WO2012131086A1 - Wide-band directional printed-circuit array antenna - Google Patents

Wide-band directional printed-circuit array antenna Download PDF

Info

Publication number
WO2012131086A1
WO2012131086A1 PCT/EP2012/055915 EP2012055915W WO2012131086A1 WO 2012131086 A1 WO2012131086 A1 WO 2012131086A1 EP 2012055915 W EP2012055915 W EP 2012055915W WO 2012131086 A1 WO2012131086 A1 WO 2012131086A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance surface
high impedance
antenna
antenna according
radiating
Prior art date
Application number
PCT/EP2012/055915
Other languages
French (fr)
Inventor
Michel Soiron
Fabrice LINOT
Bernard Perpere
Xavier Begaud
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2012131086A1 publication Critical patent/WO2012131086A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/0066Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices being reconfigurable, tunable or controllable, e.g. using switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present invention relates to a broadband directive antenna of the printed circuit type. It is particularly applicable for the realization of very compact electronic scanning antennas whose thickness may be very small. These antennas are particularly suitable for airborne radar or communication applications. They are also likely to be able to perform the same functions on land and / or naval vehicles.
  • the printed antenna technology makes it possible to produce directional antennas by producing radiating elements by etching metallic patterns on a dielectric layer comprising a metal ground plane on the rear face.
  • This technology leads to very compact antennas simple to achieve and therefore inexpensive.
  • it has the particular disadvantage of being difficult to implement antennas broadband frequency especially because of the metal ground plane disposed on the rear face.
  • the existence of such a ground plane is, however, inevitable, generally because of the mechanical structure on which the antenna is placed.
  • the subject of the invention is a network antenna of printed circuit type, this antenna comprising at least:
  • a radiating plane composed of a network of elementary patterns forming the radiating elements
  • At least one bandwidth of the antenna being centered on the resonance frequency of the high impedance surface.
  • the distance between the radiating plane and the high impedance surface is for example substantially equal to ⁇ / 4, ⁇ being the wavelength corresponding to the resonance frequency of the high impedance surface.
  • being the wavelength corresponding to the resonance frequency of the high impedance surface.
  • two consecutive elements of the high impedance surface network are connected by variable capacitance components, said capacitance being controllable, the variation of the capacitance modifying the resonance frequency of the high impedance surface.
  • the consecutive elements are for example connected by the variable capacity components.
  • variable capacitance components may be the diodes of a varactor whose capacitance is controllable in voltage.
  • One element out of two is for example brought to a voltage + V and every other pattern is brought to a voltage -V, the four patterns surrounding a pattern brought to the voltage + V being all four brought to -V and vice versa, the cathodes of all the diodes being connected to one of the two voltages and the anodes being connected to the other voltage, the capacitance of the diodes varying with the value of the voltage + V.
  • Two consecutive radiating elements of the network of the radiating plane are for example connected by a two-wire line, a first conductor of said line being connected to one element and the other conductor being connected to the next element.
  • a first conductor of the line is for example brought to a given voltage and the other conductor is brought to the opposite given voltage.
  • two radiating elements of the radiating plane being metal blocks, the two-wire lines are connected to the radiating elements at their angles.
  • the distance between the radiating plane and the high impedance surface is, for example, less than ⁇ being the wavelength corresponding to the resonance frequency of the high impedance surface.
  • the distance between the radiating plane and the high impedance surface may be sufficiently small for the antenna to comprise a single bandwidth centered on the resonance frequency of the high impedance surface, said frequency varying with the value of the variable capacitance.
  • the main advantage of the invention is that it makes it possible to easily modify the instantaneous bandwidth of the antenna by varying a control voltage.
  • FIG. 2 an exemplary embodiment of the radiating plane of an antenna according to the invention
  • FIG. 5 shows different values of reflection coefficient modules as a function of frequency, for an antenna according to the invention.
  • Figure 1 shows a sectional view of the different parts of an antenna according to the invention. It includes:
  • an electrical insulator 3 placed between the radiating plane 1 and the structured ground plane 2, constituted for example by one or more layers of dielectric material;
  • FIG. 2 shows a front view of an embodiment of the radiating plane 1 of the antenna.
  • the latter is composed of a network of elementary patterns 21, forming the radiating elements of the antenna, printed on a layer of dielectric material forming the insulator 3.
  • the patterns 21 are paved wire fed by power wires 4.
  • the network structure is self-complementary.
  • the patterns of the radiating plane are thus for example printed on a stack 3 of dielectric layers placed on the structured ground plane 2, in particular for tuning the antenna.
  • the excitation of the radiating plane is carried out by the two-wire line 4 whose conductors 401, 402 are soldered at the junction 25 between two blocks 21. More particularly, a first conductor 401 of the two-wire line 4, for example connected to a potential + VRF, is connected to a corner of a block while the second conductor 402, for example at a potential -V RF , is connected to the corner opposite, belonging to the other pavement.
  • the connection by two-wire line makes it possible to polarize the radiation produced by the elements 21.
  • Lines 28, 29 delimit the surfaces covered by the elementary meshes 20 of the network.
  • phase center 24 of each recombination is located in the center of each mesh 25 of the network.
  • FIG. 3 illustrates an exemplary embodiment of the structured mass plane 2.
  • the structured mass plane is a high impedance surface, called SHI, belonging to the class of metamaterials. It is composed of a periodic metal network 30 placed on a dielectric layer itself placed on a metal ground plane. The elements 31 of the network are arranged in rows and columns. The pitch of the grating 39 is smaller than the pitch 29 of the network of the radiating plane.
  • Vias, or metallized holes, 32 connect the metal ground plane to each element 31 of the metal network.
  • Variable capacitors 34 are for example connected between two consecutive metallic elements 31 of the network. In the embodiment of Figure 3, two consecutive elements 31 of the network are connected through a variable capacity 34, according to the rows and columns of the network.
  • variable capacities are for example brought through the vias.
  • the variation of these capacities 34 makes it possible to vary the resonance frequency of the SHI.
  • the variable capacities are for example varactors or capacitive MEMS.
  • Figure 4 shows the control circuit of the variable capacities.
  • the variable capacitors are the capacitors of varactor diodes 34, controllable by a voltage.
  • Figure 4 shows a sectional view of the metallic patterns 31 connected by vias 32 to the metal ground plane of the SHI brought to the electric potential -V.
  • Holes 45 are for example made in the metal plane 41 to allow the vias to reach a voltage source, not shown, delivering the potential + V.
  • Other patterns 31 ', interposed between the previous patterns connected to -V, are connected by vias 32' to a + V control potential. In this way, one pattern out of two is connected to + V and every other pattern is connected to -V.
  • the four patterns 31 'surrounding a pattern 31 brought to + V are all four raised to -V and vice versa.
  • the cathodes of all the diodes are connected to the voltage -V and the anodes are connected to the voltage + V. All diodes are controlled at the same time with the same + V control voltage.
  • the voltage + V is for example that of a metal plane or a metal grid.
  • the control voltage + V makes it possible to adjust the frequency to a frequency f 0 for which the phase of the field reflected by the SHI is zero.
  • the SHI behaves like a perfect magnetic conductor, that is to say that unlike a perfect electrical conductor where the reflection coefficient is equal to -1, its reflection coefficient is equal to +1.
  • the rear field, generated by the radiating elements 21, is thus reflected by the structured mass plane 2 without phase shift.
  • phase of the field reflected by the SHI varies as a function of the frequency in the interval [0, 2 ⁇ ], the control voltage for adjusting the zero crossing of the phase.
  • a conventional solution with a perfectly conductive ground plane would then make it possible to obtain only a bandwidth around the frequency f 0/2 .
  • the invention makes it possible to obtain a second bandwidth around the frequency f 0 .
  • the first bandwidth corresponds to the conventional solution of an antenna positioned at ⁇ / 4 above a perfectly conductive ground plane while the second bandwidth, centered on f 0 , is due to the presence of the SHI.
  • the combination of the phase shift introduced by the insulator, variable with the frequency, and the capacity of the variable SHI with the frequency and controllable with the control voltage + V makes it possible to move the bandwidth of the antenna around a desired operating point.
  • the width of the bandwidth is equal to the band for which the variation of the phase reflected by the SHI is between ⁇ 45 °.
  • the invention makes it possible to obtain a compact, broadband and very small thickness network antenna, by exploiting a bandwidth corresponding to the conventional operation of a network antenna, with an insulation thickness of ⁇ / 4 above a perfectly conductive ground plane and a second bandwidth related to the resonance of the SHI, corresponding to a thickness of ⁇ / 2 above a SHI at resonance.
  • the invention makes it possible to obtain a compact, broadband and very small thickness network antenna, by exploiting a bandwidth corresponding to the conventional operation of FIG. a network antenna, with an insulation thickness ⁇ / 4 above a perfectly conductive ground plane and a second bandwidth related to the resonance of the SHI, corresponding to a thickness of ⁇ / 2 above from an IHS to resonance.
  • This second bandwidth being controllable by acting on the voltage ⁇ V.
  • the antenna is positioned immediately above the SHI, that is to say that the thickness of the insulation 3 is very low then the antenna has only one bandwidth possibly controllable by the variation of the control voltage.
  • the shape of the SHI pattern can be adapted to optimize the width of the instantaneous bandwidth.
  • FIG. 5 illustrates the bandwidth of such an antenna as a function of the frequency varying from 4 GHz to 18 GHz. More particularly, FIG. 5 shows the modulus of the reflection coefficient of the antenna, also called “Return Loss", expressed in dB, as a function of frequency. FIG. 5 presents the "Return Loss" of the antenna as a function of frequency for four capacitance values 34.
  • the RL is thus represented by four successive curves 51, 52, 53, 54. These four curves show that the band pass-through varies and can be displaced in significant proportions depending on the value of the variable capacitance 34 placed between the metal elements 31 of the pattern 30.
  • the band instantaneous pass-through can be modified at any time, easily, by a simple control voltage applied to the variable capacitances arranged between the metallic elements of the structured ground plane 2.
  • a first curve 51 corresponds to a capacitance value equal to 2.5 pF
  • a second curve 52 corresponds to a value equal to 0.5 pF
  • a third curve 53 corresponds to a value equal to 0.1 pF
  • a fourth curve corresponds to a value equal to 0.02 pF .

Abstract

The present invention relates to a wide-band directional printed-circuit antenna. The antenna comprises at least: a radiating plane (1) formed by an array of elementary patterns forming the radiating elements; a high-impedance surface (2) formed by a periodic metal array facing a metal ground plane; and an electrical insulator (3) placed between the radiating plane and the high-impedance surface, at least one passband of the antenna being centred on the resonant frequency of the high-impedance surface. The invention is particularly suitable for the production of very compact electronically scanning antennae, the thickness of which may be very small. These antennae are particularly suitable for radar or airborne-communication type applications.

Description

ANTENNE RESEAU DIRECTIVE LARGE BANDE,  ANTENNA BROADBAND DIRECTIVE NETWORK
DU TYPE A CIRCUIT IMPRIME  OF THE PRINTED CIRCUIT TYPE
La présente invention concerne une antenne directive large bande du type à circuit imprimé. Elle s'applique notamment pour la réalisation d'antennes à balayage électronique très compactes dont l'épaisseur peut être très faible. Ces antennes sont particulièrement adaptées aux applications radar ou de communication aéroportées. Elles sont également susceptibles de pouvoir remplir les mêmes fonctions sur des véhicules terrestres et/ou navals. The present invention relates to a broadband directive antenna of the printed circuit type. It is particularly applicable for the realization of very compact electronic scanning antennas whose thickness may be very small. These antennas are particularly suitable for airborne radar or communication applications. They are also likely to be able to perform the same functions on land and / or naval vehicles.
La technologie des antenne imprimées permet de réaliser des antennes directives en réalisant des éléments rayonnants par gravure de motifs métalliques sur une couche diélectrique comportant un plan de masse métallique en face arrière. Cette technologie conduit à des antennes très compactes simples à réaliser et donc peu onéreuses. Cependant, elle présente notamment l'inconvénient de se prêter difficilement à la réalisation d'antennes à large bande de fréquences en raison notamment du plan de masse métallique disposé en face arrière. L'existence d'un tel plan de masse est cependant inévitable en raison généralement de la structure mécanique sur laquelle est placée l'antenne. The printed antenna technology makes it possible to produce directional antennas by producing radiating elements by etching metallic patterns on a dielectric layer comprising a metal ground plane on the rear face. This technology leads to very compact antennas simple to achieve and therefore inexpensive. However, it has the particular disadvantage of being difficult to implement antennas broadband frequency especially because of the metal ground plane disposed on the rear face. The existence of such a ground plane is, however, inevitable, generally because of the mechanical structure on which the antenna is placed.
Un but de l'invention est notamment de pallier l'inconvénient précité. A cet effet, l'invention a pour objet une antenne réseau de type circuit imprimé, cette antenne comportant au moins : An object of the invention is in particular to overcome the aforementioned drawback. For this purpose, the subject of the invention is a network antenna of printed circuit type, this antenna comprising at least:
- un plan rayonnant composé d'un réseau de motifs élémentaires formant les éléments rayonnant ;  a radiating plane composed of a network of elementary patterns forming the radiating elements;
- une surface haute impédance formée d'un réseau métallique périodique en regard d'un plan de masse métallique,  a high impedance surface formed of a periodic metal network facing a metal ground plane,
- un isolant électrique disposé entre le plan rayonnant et la surface haute impédance, les motifs élémentaires étant imprimés sur l'isolant électrique ;  an electrical insulator disposed between the radiating plane and the high impedance surface, the elementary patterns being printed on the electrical insulator;
au moins une bande passante de l'antenne étant centrée sur la fréquence de résonnance de la surface haute impédance. at least one bandwidth of the antenna being centered on the resonance frequency of the high impedance surface.
La distance entre le plan rayonnant et la surface haute impédance est par exemple sensiblement égale à λ/4, λ étant la longueur d'onde correspondant à la fréquence de résonnance de la surface haute impédance. Dans un mode de réalisation possible, deux éléments consécutifs du réseau de la surface haute impédance sont connectés par des composants à capacité variable, ladite capacité étant apte à être commandée, la variation de la capacité modifiant la fréquence de résonnance de la surface haute impédance. The distance between the radiating plane and the high impedance surface is for example substantially equal to λ / 4, λ being the wavelength corresponding to the resonance frequency of the high impedance surface. In one possible embodiment, two consecutive elements of the high impedance surface network are connected by variable capacitance components, said capacitance being controllable, the variation of the capacitance modifying the resonance frequency of the high impedance surface.
Les éléments consécutifs, selon les lignes et les colonnes du réseau, sont par exemple connectés par les composants à capacité variable.  The consecutive elements, according to the rows and columns of the network, are for example connected by the variable capacity components.
Les composants à capacité variable peuvent être les diodes d'un varactor dont la capacité est commandable en tension.  The variable capacitance components may be the diodes of a varactor whose capacitance is controllable in voltage.
Un élémént sur deux est par exemple porté à une tension +V et un motif sur deux est porté à une tension -V, les quatre motifs entourant un motif portés à la tension +V étant tous quatre portés à -V et vice versa, les cathodes de toutes les diodes étant reliées à une des deux tensions et les anodes étant reliées à l'autre tension, la capactité des diodes variant avec la valeur de la tension +V.  One element out of two is for example brought to a voltage + V and every other pattern is brought to a voltage -V, the four patterns surrounding a pattern brought to the voltage + V being all four brought to -V and vice versa, the cathodes of all the diodes being connected to one of the two voltages and the anodes being connected to the other voltage, the capacitance of the diodes varying with the value of the voltage + V.
Deux éléments rayonnant consécutifs du réseau du plan rayonnant sont par exemple reliés par une ligne bifilaire, un premier conducteur de ladite ligne étant relié à un élément et l'autre conducteur étant relié à l'élément suivant. Un premier conducteur de la ligne est par exemple porté à une tension donnée et l'autre conducteur est porté à la tension donnée opposée.  Two consecutive radiating elements of the network of the radiating plane are for example connected by a two-wire line, a first conductor of said line being connected to one element and the other conductor being connected to the next element. A first conductor of the line is for example brought to a given voltage and the other conductor is brought to the opposite given voltage.
Dans un mode de réalisation particulier, deux éléments rayonnant du plan rayonnant étant des pavés métalliques, les lignes bifilaires sont raccordées aux éléments rayonnant au niveau de leurs angles. In a particular embodiment, two radiating elements of the radiating plane being metal blocks, the two-wire lines are connected to the radiating elements at their angles.
La distance entre le plan rayonnant et la surface haute impédance est par exemple inférieure à λ étant la longueur d'onde correspondant à la fréquence de résonnance de la surface haute impédance. The distance between the radiating plane and the high impedance surface is, for example, less than λ being the wavelength corresponding to the resonance frequency of the high impedance surface.
La distance entre le plan rayonnant et la surface haute impédance peut être suffisamment faible pour que l'antenne comporte une seule bande passante centrée sur la fréquence de résonnance de la surface haute impédance, ladite fréquence variant avec la valeur de la capacité variable. L'invention a notamment comme principal avantage qu'elle permet de modifier facilement la bande passante instantanée de l'antenne par la variation d'une tension de commande. D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent : The distance between the radiating plane and the high impedance surface may be sufficiently small for the antenna to comprise a single bandwidth centered on the resonance frequency of the high impedance surface, said frequency varying with the value of the variable capacitance. The main advantage of the invention is that it makes it possible to easily modify the instantaneous bandwidth of the antenna by varying a control voltage. Other characteristics and advantages of the invention will become apparent with the aid of the following description made with reference to appended drawings which represent:
- la figure 1 , par une vue en coupe, les différents composants possibles d'une antenne selon l'invention ;  - Figure 1, in a sectional view, the various possible components of an antenna according to the invention;
- la figure 2, un exemple de réalisation du plan rayonnant d'une antenne selon l'invention ;  FIG. 2, an exemplary embodiment of the radiating plane of an antenna according to the invention;
- la figure 3, un exemple de réalisation d'une surface haute impédance disposée en face arrière d'une antenne selon l'invention ;  - Figure 3, an exemplary embodiment of a high impedance surface disposed on the rear face of an antenna according to the invention;
- la figure 4, un exemple de système de commande de la fréquence de résonnance de la surface haute impédance ;  - Figure 4, an example of a control system of the resonance frequency of the high impedance surface;
- la figure 5, des représentations différentes valeurs de modules de coefficients de réflexions en fonction de la fréquence, pour une antenne selon l'invention.  FIG. 5 shows different values of reflection coefficient modules as a function of frequency, for an antenna according to the invention.
La figure 1 présente par une vue en coupe les différentes parties d'une antenne selon l'invention. Elle comporte notamment : Figure 1 shows a sectional view of the different parts of an antenna according to the invention. It includes:
- un plan rayonnant 1 ;  - a radiating plane 1;
- un plan de masse électrique structuré 2 ;  a structured electrical ground plane 2;
- un isolant électrique 3 disposé entre le plan rayonnant 1 et le plan de masse structuré 2, constitué par exemple d'une ou plusieurs couches de matériau diélectrique ;  an electrical insulator 3 placed between the radiating plane 1 and the structured ground plane 2, constituted for example by one or more layers of dielectric material;
- et par exemple un ensemble de lignes bifilaires d'alimentation 4 traversant l'isolant 3 et reliant le plan de masse structuré 2 au plan rayonnant 1 . La figure 2 présente par une vue de face un exemple de réalisation du plan rayonnant 1 de l'antenne. Ce dernier est composé d'un réseau de motifs élémentaires 21 , formant les éléments rayonnant de l'antenne, imprimés sur une couche de matériau diélectrique formant l'isolant 3. Dans l'exemple de la figure 2, les motifs 21 sont des pavés métalliques alimentés par les fils d'alimentation 4. La structure du réseau est auto-complémentaire. Les motifs du plan rayonnant sont donc par exemple imprimés sur un empilement 3 de couches diélectriques posées sur le plan de masse structuré 2 permettant notamment d'accorder l'antenne. and for example a set of two-wire supply lines 4 passing through the insulator 3 and connecting the structured ground plane 2 to the radiating plane 1. Figure 2 shows a front view of an embodiment of the radiating plane 1 of the antenna. The latter is composed of a network of elementary patterns 21, forming the radiating elements of the antenna, printed on a layer of dielectric material forming the insulator 3. In the example of Figure 2, the patterns 21 are paved wire fed by power wires 4. The network structure is self-complementary. The patterns of the radiating plane are thus for example printed on a stack 3 of dielectric layers placed on the structured ground plane 2, in particular for tuning the antenna.
L'excitation du plan rayonnant est effectuée par la ligne bifilaire 4 dont les conducteurs 401 , 402 sont soudés à la jonction 25 entre deux pavés 21 . Plus particulièrement un premier conducteur 401 de la ligne bifilaire 4, porté par exemple à un potentiel +VRF, est connecté à un coin d'un pavé alors que le deuxième conducteur 402, porté par exemple à un potentiel -VRF, est connecté au coin en regard, appartenant à l'autre pavé. La liaison par ligne bifilaire permet de polariser le rayonnement produit par les éléments 21 .The excitation of the radiating plane is carried out by the two-wire line 4 whose conductors 401, 402 are soldered at the junction 25 between two blocks 21. More particularly, a first conductor 401 of the two-wire line 4, for example connected to a potential + VRF, is connected to a corner of a block while the second conductor 402, for example at a potential -V RF , is connected to the corner opposite, belonging to the other pavement. The connection by two-wire line makes it possible to polarize the radiation produced by the elements 21.
Des lignes 28, 29 délimitent les surfaces couvertes par les mailles élémentaires 20 du réseau. Lines 28, 29 delimit the surfaces covered by the elementary meshes 20 of the network.
On obtient ainsi un champ rayonné polarisé suivant les directions ±45°. La recombinaison de ces polarisations 201 , 202, 203, 204 permet d'obtenir :  A polarized field polarized in the directions ± 45 ° is thus obtained. The recombination of these polarizations 201, 202, 203, 204 makes it possible to obtain:
- une polarisation verticale ;  vertical polarization;
- une polarisation horizontale ;  a horizontal polarization;
- ou encore une polarisation circulaire droite ou gauche.  - or a right or left circular polarization.
Dans ces conditions, et suivant le type de recombinaison choisi, le centre de phase 24 de chaque recombinaison est localisé au centre de chaque maille 25 du réseau.  Under these conditions, and depending on the type of recombination chosen, the phase center 24 of each recombination is located in the center of each mesh 25 of the network.
Pour décrire la construction de ces polarisations, on nomme a, b, c, d les quatre polarisations 201 , 201 , 203, 204 générées aux jonctions entre les motifs 21 entourant successivement les centres de phase 24. Les différentes polarisations précitées sont obtenues en effectuant les recombinaisons suivantes :  To describe the construction of these polarizations, we call a, b, c, d the four polarizations 201, 201, 203, 204 generated at the junctions between the patterns 21 successively surrounding the phase centers 24. The various polarizations mentioned above are obtained by performing the following recombinations:
- la polarisation verticale Pv est obtenue en additionnant les quatre polarisations, ce qui peut se noter symboliquement Pv = a + b + c + d ; the vertical polarization Pv is obtained by summing the four polarizations, which can be noted symbolically Pv = a + b + c + d;
- la polarisation horizontale Ph est obtenue en sommant les polarisations parallèles puis en retranchant une polarisation à une autre, soit Ph = (a+d) - (b+c) ; the horizontal polarization Ph is obtained by summing the parallel polarizations and then subtracting one polarization from another, ie Ph = (a + d) - (b + c);
- la polarisation circulaire Pc droite ou gauche est obtenue en sommant les polarisations parallèles puis en additionnant ou retranchant une polarisation à une autre avec un déphase de 90°, ce que l'on peut noter symboliquement Pc = (a+d) ± j(b+c), où j est le nombre complexe. La figure 3 illustre un exemple de réalisation du plan de masse structuré 2. Le plan de masse structuré est une surface à haute impédance, dite SHI, faisant partie de la classe des métamatériaux. Il est composé d'un réseau périodique métallique 30 posé sur une couche diélectrique elle-même posée sur un plan de masse métallique. Les éléments 31 du réseau sont disposés en lignes et en colonnes. Le pas du réseau 39 est inférieur au pas 29 du réseau du plan rayonnant. the right or left circular polarization Pc is obtained by summing the parallel polarizations and then adding or subtracting one polarization to another with a 90 ° phase shift, which can be symbolically noted Pc = (a + d) ± j ( b + c), where j is the complex number. FIG. 3 illustrates an exemplary embodiment of the structured mass plane 2. The structured mass plane is a high impedance surface, called SHI, belonging to the class of metamaterials. It is composed of a periodic metal network 30 placed on a dielectric layer itself placed on a metal ground plane. The elements 31 of the network are arranged in rows and columns. The pitch of the grating 39 is smaller than the pitch 29 of the network of the radiating plane.
Des vias, ou trous métallisés, 32 raccordent le plan de masse métallique à chaque élément 31 du réseau métallique. Des capacités variables 34 sont par exemple connectées entre deux éléments métalliques 31 consécutifs du réseau. Dans l'exemple de réalisation de la figure 3, deux éléments 31 consécutifs du réseau sont connectés par l'intermédiaire d'une capacité variable 34, selon les lignes et les colonnes du réseau.  Vias, or metallized holes, 32 connect the metal ground plane to each element 31 of the metal network. Variable capacitors 34 are for example connected between two consecutive metallic elements 31 of the network. In the embodiment of Figure 3, two consecutive elements 31 of the network are connected through a variable capacity 34, according to the rows and columns of the network.
La commande de ces capacités variables est par exemple amenée à travers les vias. La variation de ces capacités 34 permet de faire varier la fréquence de résonance de la SHI. Les capacités variables sont par exemple des varactors ou des MEMS capacitifs.  The control of these variable capacities is for example brought through the vias. The variation of these capacities 34 makes it possible to vary the resonance frequency of the SHI. The variable capacities are for example varactors or capacitive MEMS.
La figure 4 présente le circuit de commande des capacités variables. A titre d'exemple, les capacités variables sont les capacités de diodes varactor 34, commandables par une tension. Figure 4 shows the control circuit of the variable capacities. By way of example, the variable capacitors are the capacitors of varactor diodes 34, controllable by a voltage.
La figure 4 présente par une vue en coupe des motifs métalliques 31 reliés par des vias 32 au plan de masse métallique de la SHI porté au potentiel électrique -V. Des trous 45 sont par exemple réalisés dans le plan métallique 41 pour permettre aux vias d'atteindre une source de tension, non représentée, délivrant le potentiel +V. D'autres motifs 31 ', intercalés entre les précédents motifs relié à -V, sont reliés par des vias 32' à un potentiel de commande +V. De cette façon, un motif 31 sur deux est relié à +V et un motif sur deux est connecté à -V. Les quatre motifs 31 ' entourant un motif 31 portés à +V sont tous quatre portés à -V et vice versa.  Figure 4 shows a sectional view of the metallic patterns 31 connected by vias 32 to the metal ground plane of the SHI brought to the electric potential -V. Holes 45 are for example made in the metal plane 41 to allow the vias to reach a voltage source, not shown, delivering the potential + V. Other patterns 31 ', interposed between the previous patterns connected to -V, are connected by vias 32' to a + V control potential. In this way, one pattern out of two is connected to + V and every other pattern is connected to -V. The four patterns 31 'surrounding a pattern 31 brought to + V are all four raised to -V and vice versa.
Dans cet exemple de configuration les cathodes de toutes les diodes sont reliées à la tension -V et les anodes sont reliées à la tension +V. Toutes les diodes sont commandées en même temps avec la même tension de commande +V. La tension +V est par exemple celle d'un plan métallique ou d'une grille métallique. In this configuration example the cathodes of all the diodes are connected to the voltage -V and the anodes are connected to the voltage + V. All diodes are controlled at the same time with the same + V control voltage. The voltage + V is for example that of a metal plane or a metal grid.
Il en résulte que la tension de commande +V permet d'ajuster la fréquence à une fréquence f0 pour laquelle la phase du champ réfléchi par la SHI est nulle. Dans ce cas, la SHI se comporte comme un conducteur magnétique parfait, c'est-à-dire que contrairement à un conducteur électrique parfait où le coefficient de réflexion est égal à -1 , son coefficient de réflexion est égal à +1 . Le champ arrière, généré par les éléments rayonnants 21 , est ainsi réfléchi par le plan de masse structuré 2 sans déphasage. Si de plus, la hauteur de l'isolant 3 est sensiblement égale à λ/2 à cette même fréquence f0, où λ = 1 /f0, alors l'antenne présente un rayonnement avant, optimal à cette fréquence. En effet, le champ arrière subit un déphasage total aller-retour sur le plan de masse de 2π. As a result, the control voltage + V makes it possible to adjust the frequency to a frequency f 0 for which the phase of the field reflected by the SHI is zero. In this case, the SHI behaves like a perfect magnetic conductor, that is to say that unlike a perfect electrical conductor where the reflection coefficient is equal to -1, its reflection coefficient is equal to +1. The rear field, generated by the radiating elements 21, is thus reflected by the structured mass plane 2 without phase shift. If in addition, the height of the insulator 3 is substantially equal to λ / 2 at the same frequency f 0 , where λ = 1 / f 0 , then the antenna has a forward radiation, optimal at this frequency. Indeed, the rear field undergoes a total phase shift back and forth on the ground plane of 2π.
De façon générale, la phase du champ réfléchi par la SHI varie en fonction de la fréquence dans l'intervalle [0, 2ττ], la tension de commande permettant de régler le passage par zéro de la phase.  In general, the phase of the field reflected by the SHI varies as a function of the frequency in the interval [0, 2ττ], the control voltage for adjusting the zero crossing of the phase.
Il est aussi possible de prévoir une hauteur d'isolant 3 égale à λ/4, λ étant la longueur d'onde correspondant à la fréquence f0/2. La SHI présente alors une phase égale à ττ, conformément à une propriété de la SHI, avec une fréquence de résonnance égale à f0. It is also possible to provide an insulation height 3 equal to λ / 4, λ being the wavelength corresponding to the frequency f 0/2 . The SHI then has a phase equal to ττ, according to a property of the SHI, with a resonance frequency equal to f 0 .
Une solution classique avec un plan de masse parfaitement conducteur ne permettrait alors d'obtenir qu'une bande passante autour de la fréquence f0/2. L'invention permet d'obtenir une seconde bande passante autour de la fréquence f0. La première bande passante correspond à la solution classique d'une antenne positionnée à λ/4 au-dessus d'un plan de masse parfaitement conducteur tandis que la seconde bande passante, centrée sur f0, est due à la présence de la SHI. A conventional solution with a perfectly conductive ground plane would then make it possible to obtain only a bandwidth around the frequency f 0/2 . The invention makes it possible to obtain a second bandwidth around the frequency f 0 . The first bandwidth corresponds to the conventional solution of an antenna positioned at λ / 4 above a perfectly conductive ground plane while the second bandwidth, centered on f 0 , is due to the presence of the SHI.
Dans le cas général, la combinaison du déphasage introduit par l'isolant, variable avec la fréquence, et de la capacité de la SHI variable avec la fréquence et commandable avec la tension de commande +V permet de déplacer la bande passante de l'antenne autour d'un point de fonctionnement désiré. La largeur de la bande passante est égale à la bande pour laquelle la variation de la phase réfléchie par la SHI est comprise entre ± 45°. Ainsi selon une première variante de réalisation, dans le cas où la SHI n'est pas commandable, l'invention permet d'obtenir une antenne réseau compacte, large bande et d'épaisseur très faible, par exploitation d'une bande passante correspondant au fonctionnement classique d'une antenne réseau, avec une épaisseur d'isolant de λ/4 au-dessus d'un plan de masse parfaitement conducteur et d'une seconde bande passante liée à la résonance de la SHI, correspondant à une épaisseur de λ/2 au-dessus d'une SHI à la résonance. In the general case, the combination of the phase shift introduced by the insulator, variable with the frequency, and the capacity of the variable SHI with the frequency and controllable with the control voltage + V makes it possible to move the bandwidth of the antenna around a desired operating point. The width of the bandwidth is equal to the band for which the variation of the phase reflected by the SHI is between ± 45 °. Thus, according to a first embodiment, in the case where the SHI is not controllable, the invention makes it possible to obtain a compact, broadband and very small thickness network antenna, by exploiting a bandwidth corresponding to the conventional operation of a network antenna, with an insulation thickness of λ / 4 above a perfectly conductive ground plane and a second bandwidth related to the resonance of the SHI, corresponding to a thickness of λ / 2 above a SHI at resonance.
Dans une deuxième variante de réalisation, dans le cas où la SHI est commandable, l'invention permet d'obtenir une antenne réseau compacte, large bande et d'épaisseur très faible, par exploitation d'une bande passante correspondant au fonctionnement classique d'une antenne réseau, avec une épaisseur d'isolant λ/4 au-dessus d'un plan de masse parfaitement conducteur et d'une seconde bande passante liée à la résonance de la SHI, correspondant à une épaisseur de λ/2 au-dessus d'une SHI à la résonance. Cette seconde bande passante étant commandable en jouant sur la tension ±V.  In a second variant embodiment, in the case where the SHI is controllable, the invention makes it possible to obtain a compact, broadband and very small thickness network antenna, by exploiting a bandwidth corresponding to the conventional operation of FIG. a network antenna, with an insulation thickness λ / 4 above a perfectly conductive ground plane and a second bandwidth related to the resonance of the SHI, corresponding to a thickness of λ / 2 above from an IHS to resonance. This second bandwidth being controllable by acting on the voltage ± V.
Si l'antenne est positionnée immédiatement au-dessus de la SHI, c'est-à-dire que l'épaisseur de l'isolant 3 est très faible alors l'antenne ne présente plus qu'une seule bande passante éventuellement commandable par la variation de la tension de commande. If the antenna is positioned immediately above the SHI, that is to say that the thickness of the insulation 3 is very low then the antenna has only one bandwidth possibly controllable by the variation of the control voltage.
Il est à noter que la forme du motif de la SHI peut être adaptée pour optimiser la largeur de la bande passante instantanée.  It should be noted that the shape of the SHI pattern can be adapted to optimize the width of the instantaneous bandwidth.
La figure 5 illustre la bande passante d'une telle antenne en fonction de la fréquence variant de 4 GHz à 18 GHz. Plus particulièrement, la figure 5 présente le module du coefficient de réflexion de l'antenne, encore appelé « Return Loss », exprimé en dB, en fonction de la fréquence. La figure 5 présente le « Return Loss >> de l'antenne en fonction de la fréquence pour quatre valeurs de capacités 34. Le RL est ainsi représenté par quatre courbes successives 51 , 52, 53, 54. Ces quatre courbes montrent que la bande passante varie et qu'elle peut être déplacée dans des proportions importantes en fonction de la valeur de la capacité variable 34 placée entre les éléments métalliques 31 du motif 30. Ainsi, avantageusement, la bande passante instantanée peut être modifiée à tout instant, facilement, par une simple tension de commande appliquée sur les capacités variables disposées entres les éléments métalliques du plan de masse structuré 2. A titre d'exemple, une première courbe 51 correspond à une valeur de capacité égale à 2,5 pF, une deuxième courbe 52 correspond à une valeur égale à 0,5 pF, une troisième courbe 53 correspond à une valeur égale à 0,1 pF et une quatrième courbe correspond à une valeur égale à 0,02 pF. FIG. 5 illustrates the bandwidth of such an antenna as a function of the frequency varying from 4 GHz to 18 GHz. More particularly, FIG. 5 shows the modulus of the reflection coefficient of the antenna, also called "Return Loss", expressed in dB, as a function of frequency. FIG. 5 presents the "Return Loss" of the antenna as a function of frequency for four capacitance values 34. The RL is thus represented by four successive curves 51, 52, 53, 54. These four curves show that the band pass-through varies and can be displaced in significant proportions depending on the value of the variable capacitance 34 placed between the metal elements 31 of the pattern 30. Thus, advantageously, the band instantaneous pass-through can be modified at any time, easily, by a simple control voltage applied to the variable capacitances arranged between the metallic elements of the structured ground plane 2. For example, a first curve 51 corresponds to a capacitance value equal to 2.5 pF, a second curve 52 corresponds to a value equal to 0.5 pF, a third curve 53 corresponds to a value equal to 0.1 pF and a fourth curve corresponds to a value equal to 0.02 pF .
L'invention apporte notamment les avantages suivants : The invention notably provides the following advantages:
- elle permet de déplacer la bande passante choisie autour d'une fréquence désirée ;  it makes it possible to move the selected bandwidth around a desired frequency;
- elle permet de rendre non passante des bandes de fréquences non utiles à un moment donné, simplifiant ainsi le problème important du filtrage nécessaire dans les antennes multifonctions ;  it makes non-passable frequency bands non-passable at a given moment, thus simplifying the important problem of the filtering necessary in the multifunctional antennas;
- elle permet de faire varier la largeur de faisceau d'une antenne.  it makes it possible to vary the beam width of an antenna.

Claims

REVENDICATIONS
1 . Antenne réseau de type circuit imprimé, caractérisée en ce qu'elle comporte au moins : 1. An array antenna of printed circuit type, characterized in that it comprises at least:
- un plan rayonnant (1 ) composé d'un réseau de motifs élémentaires (21 ) formant les éléments rayonnant ;  - A radiating plane (1) composed of a network of elementary patterns (21) forming the radiating elements;
- une surface haute impédance (2) formée d'un réseau métallique périodique (30) en regard d'un plan de masse métallique (41 ),  a high impedance surface (2) formed of a periodic metal network (30) facing a metal ground plane (41),
- un isolant électrique (3) disposé entre le plan rayonnant et la surface haute impédance, lesdits motifs élémentaires (21 ) étant imprimés sur ledit isolant électrique (30) ;  - an electrical insulator (3) disposed between the radiating plane and the high impedance surface, said elementary patterns (21) being printed on said electrical insulator (30);
au moins une bande passante de l'antenne étant centrée sur la fréquence de résonnance de la surface haute impédance. at least one bandwidth of the antenna being centered on the resonance frequency of the high impedance surface.
2. Antenne selon la revendication 1 , caractérisée en ce que la distance entre le plan rayonnant (1 ) et la surface haute impédance (2) est sensiblement égale à λ/4, λ étant la longueur d'onde correspondant à la fréquence de résonnance de la surface haute impédance. 2. Antenna according to claim 1, characterized in that the distance between the radiating plane (1) and the high impedance surface (2) is substantially equal to λ / 4, λ being the wavelength corresponding to the resonance frequency of the high impedance surface.
3. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que deux éléments consécutifs (31 , 31 ') du réseau de la surface haute impédance sont connectés par des composants (34) à capacité variable, ladite capacité étant apte à être commandée, la variation de la capacité modifiant la fréquence de résonnance de la surface haute impédance. Antenna according to one of the preceding claims, characterized in that two consecutive elements (31, 31 ') of the high impedance surface network are connected by variable capacity components (34), said capacitance being suitable for being controlled, the variation of the capacitance modifying the resonance frequency of the high impedance surface.
4. Antenne selon la revendication 3, caractérisée en ce que les éléments (31 , 31 ') consécutifs, selon les lignes et les colonnes du réseau, sont connectés par les composants (34) à capacité variable. 4. Antenna according to claim 3, characterized in that the elements (31, 31 ') consecutive, along the lines and columns of the network, are connected by the components (34) with variable capacity.
5. Antenne selon l'une quelconque des revendications 3 ou 4, caractérisée en ce que les composants à capacité variable (34) sont les diodes d'un varactor dont la capacité est commandable en tension. 5. Antenna according to any one of claims 3 or 4, characterized in that the variable capacity components (34) are the diodes of a varactor whose capacity is voltage controllable.
6. Antenne selon la revendication 5, caractérisée en ce qu'un élément (31 ) sur deux est porté à une tension +V et un motif sur deux est porté à une tension -V, les quatre motifs (31 ') entourant un motif (31 ) portés à la tension +V étant tous quatre portés à -V et vice versa, les cathodes de toutes les diodes étant reliées à une des deux tensions et les anodes étant reliées à l'autre tension, la capacité des diodes variant avec la valeur de la tension +V. 6. Antenna according to claim 5, characterized in that one element (31) out of two is brought to a voltage + V and every other pattern is brought to a voltage -V, the four patterns (31 ') surrounding a pattern (31) brought to the voltage + V being all four brought to -V and vice versa, the cathodes of all the diodes being connected to one of the two voltages and the anodes being connected to the other voltage, the capacity of the diodes varying with the value of the voltage + V.
7. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que deux éléments rayonnant (21 ) consécutifs du réseau du plan rayonnant (1 ) sont reliés par une ligne bifilaire (4), un premier conducteur (401 ) de ladite ligne étant relié à un élément et l'autre conducteur (402) étant relié à l'élément suivant. Antenna according to any one of the preceding claims, characterized in that two consecutive radiating elements (21) of the network of the radiating plane (1) are connected by a two-wire line (4), a first conductor (401) of said line being connected to one element and the other conductor (402) being connected to the next element.
8. Antenne selon la revendication 7, caractérisée en ce qu'un premier conducteur (401 ) de la ligne est porté à une tension donnée et l'autre conducteur (402) est porté à la tension donnée opposée. 8. Antenna according to claim 7, characterized in that a first conductor (401) of the line is brought to a given voltage and the other conductor (402) is brought to the opposite given voltage.
9. Antenne selon l'une quelconque des revendications 7 ou 8, caractérisée en ce que les éléments rayonnant (21 ) du plan rayonnant (1 ) étant des pavés métalliques, les lignes bifilaires (4) sont raccordées aux éléments rayonnant au niveau de leurs angles. 9. Antenna according to any one of claims 7 or 8, characterized in that the radiating elements (21) of the radiating plane (1) being metal blocks, the two-wire lines (4) are connected to the radiating elements at their level. angles.
10. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que la distance entre le plan rayonnant (1 ) et la surface haute impédance (2) est inférieure à λ étant la longueur d'onde correspondant à la fréquence de résonnance de la surface haute impédance. 10. Antenna according to any one of the preceding claims, characterized in that the distance between the radiating plane (1) and the high impedance surface (2) is less than λ being the wavelength corresponding to the resonance frequency of the high impedance surface.
1 1 . Antenne selon la revendication 10 et l'une quelconque des revendications 3 à 10, caractérisée en ce que la distance entre le plan rayonnant (1 ) et la surface haute impédance (2) est suffisamment faible pour que l'antenne comporte une seule bande passante centrée sur la fréquence de résonnance de la surface haute impédance, ladite fréquence variant avec la valeur de la capacité variable (34). 1 1. Antenna according to claim 10 and any one of claims 3 to 10, characterized in that the distance between the radiating plane (1) and the high impedance surface (2) is sufficiently small for the antenna to have a single bandwidth centered on the resonance frequency of the high impedance surface, said frequency varying with the value of the variable capacitance (34).
PCT/EP2012/055915 2011-04-01 2012-03-30 Wide-band directional printed-circuit array antenna WO2012131086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1101005A FR2973587B1 (en) 2011-04-01 2011-04-01 WIDEBAND DIRECTIONAL NETWORK ANTENNA, OF THE PRINTED CIRCUIT TYPE
FR1101005 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012131086A1 true WO2012131086A1 (en) 2012-10-04

Family

ID=45952514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/055915 WO2012131086A1 (en) 2011-04-01 2012-03-30 Wide-band directional printed-circuit array antenna

Country Status (2)

Country Link
FR (1) FR2973587B1 (en)
WO (1) WO2012131086A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030011522A1 (en) * 2001-06-15 2003-01-16 Mckinzie William E. Aperture antenna having a high-impedance backing
WO2008140543A1 (en) * 2007-05-15 2008-11-20 Hrl Laboratories, Llc Multiband tunable impedance surface
US20100039343A1 (en) * 2006-10-26 2010-02-18 Panasonic Corporation Antenna device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030011522A1 (en) * 2001-06-15 2003-01-16 Mckinzie William E. Aperture antenna having a high-impedance backing
US20100039343A1 (en) * 2006-10-26 2010-02-18 Panasonic Corporation Antenna device
WO2008140543A1 (en) * 2007-05-15 2008-11-20 Hrl Laboratories, Llc Multiband tunable impedance surface

Also Published As

Publication number Publication date
FR2973587A1 (en) 2012-10-05
FR2973587B1 (en) 2013-09-13

Similar Documents

Publication Publication Date Title
EP2808946B1 (en) Device for disrupting a propagation of electromagnetic waves and method for manufacturing same
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
CA2687161C (en) Dual polarization planar emitting element and network antenna comprising such emitting element
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
EP0493190B1 (en) Stacked microstrip microwave antenna
FR2936906A1 (en) OPTIMIZED ARRANGEMENT REFLECTOR NETWORK AND ANTENNA HAVING SUCH A REFLECTIVE NETWORK
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
WO2008065311A2 (en) Multi-sector antenna
EP2079131A1 (en) Improvement of planar antennas comprising at least one radiating element such as a slot with longitudinal radiation
FR2751471A1 (en) WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
EP1234356B1 (en) Active electronic scan microwave reflector
EP3417507B1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
EP1305846B1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
WO2012131086A1 (en) Wide-band directional printed-circuit array antenna
EP4117117A1 (en) Antenna cell with transmitter network
FR3029693A1 (en) MULTICOUCHE NETWORK ANTENNA OF THE COMPLEMENTARY AUTO TYPE
EP3900113B1 (en) Elementary microstrip antenna and array antenna
EP1157444B1 (en) Antenna with double-band electronic scanning, with active microwave reflector
EP0617480A1 (en) Radiating structure with variable directivity
FR2858469A1 (en) Antenna for e.g. motor vehicle obstacles detecting radar, has assembly with two zones of active material layer that are controlled by respective polarization zones defined by metallic patterned layers
FR2907262A1 (en) Microwave phase-changing cell for e.g. bipolarization reflect array antenna, has external conductive band with extension whose shape and dimension are determined to obtain total static capacitor with value at desired operating frequency
FR2677493A1 (en) NETWORK OF RADIANT ELEMENTS WITH AUTOCOMPLEMENTARY TOPOLOGY, AND ANTENNA USING SUCH A NETWORK.
FR2522888A1 (en) ANTENNA WITH DOUBLE REFLECTOR WITH POLARIZATION TRANSFORMER INCORPORATED
FR2815479A1 (en) Active ultrahigh frequency reflector with two independent polarizations, notably in an electronic scanning antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12713684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12713684

Country of ref document: EP

Kind code of ref document: A1