 du premier réseau, représentant une maille, destinés par exemple à recevoir la polarisation verticale. La figure 4b présente trois guides 22 du second réseau, représentant une maille, destinés par exemple à recevoir la polarisation horizontale. En tout état de cause, les deux réseaux sont destinés à recevoir des ondes de polarisations croisées, le deuxième réseau de guides 22 étant affecté à une polarisation perpendiculaire à la polarisation du premier réseau de guides 21. La section de chaque guide comporte un point milieu C. Cette section étant angulaire, le point milieu C est l'intersection de ses deux lignes médianes. Les sections des guides sont représentées dans le plan Oxy du réflecteur. A titre d'exemple on considère que l'axe Ox correspond à la direction d'une première polarisation. De même, on considère que l'axe Oy correspond à la direction de la deuxième polarisation, croisée par rapport à la précédente. Pour simplifier et à titre d'exemple, on pourra assimiler par la suite la direction Oy à la direction verticale et la direction Ox à la direction horizontale.Figures 4a, 4b and 4c illustrate a possible nesting mode of the two guide arrays. FIG. 4a presents three guides 21 of the first network, representing a mesh, intended for example to receive the vertical polarization. FIG. 4b presents three guides 22 of the second network, representing a mesh, intended for example to receive the horizontal polarization. In any event, the two networks are intended to receive waves of crossed polarizations, the second network of guides 22 being assigned to a polarization perpendicular to the polarization of the first network of guides 21. The section of each guide has a midpoint C. Since this section is angular, the midpoint C is the intersection of its two midlines. The guide sections are shown in the Oxy plane of the reflector. By way of example, it is considered that the axis Ox corresponds to the direction of a first polarization. Similarly, it is considered that the axis Oy corresponds to the direction of the second polarization, crossed with respect to the previous one. For simplicity and by way of example, we can assimilate the direction Oy to the vertical direction and the direction Ox to the horizontal direction.
La figure 4a présente donc un premier réseau de guides 21 destinés à recevoir les polarisations verticales. Le réseau comporte plusieurs ensembles de guides alignés. Une ligne de guides s'étend selon la direction horizontale Ox et l'ensemble des lignes s'étend selon la direction verticale Oy. Pour une même ligne, les centres C de deux guides 21 consécutifs sont séparés d'une distance d. Deux lignes consécutives sont séparées d'une distance h, selon Oy, et décalées l'une par rapport à l'autre de la distance d/2, selon Ox. En d'autres termes, deux lignes médianes 41 , 42 consécutives sont distantes de h, les lignes médianes étant les lignes médianes des guides prises selon Ox. Entre deux lignes consécutives, il y a un décalage de d/2 des points milieu des guides.FIG. 4a therefore presents a first network of guides 21 intended to receive the vertical polarizations. The network includes several sets of aligned guides. A line of guides extends in the horizontal direction Ox and the set of lines extends in the direction vertical Oy. For the same line, the centers C of two consecutive guides 21 are separated by a distance d. Two consecutive lines are separated by a distance h, according to Oy, and offset relative to each other by the distance d / 2, according to Ox. In other words, two consecutive center lines 41, 42 are spaced from h, the center lines being the center lines of the guides taken along Ox. Between two consecutive lines, there is an offset of d / 2 from the midpoints of the guides.
La figure 4b présente le second réseau de guides 22 destinés à recevoir la polarisation horizontale. La disposition des guides est similaire à celle du réseau de la figure 4a, mais avec une rotation de l'ensemble de 90°. Dans ce cas, les lignes s'étendent le long de l'axe Oy et l'ensemble de lignes s'étend le long de l'axe Ox. Pour une même ligne, les centres C de deux guides 22 consécutifs sont séparés d'une distance d. Deux lignes consécutives sont séparées d'une distance h, selon Ox, et décalées l'une par rapport à l'autre de la distance d/2, selon Oy. En d'autres termes, deux lignes médianes 43, 44 consécutives sont distantes de h, les lignes médianes étant les lignes médianes des guides prises selon Oy. Entre deux lignes consécutives, il y a un décalage de d/2 des points milieu des guides.FIG. 4b shows the second network of guides 22 intended to receive the horizontal polarization. The arrangement of the guides is similar to that of the network of FIG. 4a, but with a rotation of the assembly of 90 °. In this case, the lines extend along the axis Oy and the set of lines extends along the axis Ox. For the same line, the centers C of two consecutive guides 22 are separated by a distance d. Two consecutive lines are separated by a distance h, along Ox, and offset relative to each other by the distance d / 2, along Oy. In other words, two consecutive middle lines 43, 44 are distant of h, the midlines being the midlines of the guides taken along Oy. Between two consecutive lines, there is an offset of d / 2 from the midpoints of the guides.
La figure 4c définit l'imbrication des deux réseaux de guides en montrant comment un guide 22 d'un réseau est positionné par rapport aux guides 21 de l'autre réseau. Ce guide 22 est uniquement contigu à des guides 21 de l'autre réseau. Dans le cas de la figure 4c, le guide 22 est contigu à quatre guides 21 de l'autre réseau. Le point milieu C de ce guide 22 est aligné avec les points milieu des deux paires de guides 21 encadrant le guide 22. On obtient ainsi un maillage tel qu'illustré par la figure 2. Les dimensions intérieures des guides d'onde 21 , 22 sont par exemple de 0,6 λ et 0,3 λ (λ = longueur de l'onde 3) respectivement en longueur et en largeur, la longueur des guides s'étendant le long des lignes des réseaux. La distance d entre les points milieu C de deux guides consécutifs d'une même ligne est alors par exemple égale λ et la distance h entre les médianes 41 , 42, 43, 44 de deux lignes consécutives est par exemple de λ/2. A titre d'exemple, pour une onde hyperfréquence 3 à 10 GHz, les dimensions intérieures d'un guide d'onde sont 1 ,8 cm et 0,9 cm, et les distances d et h sont respectivement 3 cm et 1 ,5 cm. Ce maillage permet notamment un dépointage du faisceau réfléchi par le réflecteur 4 sur un cône d'environ 60°.FIG. 4c defines the nesting of the two networks of guides by showing how a guide 22 of one network is positioned relative to the guides 21 of the other network. This guide 22 is only contiguous to guides 21 of the other network. In the case of FIG. 4c, the guide 22 is contiguous to four guides 21 of the other network. The midpoint C of this guide 22 is aligned with the midpoints of the two pairs of guides 21 framing the guide 22. This gives a mesh as illustrated in FIG. 2. The internal dimensions of the waveguides 21, 22 are for example 0.6 λ and 0.3 λ (λ = wavelength 3) respectively in length and in width, the length of the guides extending along the lines of the grids. The distance d between the midpoints C of two consecutive guides of the same line is then for example equal λ and the distance h between the medians 41, 42, 43, 44 of two consecutive lines is for example of λ / 2. For example, for a microwave wave 3 at 10 GHz, the internal dimensions of a waveguide are 1.8 cm and 0.9 cm, and the distances d and h are respectively 3 cm and 1.5 cm. This mesh allows in particular a deflection of the beam reflected by the reflector 4 on a cone of about 60 °.
La figure 5 présente par une vue en coupe les couches constitutives possibles d'un réflecteur selon l'invention. Il comporte au moins trois couches 51 , 52, 53. Une première couche 51 comporte les circuits hyperfréquence de déphasage, c'est-à-dire notamment les diodes D-i, D2, les fils conducteurs qui les portent et les circuits de connexion associés. Les circuits hyperfréquence sont par exemple supportés par un substrat 54. Sur la face opposée aux circuits hyperfréquence, ce substrat est recouvert d'une couche métallisée 56, formant un plan conducteur, qui a notamment pour fonction de réfléchir les ondes hyperfréquence 3. En bande X, l'épaisseur βh du substrat est par exemple de l'ordre de 3 mm, la constante diélectrique relative εr étant de l'ordre de 2,5. Une deuxième couche 52 comporte les circuits de commande 55 des diodes Di, D2 des déphaseurs. Cette couche assure par ailleurs la connexion entre les circuits de commande et les diodes. A cet effet, elle a par exemple la structure d'un circuit imprimé multicouche comportant des plans d'interconnexions des circuits de commandes aux circuits hyperfréquence. Enfin, une troisième couche 53, disposée en regard des circuits hyperfréquence D^ D2 comporte les deux réseaux de guides d'onde.Figure 5 shows in a sectional view the possible constituent layers of a reflector according to the invention. It comprises at least three layers 51, 52, 53. A first layer 51 comprises the microwave phase shift circuits, that is to say in particular the diodes Di, D 2 , the conductive wires which carry them and the associated connection circuits . The microwave circuits are for example supported by a substrate 54. On the face opposite to the microwave circuits, this substrate is covered with a metallized layer 56, forming a conducting plane, which in particular has the function of reflecting the microwave waves 3. In strip X, the thickness β h of the substrate is for example of the order of 3 mm, the relative dielectric constant ε r being of the order of 2.5. A second layer 52 comprises the control circuits 55 of the diodes Di, D 2 of the phase shifters. This layer also provides the connection between the control circuits and the diodes. To this end, it has for example the structure of a multilayer printed circuit comprising interconnection planes from the control circuits to the microwave circuits. Finally, a third layer 53, placed opposite the microwave circuits D ^ D 2 comprises the two networks of waveguides.
La figure 6 présente un mode de réalisation possible de la couche de guides d'ondes 53. Ce mode de réalisation est notamment facile à mettre en œuvre. Les parois des guides 21 , 22 sont réalisées par des trous métallisés 61 , 62 orientés selon la direction Oz. Ces trous métallisés pourraient être remplacés par des fils conducteurs, c'est-à-dire des conducteurs électriques rectilignes, orientés selon la direction Oz. Les guides ainsi réalisés ont par exemple des parties de parois communes, c'est-à-dire que des trous métallisés 63, 64 sont communs à deux guides. Dans ce cas, deux guides voisins ont des trous métallisés en commun. Les trous métallisés sont réalisés dans une plaque en matériau diélectrique d'épaisseur eg, cette épaisseur constituant la longueur des guides. Les trous métallisés sont suffisamment rapprochés pour jouer le rôle de parois de guides d'onde. Ces trous métallisés 61, 62 traversent donc toute la troisième couche 53. Ils se prolongent dans la couche hyperfréquence 51 pour atteindre le plan conducteur 56. Ils permettent ainsi par ailleurs de découpler électromagnétiquement chaque circuit de déphasage 32, 33, D-t, D de ses voisins en formant un blindage électromagnétique. Il n'y a alors pas de propagation d'onde d'une cellule à l'autre. Avantageusement, certains trous métallisés 61 , 64 peuvent se prolonger dans la couche 52 comportant les circuits de commande. Ces trous qui se prolongent permettent notamment de relier électriquement les circuits de commande aux diodes des circuits déphaseurs de la couche hyperfréquence 51. Ces trous métallisés 61, 64 véhiculent ainsi la commande des diodes ainsi que l'alimentation électrique des circuits. Ils sont par exemples reliés aux différents plans d'interconnexion de la couche de commande 52. A titre d'exemple, les trous métallisés 61, 64 représentés en noir sont utilisés par ailleurs pour l'alimentation et la commande des circuits hyperfréquence. Ces trous 61, 64 traversent notamment (e plan conducteur 56 sans contact électrique avec ce dernier. Les autres trous 62, 63 s'arrêtent par exemple au niveau de ce plan conducteur 56, en contact électrique avec ce dernier. L'épaisseur eg de la couche de guide d'onde est par exemple de l'ordre d'un centimètre. Il faut par exemple prévoir des creux dans cette couche 53 de guides pour loger les diodes Di, D2 de la couche hyperfréquence 51. Avantageusement, le poids d'un réflecteur selon l'invention est faible en raison du faible poids des différentes couches. Par ailleurs, malgré la couche de guides d'ondes, le réflecteur reste toujours compact.FIG. 6 shows a possible embodiment of the layer of waveguides 53. This embodiment is in particular easy to implement. The walls of the guides 21, 22 are produced by metallized holes 61, 62 oriented in the direction Oz. These metallized holes could be replaced by conductive wires, that is to say rectilinear electrical conductors, oriented in the direction Oz. The guides thus produced have for example parts of common walls, that is to say that metallized holes 63, 64 are common to two guides. In this case, two neighboring guides have metallized holes in common. The metallized holes are produced in a plate of dielectric material of thickness e g , this thickness constituting the length of the guides. The metallized holes are close enough to play the role of walls of wave guides. These metallized holes 61, 62 therefore cross the entire third layer 53. They extend into the microwave layer 51 to reach the conductive plane 56. They thus also allow electromagnetic decoupling of each phase shift circuit 32, 33, Dt, D from its neighbors by forming an electromagnetic shield. There is then no wave propagation from one cell to another. Advantageously, certain metallized holes 61, 64 can extend into the layer 52 comprising the control circuits. These holes which extend allow in particular to electrically connect the control circuits to the diodes of the phase shift circuits of the microwave layer 51. These metallized holes 61, 64 thus convey the control of the diodes as well as the electrical supply of the circuits. They are for example connected to the various interconnection planes of the control layer 52. By way of example, the metallized holes 61, 64 shown in black are also used for supplying and controlling the microwave circuits. These holes 61, 64 pass through in particular (the conductive plane 56 without electrical contact with the latter. The other holes 62, 63 stop for example at this conductive plane 56, in electrical contact with the latter. The thickness e g of the waveguide layer is for example of the order of a centimeter, for example it is necessary to provide recesses in this layer 53 of guides to house the diodes Di, D 2 of the microwave layer 51. Advantageously, the The weight of a reflector according to the invention is low due to the low weight of the different layers, moreover, despite the waveguide layer, the reflector still remains compact.
La figure 7 illustre un mode de réalisation complémentaire permettant notamment de réduire le taux d'ondes stationnaires (TOS) actif dans les guides. L'entrée des guides 21, 22 comporte un iris 71 d'ouverture rectangulaire, l'ensemble étant fermé par une lame diélectrique 72. Dans ce mode de réalisation, la couche de guides d'ondes 53 peut être recouverte d'une couche formant les iris, l'ensemble étant fermé par une couche diélectrique.FIG. 7 illustrates a complementary embodiment making it possible in particular to reduce the standing wave rate (TOS) active in the guides. The entry of the guides 21, 22 comprises an iris 71 of rectangular opening, the assembly being closed by a dielectric strip 72. In this embodiment, the layer of waveguides 53 can be covered with a layer forming the irises, the whole being closed by a dielectric layer.
Un réflecteur selon l'invention peut être utilisé pour différents types d'antennes. Il peut être utilisé comme l'illustre la figure 1 pour former une antenne du type « reflect array ». De même, il peut être utilisé dans une antenne du type Cassegrain. Dans ce dernier cas, la source primaire est placée au centre du réflecteur et illumine un réflecteur auxiliaire. Ce dernier illumine à son tour, par réflexion, le réflecteur selon l'invention.A reflector according to the invention can be used for different types of antennas. It can be used as shown in Figure 1 to form a "reflect array" type antenna. Similarly, it can be used in a Cassegrain type antenna. In the latter case, the primary source is placed in the center of the reflector and illuminates an auxiliary reflector. The latter in turn illuminates, by reflection, the reflector according to the invention.
Un réflecteur ou une antenne selon l'invention sont simples à mettre en œuvre. Ils sont aussi économiques, car les composants et les technologies utilisés sont bons marchés. L'invention apporte par ailleurs tous les avantages liés à la bipolarisation. Une antenne selon l'invention peut ainsi par exemple être utilisée pour des mesures de polarimétrie sur des cibles, notamment en émettant selon une polarisation et en recevant sur l'autre polarisation. Elle peut être utilisée dans des applications de télécommunication, par exemple bi-bande. A reflector or an antenna according to the invention are simple to implement. They are also economical because the components and technologies used are inexpensive. The invention also provides all the advantages associated with bipolarization. An antenna according to the invention can thus for example be used for polarimetry measurements on targets, in particular by transmitting according to one polarization and by receiving on the other polarization. It can be used in telecommunications applications, for example dual-band.

Claims

REVENDICATIONS
1. Réflecteur hyperfréquence actif, susceptible de recevoir une onde électromagnétique (3), caractérisé en ce qu'il comporte deux réseaux de guide d'ondes (21, 22) imbriqués, le fond de chaque guide étant fermé par un circuit de déphasage (31) réalisant la réflexion et le déphasage de l'onde qu'elle reçoit, un réseau étant destiné à recevoir une polarisation et l'autre réseau étant destiné à recevoir une polarisation perpendiculaire à la précédente.1. Active microwave reflector, capable of receiving an electromagnetic wave (3), characterized in that it comprises two overlapping waveguide networks (21, 22), the bottom of each guide being closed by a phase shift circuit ( 31) realizing the reflection and the phase shift of the wave which it receives, one network being intended to receive a polarization and the other network being intended to receive a polarization perpendicular to the previous one.
2. Réflecteur selon la revendication 1 , caractérisé en ce que2. Reflector according to claim 1, characterized in that
- un premier réseau comporte plusieurs ensemble de guides- a first network includes several sets of guides
(21) alignés, une ligne s'étendant selon une direction Ox et l'ensemble des lignes s'étendant selon une direction perpendiculaire Oy, pour une même ligne, les centres C de deux guides (21) consécutifs étant séparés d'une distance d, deux lignes consécutives étant séparées d'une distance h, selon Oy, et décalées l'une par rapport à l'autre de la distance d/2, selon Ox ;(21) aligned, a line extending in a direction Ox and the set of lines extending in a perpendicular direction Oy, for the same line, the centers C of two consecutive guides (21) being separated by a distance d, two consecutive lines being separated by a distance h, along Oy, and offset relative to each other by the distance d / 2, along Ox;
- le deuxième réseau comporte plusieurs ensemble de guides- the second network includes several sets of guides
(22) alignés de la même façon que dans le premier réseau, les lignes étant décalées angulairement de 90° par rapport à celles du premier réseau ; - un guide (22) d'un réseau est uniquement contigu à des guides de l'autre réseau.(22) aligned in the same way as in the first network, the lines being angularly offset by 90 ° with respect to those of the first network; - A guide (22) of a network is only contiguous to guides of the other network.
3. Réflecteur selon l'une quelconque des revendications précédentes, caractérisée en ce qu'il comporte au moins trois couches : - une couche (51 ) comportant les circuits de déphasage ; une couche (52) comportant les circuits de commande (55) des circuits de déphasage, cette couche assurant par ailleurs la connexion entre les circuits de commande et les diodes ; une couche (53), disposée en regard des circuits de déphasage comportant les deux réseaux de guides d'onde (21 , 22).3. Reflector according to any one of the preceding claims, characterized in that it comprises at least three layers: - a layer (51) comprising the phase shift circuits; a layer (52) comprising the control circuits (55) of the phase shift circuits, this layer also ensuring the connection between the control circuits and the diodes; a layer (53), disposed opposite the phase shift circuits comprising the two networks of waveguides (21, 22).
4. Réflecteur selon la revendication 3, caractérisé en ce que les parois de guides d'onde (21 , 22) sont réalisées par des conducteurs électriques rectilignes rapprochés (61 , 62, 63, 64) traversant la couche (53) et orientés perpendiculaires au plan (Oxy) des circuits de déphasage.4. Reflector according to claim 3, characterized in that the waveguide walls (21, 22) are produced by close rectilinear electrical conductors (61, 62, 63, 64) passing through the layer (53) and oriented perpendicularly at the plane (Oxy) of the phase shift circuits.
5. Réflecteur selon la revendication 4, caractérisé en ce que les guides (21 , 23) traverse par ailleurs la couche (51 ) comportant les circuits de déphasage, les conducteurs assurant le découplage hyperfréquence entre circuits de déphasages voisins.5. Reflector according to claim 4, characterized in that the guides (21, 23) also passes through the layer (51) comprising the phase shift circuits, the conductors ensuring microwave decoupling between neighboring phase shift circuits.
6. Réflecteur selon la revendication 5, caractérisé en ce que des conducteurs pénètrent dans la couche (52) de commande pour véhiculer des signaux de commande vers la couche (51) comportant les circuits de déphasage.6. Reflector according to claim 5, characterized in that conductors penetrate into the control layer (52) to convey control signals to the layer (51) comprising the phase shift circuits.
7. Réflecteur selon l'une quelconque des revendications 4 à 6, caractérisé en ce que les conducteurs sont des trous métallisés.7. Reflector according to any one of claims 4 to 6, characterized in that the conductors are metallized holes.
8. Réflecteur selon l'une quelconque des revendications précédentes, caractérisé en que le circuit de déphasage (31) comporte au moins un fil conducteur (32, 33) portant lui-même au moins deux semiconducteurs (Di, D2) à deux états, les fils conducteurs et les semiconducteurs étant placés sur un support diélectrique (34) dont la face opposée comporte un plan conducteur réfléchissant l'onde hyperfréquence, le circuit de déphasage réfléchissant et déphasant l'onde qu'il reçoit pour la composante de l'onde dont la polarisation est sensiblement parallèle aux fils conducteurs.8. Reflector according to any one of the preceding claims, characterized in that the phase shift circuit (31) comprises at least one conductive wire (32, 33) itself carrying at least two semiconductors (Di, D 2 ) with two states , the conducting wires and the semiconductors being placed on a dielectric support (34) the opposite face of which comprises a conducting plane reflecting the microwave wave, the phase shift circuit reflecting and phase shifting the wave it receives for the component of the wave whose polarization is substantially parallel to the conductive wires.
9. Antenne hyperfréquence à balayage électronique, caractérisée en ce qu'elle comporte un réflecteur (4) selon l'une quelconque des revendications précédentes et une source d'onde hyperfréquence (1) illuminant le réflecteur.9. microwave antenna with electronic scanning, characterized in that it comprises a reflector (4) according to any one of previous claims and a microwave wave source (1) illuminating the reflector.
10. Antenne hyperfréquence à balayage électronique, caractérisée en ce qu'elle comporte un réflecteur (4) selon l'une quelconque des revendications 1 à 8 pour former une antenne de type Cassegrain, une source d'onde hyperfréquence étant située sensiblement au centre du réflecteur (4) pour illuminer un réflecteur auxiliaire, lequel illumine le réflecteur (4) par réflexion. 10. microwave antenna with electronic scanning, characterized in that it comprises a reflector (4) according to any one of claims 1 to 8 to form a Cassegrain type antenna, a microwave wave source being located substantially in the center of the reflector (4) for illuminating an auxiliary reflector, which illuminates the reflector (4) by reflection.
EP01958154A 2000-07-28 2001-07-20 Active dual-polarization microwave reflector, in particular for electronically scanning antenna Expired - Lifetime EP1305846B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0009975A FR2812457B1 (en) 2000-07-28 2000-07-28 ACTIVE BI-POLARIZATION MICROWAVE REFLECTOR, ESPECIALLY FOR AN ELECTRONICALLY BALANCED ANTENNA
FR0009975 2000-07-28
PCT/FR2001/002383 WO2002011238A1 (en) 2000-07-28 2001-07-20 Active dual-polarization microwave reflector, in particular for electronically scanning antenna

Publications (2)

Publication Number Publication Date
EP1305846A1 true EP1305846A1 (en) 2003-05-02
EP1305846B1 EP1305846B1 (en) 2007-09-19

Family

ID=8853063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01958154A Expired - Lifetime EP1305846B1 (en) 2000-07-28 2001-07-20 Active dual-polarization microwave reflector, in particular for electronically scanning antenna

Country Status (8)

Country Link
US (1) US6703980B2 (en)
EP (1) EP1305846B1 (en)
JP (1) JP2004505582A (en)
AU (1) AU2001279889A1 (en)
CA (1) CA2385787A1 (en)
DE (1) DE60130561T2 (en)
FR (1) FR2812457B1 (en)
WO (1) WO2002011238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899737B2 (en) 2011-12-23 2018-02-20 Sofant Technologies Ltd Antenna element and antenna device comprising such elements

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060126961A (en) 2003-09-15 2006-12-11 카운실 포 더 센트랄 래버러토리이스 오브 더 리서치 카운실즈 Millimetre and sub-millimetre imaging device
FR2879359B1 (en) * 2004-12-15 2007-02-09 Thales Sa BROADBAND ELECTRONIC SCANNING ANTENNA
US7333055B2 (en) * 2005-03-24 2008-02-19 Agilent Technologies, Inc. System and method for microwave imaging using an interleaved pattern in a programmable reflector array
US7283085B2 (en) * 2005-03-24 2007-10-16 Agilent Technologies, Inc. System and method for efficient, high-resolution microwave imaging using complementary transmit and receive beam patterns
FR2907262B1 (en) * 2006-10-13 2009-10-16 Thales Sa DEPHASEUSE CELL WITH ANALOG PHASE SENSOR FOR REFLECTARRAY ANTENNA.
FR2920597B1 (en) * 2007-08-31 2010-04-16 Thales Sa ELECTRONIC SCANNING HYPERFREQUENCY REFLECTOR WITH DOUBLE POLARIZATION, BROADBAND, AND ANTENNA EQUIPPED WITH SUCH A REFLECTOR
JP5371633B2 (en) 2008-09-30 2013-12-18 株式会社エヌ・ティ・ティ・ドコモ Reflect array
JP5297349B2 (en) * 2009-11-13 2013-09-25 株式会社エヌ・ティ・ティ・ドコモ Reflect array
DE102013218555A1 (en) * 2013-07-18 2015-01-22 Rohde & Schwarz Gmbh & Co. Kg System and method for illuminating and imaging an object
TWI713517B (en) * 2016-04-20 2020-12-21 智邦科技股份有限公司 Antenna system

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308469A (en) 1962-10-19 1967-03-07 Thomson Houston Comp Francaise Multi-mode antenna system
FR1460030A (en) 1965-10-14 1966-06-17 Thomson Houston Comp Francaise Developments in electronic scanning antennas
FR1462334A (en) 1965-10-15 1966-04-15 Thomson Houston Comp Francaise Multibeam antenna system performing spatial spectro-analysis
FR1460075A (en) 1965-10-15 1966-06-17 Thomson Houston Comp Francaise Improvements to radiating networks
FR2118848B1 (en) 1970-12-22 1974-03-22 Thomson Csf
US3706998A (en) * 1971-02-03 1972-12-19 Raytheon Co Multiple interleaved phased antenna array providing simultaneous operation at two frequencies and two polarizations
FR2148341B1 (en) 1971-08-09 1977-01-28 Thomson Csf
US3761943A (en) * 1972-07-21 1973-09-25 Us Navy Dual-band array antenna
FR2255716B1 (en) 1973-12-20 1978-03-24 Thomson Csf
US3978484A (en) * 1975-02-12 1976-08-31 Collier Donald C Waveguide-tuned phased array antenna
FR2302601A1 (en) 1975-02-28 1976-09-24 Thomson Csf EXTR DEVICE
FR2646924B1 (en) 1976-07-13 1991-10-25 Thomson Csf ANTI-SCALING METHOD AND DEVICE FOR ELECTROMAGNETIC SENSING EQUIPMENT COMPRISING A REFLECTOR ANTENNA, ANTENNA AND EQUIPMENT THUS OBTAINED
FR2383530A1 (en) 1977-03-11 1978-10-06 Thomson Csf NON-DISPERSIVE NETWORK ANTENNA AND ITS APPLICATION TO THE REALIZATION OF AN ELECTRONIC SCAN ANTENNA
FR2385233A1 (en) 1977-03-25 1978-10-20 Thomson Csf ANTENNA STRUCTURE WITH REFLECTORS AND ESPECIALLY EXCENTER REFLECTORS, AND ELECTROMAGNETIC DETECTION AND SPACE TELECOMMUNICATION EQUIPMENT CONTAINING SUCH A STRUCTURE
FR2395620A1 (en) 1977-06-24 1979-01-19 Radant Etudes IMPROVEMENT OF THE ELECTRONIC SWEEPING PROCESS USING DEPHASER DIELECTRIC PANELS
FR2412960A1 (en) 1977-12-20 1979-07-20 Radant Etudes HYPERFREQUENCY DEPHASER AND ITS APPLICATION TO ELECTRONIC SCAN
FR2445040A1 (en) 1978-12-22 1980-07-18 Thomson Csf CONICAL SCANNING ANTENNA FOR RADAR, ESPECIALLY TRACKING RADAR
FR2448231A1 (en) 1979-02-05 1980-08-29 Radant Et MICROWAVE ADAPTIVE SPATIAL FILTER
FR2456399A1 (en) 1979-05-08 1980-12-05 Thomson Csf DISK-TYPE MICROWAVE NETWORK ANTENNA WITH ITS FEEDING DEVICE, AND APPLICATION TO ECARTOMETRY RADARS
FR2469808A1 (en) 1979-11-13 1981-05-22 Etude Radiant Sarl ELECTRONIC SCANNING DEVICE IN THE POLARIZATION PLAN
FR2511196A1 (en) 1981-08-07 1983-02-11 Thomson Csf MAIN AND AUXILIARY ANTENNA ASSEMBLY WITH ELECTRONIC SCAN AND RADAR COMPRISING SUCH AN ASSEMBLY
FR2513022A1 (en) 1981-09-11 1983-03-18 Thomson Csf WAVEGUIDE WITH RADIANT SLOTS AND BROADBAND FREQUENCY
FR2527785A1 (en) 1982-05-27 1983-12-02 Thomson Csf METHOD AND DEVICE FOR REDUCING THE POWER OF THE INTERFERENCE SIGNALS RECEIVED BY THE LATERAL LOBES OF A RADAR ANTENNA
FR2594274B1 (en) 1982-08-27 1988-08-26 Thomson Csf METHOD FOR COMPRESSING PULSES BY SPACE CODING AND ITS APPLICATION TO RADAR
FR2723210B1 (en) 1983-05-06 1997-01-10 Cmh Sarl ANTI-DETECTION METHOD AND DEVICE FOR RADAR
FR2733091B1 (en) 1983-05-06 1997-05-23 Cmh Sarl ELECTRICALLY CONTROLLABLE MICROWAVE ANSWER AND ITS APPLICATIONS TO THE PRODUCTION OF ELECTROMAGNETIC LURES
FR2548836B1 (en) 1983-07-08 1986-02-21 Thomson Csf QUASI-TORIC COVERED ANTENNA WITH TWO REFLECTORS
FR2557737B1 (en) 1983-12-30 1987-12-18 Thomson Csf ANTENNA WITH TWO CROSS-CYLINDRO-PARABOLIC REFLECTORS AND MANUFACTURING METHOD THEREOF
FR2629920B1 (en) 1984-01-23 1991-09-20 Cmh Sarl REFLECTIVE MICROWAVE ADAPTIVE SPATIAL FILTER AND METHOD FOR IMPLEMENTING SAME
FR2732469B1 (en) 1984-01-23 1997-04-11 Cmh Sarl DEVICE USING AN AUXILIARY ANTENNA EQUIPPED WITH AN ADAPTIVE SPATIAL FILTER FOR THE INTERFERENCE OF AN ASSOCIATED MAIN ANTENNA, AND ITS IMPLEMENTING METHOD
FR2574037B1 (en) 1984-11-30 1993-09-10 Thomson Csf DEVICE AND METHOD FOR CONTROLLING GUIDED VEHICLES
FR2580868B1 (en) 1985-04-19 1988-04-08 Thomson Csf DEVICE REFLECTING THE ELECTROMAGNETIC WAVES OF A POLARIZATION AND ITS MANUFACTURING METHOD
FR2589011B1 (en) 1985-10-22 1988-10-14 Thomson Csf NETWORK ANTENNA WITH CONICAL SCANNING AND RADAR COMPRISING SUCH ANTENNA
FR2604794B1 (en) 1986-10-07 1988-12-02 Thomson Csf FILTER, PHASE MEASURING DEVICE AND METHOD USING THE SAME
US5262788A (en) 1986-12-30 1993-11-16 Thomson-Csf Device and method for data transmission and/or acquisition using two cross polarizations of an electromagnetic wave and magnetic recording device
FR2609224B1 (en) 1986-12-30 1989-04-07 Thomson Csf DEVICE AND METHOD FOR TRANSMITTING AND / OR ACQUIRING DATA USING TWO CROSS POLARIZATIONS OF AN ELECTROMAGNETIC WAVE AND MAGNETIC RECORDING DEVICE
FR2656468B1 (en) 1989-12-26 1993-12-24 Thomson Csf Radant MAGIC MICROWAVE RADIATION SOURCE AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA.
FR2725077B1 (en) 1990-11-06 1997-03-28 Thomson Csf Radant BIPOLARIZATION MICROWAVE LENS AND ITS APPLICATION TO AN ELECTRONICALLY SCANNED ANTENNA
FR2671194B1 (en) 1990-12-27 1993-12-24 Thomson Csf Radant PROTECTION SYSTEM FOR ELECTRONIC EQUIPMENT.
US5198827A (en) * 1991-05-23 1993-03-30 Hughes Aircraft Company Dual reflector scanning antenna system
FR2786610B1 (en) 1997-02-03 2001-04-27 Thomson Csf ACTIVE MICROWAVE REFLECTOR FOR ELECTRONIC SCANNING ANTENNA
FR2801729B1 (en) * 1999-11-26 2007-02-09 Thomson Csf ACTIVE ELECTRONIC SCANNING HYPERFREQUENCY REFLECTOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0211238A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899737B2 (en) 2011-12-23 2018-02-20 Sofant Technologies Ltd Antenna element and antenna device comprising such elements

Also Published As

Publication number Publication date
JP2004505582A (en) 2004-02-19
DE60130561T2 (en) 2008-06-19
FR2812457A1 (en) 2002-02-01
US6703980B2 (en) 2004-03-09
AU2001279889A1 (en) 2002-02-13
CA2385787A1 (en) 2002-02-07
EP1305846B1 (en) 2007-09-19
FR2812457B1 (en) 2004-05-28
US20020145492A1 (en) 2002-10-10
DE60130561D1 (en) 2007-10-31
WO2002011238A1 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
EP2656438B1 (en) Radio cell with two phase states for transmit array
CA2243603C (en) Radiating structure
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
FR2505097A1 (en) RADIATION ELEMENT OR CIRCULAR POLARIZATION HYPERFREQUENCY SIGNAL RECEIVER AND MICROWAVE PLANE ANTENNA COMPRISING A NETWORK OF SUCH ELEMENTS
EP1305846B1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
EP1234356B1 (en) Active electronic scan microwave reflector
FR2831734A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING RADIATION DIVERSITY ELECTROMAGNETIC SIGNALS
EP0595726A1 (en) Phase shifter for electromagnetic waves and application in an antenna with electronic scanning
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
EP1139484B1 (en) Microwave phase shifter and phased array antenna with such phase shifters
EP3900113B1 (en) Elementary microstrip antenna and array antenna
EP1157444B1 (en) Antenna with double-band electronic scanning, with active microwave reflector
EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
FR2678438A1 (en) LINEAR NETWORK ANTENNA.
EP4046241A1 (en) Array antenna
FR2858469A1 (en) Antenna for e.g. motor vehicle obstacles detecting radar, has assembly with two zones of active material layer that are controlled by respective polarization zones defined by metallic patterned layers
FR2907262A1 (en) Microwave phase-changing cell for e.g. bipolarization reflect array antenna, has external conductive band with extension whose shape and dimension are determined to obtain total static capacitor with value at desired operating frequency
FR2747842A1 (en) Microwave lens with panel of stacked phase shifting channels
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
FR2815479A1 (en) Active ultrahigh frequency reflector with two independent polarizations, notably in an electronic scanning antenna
FR2599899A1 (en) Plane array antenna with printed supply conductors having low loss and incorporated pairs of wide-band overlying radiating slots
FR2890792A1 (en) Phased array antenna element for thermal radiator loop, has microfrequency plate formed on intrinsic semiconductor wafer, and diodes disposed on wafer, where diodes are independently polarized with respect to each other
FR2920597A1 (en) Active dual-polarization and wideband electronically scanning microwave reflector for reflecting-type electronically scanning antenna, has metallic interior protrusions formed along width of interleaved waveguides
WO2012131086A1 (en) Wide-band directional printed-circuit array antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020402

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040212

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

17Q First examination report despatched

Effective date: 20040212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60130561

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100724

Year of fee payment: 10

Ref country code: DE

Payment date: 20100714

Year of fee payment: 10

Ref country code: SE

Payment date: 20100708

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100714

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60130561

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110721