EP1157444B1 - Antenna with double-band electronic scanning, with active microwave reflector - Google Patents

Antenna with double-band electronic scanning, with active microwave reflector Download PDF

Info

Publication number
EP1157444B1
EP1157444B1 EP00901684A EP00901684A EP1157444B1 EP 1157444 B1 EP1157444 B1 EP 1157444B1 EP 00901684 A EP00901684 A EP 00901684A EP 00901684 A EP00901684 A EP 00901684A EP 1157444 B1 EP1157444 B1 EP 1157444B1
Authority
EP
European Patent Office
Prior art keywords
antenna according
microwave
polarization
sources
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00901684A
Other languages
German (de)
French (fr)
Other versions
EP1157444A1 (en
Inventor
Claude Thomson-CSF Prop. Int. Dépt. Bre. CHEKROUN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1157444A1 publication Critical patent/EP1157444A1/en
Application granted granted Critical
Publication of EP1157444B1 publication Critical patent/EP1157444B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/185Phase-shifters using a diode or a gas filled discharge tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Definitions

  • the present invention relates to a scanning antenna dual-band electronics, with active microwave reflector. It applies especially for microwave applications requiring two bands emission conditions also subject to very low production conditions costs. It can for example be applied for individual stations of communication with scrolling satellites, and more generally for many types of multimedia applications.
  • antennas comprising a reflector active microwave.
  • the latter also called “reflect array” in the Anglo-Saxon literature, is a network with controllable phase shifters electronically.
  • This network extends in a plane and includes a network phase control elements, or phased network, arranged in front of means reflectors, constituted for example by a metallic plane forming a plane of mass.
  • the reflective network notably includes elementary cells each carrying out reflection and phase shift, variable on command electronic, of the microwave wave it receives.
  • a primary source such as a cone, arranged in front of the reflective network emits waves towards the latter microwave.
  • Mass applications are possible for such antennas, in particular with the advent of interactive multimedia activities via satellite communications networks.
  • Scrolling satellites are arranged around the earth.
  • the ground antennas must follow the satellites. For switch from one satellite to another without phase jumps, the antennas transmit and receive on two frequency bands, with phase shifts different between these two bands.
  • Document presents scanning antenna electronic likely to operate in two crossed polarizations.
  • An object of the invention is to produce a scanning antenna dual-band electronics with reflective grating intended in particular for mass applications, and therefore of low production cost.
  • the invention relates to a scanning antenna electronic, characterized in that it comprises at least two sources microwave emitting in different frequency bands and having opposite circular polarizations, an active reflective grating comprising elementary cells illuminated by sources and a rotator polarization, interposed between the reflective grating and the sources, transforming circular polarizations into two linear polarizations crossed, an elementary cell comprising two transverse phase shifters, the first phase shifter acting on waves of linear polarization and the second phase shifter acting on the waves of the other linear polarization.
  • FIG 1 schematically illustrates an example of realization of an electronic scanning antenna with active reflective array
  • the microwave distribution is for example of the so-called optical type, that is to say for example ensured using a primary source illuminating the reflective network.
  • the antenna includes a primary source 1, for example a cornet.
  • Primary source 1 emits microwave waves 3 towards the active reflective network 4, arranged in the Oxy plane.
  • This network reflector 4 comprises a set of elementary cells carrying out the reflection and phase shift of the waves it receives. So by order phase shifts printed on the wave received by each cell, it is possible as is known, to form a microwave beam in the direction desired.
  • An antenna according to the invention comprises at least two elementary sources, for example of reverse circular polarizations, to illuminate the active reflector 4 whose elementary cells moreover have a given architecture.
  • the two sources emit waves in different frequency bands.
  • Figure 2 schematically illustrates such an antenna.
  • the latter therefore comprises two sources S D , S G , for example horns, with respective right and left polarizations. These horns illuminate an active reflective network 4 as described above.
  • a polarization rotation grid 21 is disposed in front of this reflector 4, and interposed between the latter and the sources S D , S G.
  • the polarization rotation grid transforms the circularly polarized waves emitted by these sources into linearly polarized waves.
  • An antenna according to the invention may also include elementary linear sources, of crossed polarizations. In this case, there is no need to use a polarization rotation grid.
  • Le reflector comprises a set of elementary cells 10 arranged side by side side by side and separated by zones 20, used for decoupling cell microwave. These cells 10 carry out the reflection and the phase shift of the waves they receive.
  • An elementary cell 10 includes a phase shifting microwave circuit arranged in front of a plane driver. More specifically, as will appear later, the circuit microwave has two transverse phase shifters, each dedicated to linear polarization.
  • FIG. 4 is a schematic sectional view, in the Oxz plane, of a possible embodiment of the active reflector 4.
  • the reflector 4 consists of a microwave circuit distributed in the elementary cells 10 and of a conducting plane 42, disposed substantially parallel to the microwave circuit 41, at a predefined distance d.
  • This microwave circuit receives the incident waves, for example substantially planar, emitted by the aforementioned sources S D , S G.
  • the function of the conducting plane 42 is in particular to reflect the microwave waves. It can be constituted by any known means, by example of parallel wires or a sufficiently tight mesh, or a plane continued.
  • the microwave circuit 41 and the conductive plane 42 are of preferably made on two sides of a dielectric support 43, for example of the printed circuit type.
  • the reflector 4 also comprises, preferably on the same printed circuit 43, which is then a multilayer circuit, the circuit electronics required to control phase values.
  • FIG. 5 shows, schematically, an example of production of an elementary cell 10 of an antenna according to the invention.
  • a cell includes a phase shift microwave circuit, forming part of the microwave circuit mentioned in relation to Figure 4.
  • the phase shifter comprises conductive wires 51, 51 ′ arranged on a support, for example on the front face 44 of the multilayer circuit 43.
  • the wires 51, 51 ′ have each at least two semiconductor elements with two states 521, 521 ′, 522, 522 ', diodes for example.
  • the embodiment of Figure 5 is consists of two conductive wires, each comprising two diodes in series, cross-wired and interconnected by a central conductor control 53.
  • the central conductor 53 is for example itself connected to a metallized hole 531 which connects the conductive wires 51, 51 'to the circuit electronic control arranged on the rear face 45 of the multilayer circuit, via the interconnection circuits.
  • the central conductor 53 is connected to the four diodes 521, 521 ', 522, 522' of the phase shifter, being wired between the two diodes of each of the conductive wires 51.
  • the ends of these the latter are also each connected to a control conductor 54 connected for example itself to a metallized hole 541 made in the circuit multilayer 43.
  • the ends of the conducting wires 51, 51 ′ are thus connected to the electronic control circuit.
  • each of the four diodes can then be controlled by the electronic circuit of ordered.
  • Each of the diode wires acts on the only waves whose polarization, i.e. the electric field vector, has a component which is parallel to it.
  • the polarization rotation grid 21 transforms by example right circular polarization in parallel linear polarization to a conducting wire 51 while it transforms the circular polarization left in a linear polarization parallel to the other conductive wire 51 ', a wire conductor 51 being for example parallel to the direction Ox and the other wire conductor 51 ′ being for example parallel to the direction Oy.
  • a wave received by a cell elementary 10 does not spread to other neighboring cells.
  • the invention provides decoupling zones 20 which separate the 10 cells.
  • this wave does not propagate from one cell to another, in the direction Ox.
  • a received wave linearly polarized at the direction Ox does not propagate from one cell to another in the direction Oy.
  • FIG. 6 shows a possible embodiment of these decoupling zones 20.
  • a decoupling zone 20 surrounding a cell elementary comprises a conductive strip 62.
  • the end conductors 54 which connect the conductive wires to the electronic control circuit are for example preferably located in the conductive strip 62, without however being electrically connected to the latter. For this purpose, provision is made for an interruption of the band around end conductors 54.
  • the conductive strip 62 is for example produced by deposition metallic on the front face 44, between the cells, parallel to the directions Ox and Oy.
  • This strip 62 forms, with the reflective plane 42 which is below, a space of the waveguide type whose width is the distance d.
  • the distance d is chosen so that it is less than ⁇ / 2, knowing that a wave whose polarization is parallel to tapes cannot be spread in such a space.
  • the reflector according to the invention operates in a certain band of frequencies and we choose d so that it is less than the smallest of the wavelengths of the two bands.
  • strip 62 must have a sufficient width for the effect described above to be appreciable. In practical, the width maybe of the order of ⁇ / 15.
  • the equivalent circuit relates to a conducting wire 51 and its two diodes 521, 522, in fact what corresponds to a phase shifter, associated with a given polarization and therefore with a given frequency band.
  • the incident microwave wave, of linear polarization and parallel to Oy and to the wires 51 is received on terminals B 1 and B 2 and meets three capacitors C o , C I1 , C I2 in series, connected in parallel on the terminals B 1 and B 2 .
  • the capacitance C 0 represents the linear decoupling capacitance between the end conductors 54 and the conductive strip 62 of the decoupling zone 20.
  • the capacitance C I1 is the linear capacitance between the end conductor 54 connected to the first diode 521 and the central conductor 53.
  • the capacitance C I2 is the linear capacitance between the end conductor 54 connected to the second diode 522 and the central conductor 53.
  • the second diode 522 represented by its equivalent diagram.
  • the latter is analogous to that of the first diode 521, its components bearing an index 2.
  • the microwave output voltage is taken between terminals B 3 and B 4 , terminals of the capacitors C 0 , C I1 , and C I2 .
  • phase shifter 10 The operation of the phase shifter 10 is explained below by considering, in a first step, the behavior of such a circuit in the absence of the second diode 522, which returns to the equivalent diagram of FIG. 7 to remove the 522 as well as the capacity C I2 .
  • Z is the impedance of the incident wave
  • is the pulsation corresponding to the center frequency of one of the two operating bands of the antenna.
  • the first conducting wire 51 receives the waves emitted by the right circular polarization source S D.
  • phase shifter of a cell 10 this phase shifter corresponding to a conducting wire 51, 51 ′, can have four different values for its susceptance B D (denoted B D1 , B D2 , B D3 and B D4 ) according to the command (direct or reverse polarization) applied to each of the diodes 521, 522.
  • These values are a function of the parameters of the circuit of FIG. 7, that is to say of the values chosen for the geometric parameters (dimensions, shapes and spacings different conductive) and electrical surfaces (electrical characteristics of the diodes) of the phase shifter.
  • B CC -cotg 2 ⁇ d ⁇ where ⁇ is the wavelength corresponding to the pulsation ⁇ .
  • susceptance B C can take four distinct values (denoted B C1 , B C2 , B C3 , and B C4 ) corresponding respectively to the four values of B D , the distance d representing an additional parameter for the determination of the values B C1 - B C4 .
  • the parameters of the circuit are chosen so that the zero (or substantially zero) susceptances are such that they correspond to the diodes polarized in the direct direction, but that can of course choose a symmetrical operation in which the parameters are determined to substantially cancel the susceptances B r ; more generally, it is not necessary that one of the susceptances B d or B r is zero, these values being determined so that the condition of equal distribution of the phase shifts d ⁇ 1 -d ⁇ 4 is fulfilled.
  • an elementary cell along its second conducting wire 51 ′ can be described in a similar manner, for the waves emitted by the second source, for example S G , in another frequency band.
  • the active network 4 is illuminated by two sources S D , S G emitting respectively in right and left circular polarization and in two different frequency bands, the polarization rotation grid 21 transforming these two circular polarizations into two crossed linear polarizations allowing the cells of the active network 4 to act independently on two polarizations and in different frequency bands.
  • An elementary cell 10 in fact comprises two transverse phase shifters, preferably controllable, the first phase shifter 51, 521, 522 acting on the waves of a linear polarization and the second phase shifter 51 ', 521', 522 'acting on the waves of the other linear polarization.
  • a phase shifter and therefore its conducting wire, is substantially parallel to the direction of this polarization.
  • the polarization rotation grid 21 is arranged in such a way that the linear polarizations obtained from the circular polarizations are very substantially parallel to the phase shifters concerning them.
  • the polarization rotation grid can be a rotator of any polarization, in particular, it can be a meandering grid or a wire grid.
  • the invention advantageously makes it possible to operate on two frequency bands and adjust the phase shifts of the waves reflected by the active network, independently from one band to another. Knowing that these phase shifts determine the direction of the beams emitted by the antenna, it is so easy and quick to change the direction of the beam for the two bands frequencies. This is particularly well suited for tracking traveling satellites arranged around the Earth used in particular for all kinds of multimedia applications.
  • an antenna according to the invention is well suited for mass use, i.e. intended for a large audience, insofar as it can be carried out at low cost. Indeed, it does not contain expensive or complex components to install artwork.
  • the active network consisting of a printed circuit multilayer with components arranged on these front and rear faces is not expensive. In addition, it is perfectly suited to a production of large series.
  • the polarization rotation grid used in the case in particular where the elementary sources are polarized circular as is the case for example for applications multimedia is also inexpensive.

Description

La présente invention concerne une antenne à balayage électronique bi-bande, à réflecteur hyperfréquence actif. Elle s'applique notamment pour des applications hyperfréquence nécessitant deux bandes d'émission par ailleurs soumises à des conditions de réalisation à très bas coûts. Elle peut par exemple s'appliquer pour des stations individuelles de communication avec des satellites à défilement, et plus généralement pour de nombreux types d'applications multimédia.The present invention relates to a scanning antenna dual-band electronics, with active microwave reflector. It applies especially for microwave applications requiring two bands emission conditions also subject to very low production conditions costs. It can for example be applied for individual stations of communication with scrolling satellites, and more generally for many types of multimedia applications.

Il est connu de réaliser des antennes comportant un réflecteur hyperfréquence actif. Ce dernier, par ailleurs nommé « reflect array » dans la littérature anglo-saxonne, est un réseau à déphaseurs commandables électroniquement. Ce réseau s'étend dans un plan et comporte un réseau d'éléments à contrôle de phase, ou réseau phasé, disposé devant des moyens réflecteurs, constitués par exemple par un plan métallique formant plan de masse. Le réseau réflecteur comporte notamment des cellules élémentaires réalisant chacune la réflexion et le déphasage, variable sur commande électronique, de l'onde hyperfréquence qu'elle reçoit. Une telle antenne apporte une grande agilité de faisceau. Une source primaire, par exemple un cornet , disposée devant le réseau réflecteur émet vers ce dernier les ondes hyperfréquence.It is known to produce antennas comprising a reflector active microwave. The latter, also called "reflect array" in the Anglo-Saxon literature, is a network with controllable phase shifters electronically. This network extends in a plane and includes a network phase control elements, or phased network, arranged in front of means reflectors, constituted for example by a metallic plane forming a plane of mass. The reflective network notably includes elementary cells each carrying out reflection and phase shift, variable on command electronic, of the microwave wave it receives. Such an antenna brings great beam agility. A primary source, such as a cone, arranged in front of the reflective network emits waves towards the latter microwave.

Des applications de masse sont envisageables pour de telles antennes, en particulier avec l'avènement des activités multimédia interactives via des réseaux de communications par satellites. Pour assurer la continuité d'un réseau de communications, des satellites à défilement sont disposés autour de la terre. Les antennes au sol doivent suivre les satellites. Pour commuter d'un satellite à un autre sans sauts de phases, les antennes émettent et reçoivent sur deux bandes de fréquences, avec des déphasages différents entre ces deux bandes.Mass applications are possible for such antennas, in particular with the advent of interactive multimedia activities via satellite communications networks. To ensure continuity of a communications network, scrolling satellites are arranged around the earth. The ground antennas must follow the satellites. For switch from one satellite to another without phase jumps, the antennas transmit and receive on two frequency bands, with phase shifts different between these two bands.

Un document présente une antenne à balayage électronique susceptible de fonctionner selon deux polarisations croisées.Document presents scanning antenna electronic likely to operate in two crossed polarizations.

Un but de l'invention est de réalisation d'une antenne à balayage électronique bi-bande à réseau réflecteur destinée notamment à des applications de masse, et donc de faible coût de réalisation.An object of the invention is to produce a scanning antenna dual-band electronics with reflective grating intended in particular for mass applications, and therefore of low production cost.

A cet effet, l'invention a pour objet une antenne à balayage électronique, caractérisée en ce qu'elle comporte au moins deux sources hyperfréquence émettant dans des bandes de fréquences différentes et présentant des polarisations circulaire opposées, un réseau réflecteur actif comportant des cellules élémentaires éclairées par les sources et un rotateur de polarisation, interposé entre le réseau réflecteur et les sources, transformant les polarisations circulaires en deux polarisations linéaires croisées, une cellule élémentaire comportant deux déphaseurs transversaux, le premier déphaseur agissant sur les ondes d'une polarisation linéaire et le deuxième déphaseur agissant sur les ondes de l'autre polarisation linéaire.To this end, the invention relates to a scanning antenna electronic, characterized in that it comprises at least two sources microwave emitting in different frequency bands and having opposite circular polarizations, an active reflective grating comprising elementary cells illuminated by sources and a rotator polarization, interposed between the reflective grating and the sources, transforming circular polarizations into two linear polarizations crossed, an elementary cell comprising two transverse phase shifters, the first phase shifter acting on waves of linear polarization and the second phase shifter acting on the waves of the other linear polarization.

D'autres objets, particularités et résultats de l'invention apparaítront à l'aide de la description qui suit donnée à titre d'exemple et faite en regard des dessins annexés qui représentent:

  • la figure 1, un exemple de réalisation d'une antenne à balayage électronique à réseau réflecteur actif ;
  • la figure 2, par une vue schématique, une illustration du principe de fonctionnement d'une antenne selon l'invention ;
  • la figure 3, une vue partielle de la face avant d'un exemple de réseau réflecteur actif utilisé dans une antenne selon l'invention ;
  • la figure 4, une vue partielle en coupe d'un exemple de réseau actif utilisé dans une antenne selon l'invention ;
  • la figure 5, une vue détaillée en perspective, d'un exemple de réalisation d'une cellule élémentaire d'un réseau réflecteur actif utilisé dans une antenne selon l'invention ;
  • la figure 6, à titre d'exemple, une illustration d'une cellule élémentaire munie d'une protection contre les propagations parasites vers et venant de cellules voisines ;
  • la figure 7, un schéma électrique équivalent d'un déphaseur d'une cellule élémentaire.
Other objects, features and results of the invention will become apparent with the aid of the description which follows given by way of example and made with reference to the appended drawings which represent:
  • FIG. 1, an exemplary embodiment of an electronic scanning antenna with an active reflecting array;
  • Figure 2, in a schematic view, an illustration of the operating principle of an antenna according to the invention;
  • FIG. 3, a partial view of the front face of an example of an active reflecting array used in an antenna according to the invention;
  • Figure 4, a partial sectional view of an example of active network used in an antenna according to the invention;
  • FIG. 5, a detailed perspective view, of an embodiment of an elementary cell of an active reflective network used in an antenna according to the invention;
  • FIG. 6, by way of example, an illustration of an elementary cell provided with protection against parasitic propagations to and from neighboring cells;
  • Figure 7, an equivalent electrical diagram of a phase shifter of an elementary cell.

La figure 1 illustre de façon schématique un exemple de réalisation d'une antenne à balayage électronique à réseau réflecteur actif où la distribution hyperfréquence est par exemple du type dit optique, c'est-à-dire par exemple assurée à l'aide d'une source primaire illuminant le réseau réflecteur. A cet effet, l'antenne comporte une source primaire 1, par exemple un cornet. La source primaire 1 émet des ondes hyperfréquence 3 vers le réseau réflecteur actif 4, disposé dans le plan Oxy. Ce réseau réflecteur 4 comporte un ensemble de cellules élémentaires réalisant la réflexion et le déphasage des ondes qu'elle reçoivent. Ainsi, par commande des déphasages imprimés à l'onde reçue par chaque cellule, il est possible ainsi qu'il est connu, de former un faisceau hyperfréquence dans la direction souhaitée.Figure 1 schematically illustrates an example of realization of an electronic scanning antenna with active reflective array where the microwave distribution is for example of the so-called optical type, that is to say for example ensured using a primary source illuminating the reflective network. For this purpose, the antenna includes a primary source 1, for example a cornet. Primary source 1 emits microwave waves 3 towards the active reflective network 4, arranged in the Oxy plane. This network reflector 4 comprises a set of elementary cells carrying out the reflection and phase shift of the waves it receives. So by order phase shifts printed on the wave received by each cell, it is possible as is known, to form a microwave beam in the direction desired.

Une antenne selon l'invention comporte au moins deux sources élémentaires, par exemple de polarisations circulaires inverses, pour éclairer le réflecteur actif 4 dont les cellules élémentaires possèdent par ailleurs une architecture donnée. Par ailleurs, les deux sources émettent des ondes dans des bandes de fréquences différentes. La figure 2 illustre de façon schématique une telle antenne. Cette dernière comporte donc deux sources SD, SG, par exemple des cornets, de polarisations respectives droite et gauche. Ces cornets éclairent un réseau réflecteur actif 4 tel que décrit ci-dessus. Une grille de rotation de polarisation 21 est disposée devant ce réflecteur 4, et interposée entre ce dernier et les sources SD, SG. La grille de rotation de polarisation transforme les ondes à polarisation circulaires émises par ces sources en ondes à polarisation linéaire. Une antenne selon l'invention peut aussi comporter des sources élémentaires linéaires, de polarisations croisées. Dans ce cas, il n'est pas besoin d'utiliser une grille de rotation de polarisation.An antenna according to the invention comprises at least two elementary sources, for example of reverse circular polarizations, to illuminate the active reflector 4 whose elementary cells moreover have a given architecture. In addition, the two sources emit waves in different frequency bands. Figure 2 schematically illustrates such an antenna. The latter therefore comprises two sources S D , S G , for example horns, with respective right and left polarizations. These horns illuminate an active reflective network 4 as described above. A polarization rotation grid 21 is disposed in front of this reflector 4, and interposed between the latter and the sources S D , S G. The polarization rotation grid transforms the circularly polarized waves emitted by these sources into linearly polarized waves. An antenna according to the invention may also include elementary linear sources, of crossed polarizations. In this case, there is no need to use a polarization rotation grid.

La figure 3 montre schématiquement une partie de réseau réflecteur 4 dans le plan Oxy, par une vue de dessus, suivant F. Le réflecteur comporte un ensemble de cellules élémentaires 10 disposées côte à côte et séparées par des zones 20, ufilisées pour le découplage hyperfréquence des cellules. Ces cellules 10 réalisent la réflexion et le déphasage des ondes qu'elles reçoivent. Une cellule élémentaire 10 comporte un circuit hyperfréquence déphaseur disposé devant un plan conducteur. Plus précisément, comme cela apparaítra par la suite, le circuit hyperfréquence comporte deux déphaseurs transversaux, dédiés chacun à une polarisation linéaire.Figure 3 schematically shows part of the network reflector 4 in the Oxy plane, from a top view, according to F. Le reflector comprises a set of elementary cells 10 arranged side by side side by side and separated by zones 20, used for decoupling cell microwave. These cells 10 carry out the reflection and the phase shift of the waves they receive. An elementary cell 10 includes a phase shifting microwave circuit arranged in front of a plane driver. More specifically, as will appear later, the circuit microwave has two transverse phase shifters, each dedicated to linear polarization.

La figure 4 est une vue schématique en coupe, dans le plan Oxz d'un exemple de réalisation possible du réflecteur actif 4. Le réflecteur 4 se compose d'un circuit hyperfréquence réparti dans les cellules élémentaires 10 et d'un plan conducteur 42, disposé sensiblement parallèlement au circuit hyperfréquence 41, à une distance d prédéfinie. Ce circuit hyperfréquence reçoit les ondes incidentes, par exemple sensiblement plan, émise par les sources précitées SD, SG.FIG. 4 is a schematic sectional view, in the Oxz plane, of a possible embodiment of the active reflector 4. The reflector 4 consists of a microwave circuit distributed in the elementary cells 10 and of a conducting plane 42, disposed substantially parallel to the microwave circuit 41, at a predefined distance d. This microwave circuit receives the incident waves, for example substantially planar, emitted by the aforementioned sources S D , S G.

Le plan conducteur 42 a notamment pour fonction de réfléchir les ondes hyperfréquences. Il peut être constitué par tout moyen connu, par exemple des fils parallèles ou un grillage, suffisamment serrés, ou un plan continu. Le circuit hyperfréquence 41 et le plan conducteur 42 sont de préférence réalisés sur deux faces d'un support diélectrique 43, par exemple du type circuit imprimé. Le réflecteur 4 comporte encore, de préférence sur le même circuit imprimé 43, qui est alors un circuit multicouche, le circuit électronique nécessaire à la commande des valeurs de phase. Sur la figure 4, on a représenté un circuit multicouche dont la face avant 44 porte le circuit hyperfréquence 41, la face arrière 45 porte des composants 46 du circuit électronique de commande précité, et les couches intermédiaires forment le plan conducteur 42 et par exemple deux plans 47 d'interconnexions des composants 46 au circuit hyperfréquence 41.The function of the conducting plane 42 is in particular to reflect the microwave waves. It can be constituted by any known means, by example of parallel wires or a sufficiently tight mesh, or a plane continued. The microwave circuit 41 and the conductive plane 42 are of preferably made on two sides of a dielectric support 43, for example of the printed circuit type. The reflector 4 also comprises, preferably on the same printed circuit 43, which is then a multilayer circuit, the circuit electronics required to control phase values. On the face 4, a multilayer circuit is shown, the front face 44 of which carries the circuit microwave 41, the rear face 45 carries components 46 of the circuit aforementioned control electronics, and the intermediate layers form the conducting plane 42 and for example two interconnection plans 47 of the components 46 to the microwave circuit 41.

La figure 5 présente, de façon schématique, un exemple de réalisation d'une cellule élémentaire 10 d'une antenne selon l'invention. Une cellule comporte un circuit hyperfréquence déphaseur, formant partie du circuit hyperfréquence évoqué relativement à la figure 4. Le déphaseur comporte des fils conducteurs 51, 51' disposés sur un support, par exemple sur la face avant 44 du circuit multicouche 43. Les fils 51, 51' comportent chacun au moins deux éléments semi-conducteurs à deux états 521, 521', 522, 522', des diodes par exemple. L'exemple de réalisation de la figure 5 se compose de deux fils conducteurs comportant chacun deux diodes en série, câblés transversalement et reliés entre eux par un conducteur central de commande 53. Les diodes étant disposées sur la face avant du circuit multicouche, le conducteur central 53 est par exemple lui-même relié à un trou métallisé 531 qui relie les fils conducteurs 51, 51' au circuit de commande électronique disposés en face arrière 45 du circuit multicouche, via les circuits d'interconnexion. Le conducteur central 53 est relié aux quatre diodes 521, 521', 522, 522' du déphaseur, en étant câblé entre les deux diodes de chacun des fils conducteurs 51. Les extrémités de ces derniers sont par ailleurs reliées chacune à un conducteur de commande 54 relié par exemple lui-même à un trou métallisé 541 réalisé dans le circuit multicouche 43. Les extrémité des fils conducteurs 51, 51' sont ainsi reliées au circuit de commande électronique. L'état, passant ou bloqué, de chacune des quatre diodes peut alors être commandé par le circuit électronique de commande. Chacun des fils à diodes agit sur les seules ondes dont la polarisation, c'est-à-dire le vecteur champ électrique, a une composante qui lui est parallèle. Ainsi, la grille de rotation de polarisation 21 transforme par exemple la polarisation circulaire droite en une polarisation linéaire parallèle à un fil conducteur 51 alors qu'elle transforme la polarisation circulaire gauche en une polarisation linéaire parallèle à l'autre fil conducteur 51', un fil conducteur 51 étant par exemple parallèle à la direction Ox et l'autre fil conducteur 51' étant par exemple parallèle à la direction Oy.Figure 5 shows, schematically, an example of production of an elementary cell 10 of an antenna according to the invention. A cell includes a phase shift microwave circuit, forming part of the microwave circuit mentioned in relation to Figure 4. The phase shifter comprises conductive wires 51, 51 ′ arranged on a support, for example on the front face 44 of the multilayer circuit 43. The wires 51, 51 ′ have each at least two semiconductor elements with two states 521, 521 ′, 522, 522 ', diodes for example. The embodiment of Figure 5 is consists of two conductive wires, each comprising two diodes in series, cross-wired and interconnected by a central conductor control 53. The diodes being arranged on the front face of the circuit multilayer, the central conductor 53 is for example itself connected to a metallized hole 531 which connects the conductive wires 51, 51 'to the circuit electronic control arranged on the rear face 45 of the multilayer circuit, via the interconnection circuits. The central conductor 53 is connected to the four diodes 521, 521 ', 522, 522' of the phase shifter, being wired between the two diodes of each of the conductive wires 51. The ends of these the latter are also each connected to a control conductor 54 connected for example itself to a metallized hole 541 made in the circuit multilayer 43. The ends of the conducting wires 51, 51 ′ are thus connected to the electronic control circuit. The state, passing or blocked, of each of the four diodes can then be controlled by the electronic circuit of ordered. Each of the diode wires acts on the only waves whose polarization, i.e. the electric field vector, has a component which is parallel to it. Thus, the polarization rotation grid 21 transforms by example right circular polarization in parallel linear polarization to a conducting wire 51 while it transforms the circular polarization left in a linear polarization parallel to the other conductive wire 51 ', a wire conductor 51 being for example parallel to the direction Ox and the other wire conductor 51 ′ being for example parallel to the direction Oy.

Il est souhaitable qu'une onde reçue par une cellule élémentaire 10 ne se propage pas sur les autres cellules voisines. Pour éviter une telle propagation, l'invention prévoit des zones de découplage 20 qui séparent les cellules 10. En particulier, en ce qui concerne une onde hyperfréquence reçue par les cellules élémentaires 10, polarisée linéairement et parallèlement à la direction Oy, il est souhaitable que cette onde ne se propage pas d'une cellule à l'autre, dans la direction Ox. De même, il est souhaitable qu'une onde reçue polarisée linéairement à la direction Ox ne se propage pas d'une cellule à l'autre dans la direction Oy.It is desirable that a wave received by a cell elementary 10 does not spread to other neighboring cells. For avoid such propagation, the invention provides decoupling zones 20 which separate the 10 cells. In particular, with regard to a wave microwave received by the elementary cells 10, polarized linearly and parallel to the direction Oy, it is desirable that this wave does not propagate from one cell to another, in the direction Ox. Of even, it is desirable that a received wave linearly polarized at the direction Ox does not propagate from one cell to another in the direction Oy.

La figure 6 présente un exemple de réalisation possible de ces zones de découplage 20. Une zone de découplage 20 entourant une cellule élémentaire comporte une bande conductrice 62. Pour des raisons d'encombrement mais aussi afin de ne pas perturber le fonctionnement des cellules, les conducteurs d'extrémité 54 qui relient les fils conducteurs au circuit électronique de commande sont par exemple de préférence situés dans la bande conductrice 62, sans toutefois être reliés électriquement à cette dernière. A cet effet, il est prévu une interruption de la bande autour des conducteurs d'extrémité 54.Figure 6 shows a possible embodiment of these decoupling zones 20. A decoupling zone 20 surrounding a cell elementary comprises a conductive strip 62. For reasons space but also so as not to disturb the operation of cells, the end conductors 54 which connect the conductive wires to the electronic control circuit are for example preferably located in the conductive strip 62, without however being electrically connected to the latter. For this purpose, provision is made for an interruption of the band around end conductors 54.

La bande conductrice 62 est par exemple réalisée par dépôt métallique sur la face avant 44, entre les cellules, parallèlement aux directions Ox et Oy. Cette bande 62 forme, avec le plan réflecteur 42 qui est en dessous, un espace du type guide d'onde dont la largeur est la distance d. Selon l'invention, on choisit la distance d pour qu'elle soit inférieure à λ/2, sachant qu'une onde dont la polarisation est parallèle aux bandes ne peut pas se propager dans un tel espace. En pratique, le réflecteur selon l'invention fonctionne dans une certaine bande de fréquences et on choisit d pour qu'elle soit inférieure à la plus petite des longueurs d'onde des deux bandes. En outre, la bande 62 doit avoir une largeur suffisante pour que l'effet décrit précédemment soit sensible. En pratique, la largeur peut-être de l'ordre de λ/15.The conductive strip 62 is for example produced by deposition metallic on the front face 44, between the cells, parallel to the directions Ox and Oy. This strip 62 forms, with the reflective plane 42 which is below, a space of the waveguide type whose width is the distance d. According to the invention, the distance d is chosen so that it is less than λ / 2, knowing that a wave whose polarization is parallel to tapes cannot be spread in such a space. In practice, the reflector according to the invention operates in a certain band of frequencies and we choose d so that it is less than the smallest of the wavelengths of the two bands. In addition, strip 62 must have a sufficient width for the effect described above to be appreciable. In practical, the width maybe of the order of λ / 15.

Par ailleurs, il peut être créé de façon parasite dans une cellule, une onde dont la polarisation serait dirigée selon la direction Oz, normale aux directions Ox et Oy. Il est également souhaitable d'éviter sa propagation vers les cellules voisines. Pour cela, on peut utiliser comme représenté figure 6 les trous métallisés 541 de connexion des conducteurs 54 au circuit électronique de commande. En effet, ceux-ci étant parallèles à la polarisation de l'onde parasite, ils sont équivalents à un plan conducteur formant blindage s'ils sont suffisamment rapprochés (à une distance l'un de l'autre très inférieure à la longueur d'onde de fonctionnement du réflecteur), donc nombreux, pour les longueurs d'onde de fonctionnement du réflecteur. Si cette condition n'est pas remplie, on peut bien entendu former des trous métallisés supplémentaires 61, n'ayant pas de fonction de connexion. Si ceux-ci débouchent dans la bande conductrice 62, ils sont alors sans contact électrique avec cette dernière.Furthermore, it can be created parasitically in a cell, a wave whose polarization would be directed in the direction Oz, normal in directions Ox and Oy. It is also desirable to avoid its propagation to neighboring cells. For this, we can use as shown FIG. 6 the metallized holes 541 for connecting the conductors 54 to the circuit control electronics. Indeed, these being parallel to the polarization of the stray wave, they are equivalent to a conducting plane forming a shield if they are close enough (at a distance one of the other much less than the operating wavelength of the reflector), therefore numerous, for the operating wavelengths of the reflector. If this condition is not met, we can of course form holes additional metallized 61, having no connection function. Yes these open into the conductive strip 62, they are then contactless electric with the latter.

Pour décrire le fonctionnement d'une cellule, il est nécessaire de considérer le circuit équivalent d'un déphaseur 10 tel que représenté par la figure 7. Le circuit équivalent concerne un fil conducteur 51 et ses deux diodes 521, 522, en fait ce qui correspond à un déphaseur, associé à une polarisation donnée et donc à une bande de fréquence donnée. L'onde hyperfréquence incidente, de polarisation linéaire et parallèle à Oy et aux fils 51 est reçue sur des bornes B1 et B2 et rencontre trois capacités Co, CI1, CI2 en série, connectées en parallèle sur les bornes B1 et B2. La capacité C0 représente la capacité linéique de découplage entre les conducteurs d'extrémité 54 et la bande conductrice 62 de la zone de découplage 20. La capacité CI1 est la capacité linéique entre le conducteur d'extrémité 54 relié à la première diode 521 et le conducteur central 53. La capacité CI2 est la capacité linéique entre le conducteur d'extrémité 54 relié à la deuxième diode 522 et le conducteur central 53.To describe the operation of a cell, it is necessary to consider the equivalent circuit of a phase shifter 10 as shown in FIG. 7. The equivalent circuit relates to a conducting wire 51 and its two diodes 521, 522, in fact what corresponds to a phase shifter, associated with a given polarization and therefore with a given frequency band. The incident microwave wave, of linear polarization and parallel to Oy and to the wires 51 is received on terminals B 1 and B 2 and meets three capacitors C o , C I1 , C I2 in series, connected in parallel on the terminals B 1 and B 2 . The capacitance C 0 represents the linear decoupling capacitance between the end conductors 54 and the conductive strip 62 of the decoupling zone 20. The capacitance C I1 is the linear capacitance between the end conductor 54 connected to the first diode 521 and the central conductor 53. The capacitance C I2 is the linear capacitance between the end conductor 54 connected to the second diode 522 and the central conductor 53.

Aux bornes de la capacité CI1 est connectée la première diode 521, également représentée par son schéma équivalent. Ce dernier est constitué d'une inductance L, inductance de la diode 521 compte tenu de son fil de connexion, en série avec :

  • soit une capacité Ci1 (capacité de jonction de la diode) en série avec une résistance Ri1 (résistance inverse),
  • soit une résistance Rd1 (résistance directe de la diode), selon que la diode 521 est en sens inverse ou direct, ce qui est symbolisé par un interrupteur 21.
At the terminals of the capacitor C I1 is connected the first diode 521, also represented by its equivalent diagram. The latter consists of an inductor L, inductor of the diode 521 taking into account its connection wire, in series with:
  • either a capacitance C i1 (diode junction capacitance) in series with a resistor R i1 (reverse resistance),
  • or a resistor R d1 (direct resistance of the diode), depending on whether the diode 521 is in the opposite or direct direction, which is symbolized by a switch 2 1 .

De la même manière, aux bornes de la capacité CI2 est connectée la deuxième diode 522 représentée par son schéma équivalent. Ce dernier est analogue à celui de la première diode 521, ses composants portant un indice 2.In the same way, at the terminals of the capacitor C I2 is connected the second diode 522 represented by its equivalent diagram. The latter is analogous to that of the first diode 521, its components bearing an index 2.

La tension de sortie hyperfréquence est prise entre des bornes B3 et B4, bornes des capacités C0, CI1, et CI2.The microwave output voltage is taken between terminals B 3 and B 4 , terminals of the capacitors C 0 , C I1 , and C I2 .

Le fonctionnement du déphaseur 10 est expliqué ci-après en considérant, dans une première étape, le comportement d'un tel circuit en l'absence de la deuxième diode 522, ce qui revient sur le schéma équivalent de la figure 7 à supprimer le 522 ainsi que la capacité CI2.The operation of the phase shifter 10 is explained below by considering, in a first step, the behavior of such a circuit in the absence of the second diode 522, which returns to the equivalent diagram of FIG. 7 to remove the 522 as well as the capacity C I2 .

Lorsque la première diode 521 est polarisée en direct, la susceptance Bd1 du circuit de la figure 7 (modifié) s'écrit : Bd1 = Z.C0.ω.1 - LCI1ω2 LCI1ω2 + LC0ω2 - 1 où Z est l'impédance de l'onde incidente et ω est la pulsation correspondant à la fréquence centrale d'une des deux bandes de fonctionnement de l'antenne. A titre d'exemple, on considère que le premier fil conducteur 51 reçoit les ondes émises par la source de polarisation circulaire droite SD.When the first diode 521 is forward biased, the susceptance B d1 of the circuit of FIG. 7 (modified) is written: B d1 = ZC 0 .ω. 1 - LC I1 ω 2 LC I1 ω 2 + LC 0 ω 2 - 1 where Z is the impedance of the incident wave and ω is the pulsation corresponding to the center frequency of one of the two operating bands of the antenna. By way of example, it is considered that the first conducting wire 51 receives the waves emitted by the right circular polarization source S D.

On choisit par exemple les paramètres du circuit pour avoir Bd1 ≅ 0, c'est-à-dire que, en négligeant sa conductance, le circuit soit adapté ou, en d'autres termes, qu'il soit transparent à l'onde hyperfréquence incidente, n'introduisant ni réflexion parasite, ni déphasage (dϕd1 = 0). Plus précisément, on choisit : LCI1ω2 = 1 ce qui conduit à Bd1 ≅ 0, quelle que soit notamment la valeur de la capacité Ci1.We choose for example the parameters of the circuit to have B d1 ≅ 0, that is to say that, by neglecting its conductance, the circuit is adapted or, in other words, that it is transparent to the wave incident microwave, introducing neither parasitic reflection nor phase shift (d ϕd1 = 0). More precisely, we choose: LC I1 ω 2 = 1 which leads to B d1 ≅ 0, whatever the value of the capacity C i1 in particular .

Lorsque la première diode est polarisée en inverse, la susceptance Br1 du circuit s'écrit : Br1 = Z.C0.ω.1 - LCI1ω2 + (CI1/Ci)LCI1ω2 + LC0ω2 - 1 + C0 + CI1 Ci When the first diode is reverse biased, the susceptance B r1 of the circuit is written: B r1 = ZC 0 .ω. 1 - LC I1 ω 2 + (C I1 /This) LC I1 ω 2 + LC 0 ω 2 - 1 + VS 0 + C I1 VS i

La capacité CI1 étant fixée précédemment, il apparaít qu'on peut ajuster la valeur de la susceptance Br1 par action sur la valeur de la capacité Ci, c'est-à-dire le choix de la diode 521.The capacitance C I1 being fixed previously, it appears that one can adjust the value of the susceptance B r1 by action on the value of the capacitance C i , that is to say the choice of the diode 521.

Si maintenant, dans une deuxième étape, on prend en considération l'existence de la deuxième diode 522, on voit que, par un raisonnement analogue, on obtient deux autres valeurs distincts pour la susceptance, selon que la diode 522 est polarisée en direct ou en inverse.If now, in a second step, we take into considering the existence of the second diode 522, we see that, by a analogous reasoning, we obtain two other distinct values for the susceptance, depending on whether diode 522 is forward or reverse bias.

Il apparaít ainsi qu'un déphaseur d'une cellule 10, ce déphaseur correspondant à un fil conducteur 51, 51', peut présenter quatre valeurs différentes pour sa susceptance BD (notées BD1, BD2, BD3 et BD4) selon la commande (polarisation directe ou inverse) appliquée à chacune des diodes 521, 522. Ces valeurs sont fonction des paramètres du circuit de la figure 7, c'est-à-dire des valeurs choisies pour les paramètres géométriques (dimensions, formes et espacements des différentes surfaces conductrices) et électriques (caractéristiques électriques des diodes) du déphaseur. En particulier, il est nécessaire de tenir compte de la contrainte de définition de la bande conductrice 62 évoquée précédemment lors de la détermination des différents paramètres pour la fixation des déphasages dϕ1 - dϕ4 It thus appears that a phase shifter of a cell 10, this phase shifter corresponding to a conducting wire 51, 51 ′, can have four different values for its susceptance B D (denoted B D1 , B D2 , B D3 and B D4 ) according to the command (direct or reverse polarization) applied to each of the diodes 521, 522. These values are a function of the parameters of the circuit of FIG. 7, that is to say of the values chosen for the geometric parameters (dimensions, shapes and spacings different conductive) and electrical surfaces (electrical characteristics of the diodes) of the phase shifter. In particular, it is necessary to take into account the definition constraint of the conductive strip 62 mentioned previously when determining the various parameters for fixing the phase shifts d ϕ1 - d ϕ4

Si, maintenant, on étudie le comportement de l'ensemble de la cellule 10, c'est-à-dire le déphaseur en association avec le plan conducteur 42, on doit tenir compte de la susceptance due à ce plan 42, ramenée dans le plan du déphaseur et notée BCC, qui s'écrit: Bcc = -cotg2πdλ où λ est la longueur d'onde correspondant à la pulsation ω.If, now, we study the behavior of the whole of cell 10, that is to say the phase shifter in association with the conducting plane 42, we must take into account the susceptance due to this plane 42, brought back in the plan of the phase shifter and noted B CC , which is written: B CC = -cotg 2πd λ where λ is the wavelength corresponding to the pulsation ω.

La susceptance BC de la cellule est alors donnée par : BC = BD + BCC The cell susceptance B C is then given by: B VS = B D + B CC

Il suit que la susceptance BC peut prendre quatre valeurs distinctes (notées BC1, BC2, BC3 ,et BC4) correspondant respectivement aux quatre valeurs de BD, la distance d représentant un paramètre supplémentaire pour la détermination des valeurs BC1 - BC4. It follows that susceptance B C can take four distinct values (denoted B C1 , B C2 , B C3 , and B C4 ) corresponding respectively to the four values of B D , the distance d representing an additional parameter for the determination of the values B C1 - B C4 .

On sait par ailleurs que le déphasage (dϕ) imprimé par une admittance (Y) à une onde hyperfréquence est de la forme : dϕ = 2 arctg Y We also know that the phase shift (dϕ) imparted by an admittance (Y) to a microwave wave is of the form: dϕ = 2 arctg Y

Il apparaít ainsi que, en négligeant la partie réelle de l'admittance d'une cellule, on a: dϕ ≅ 2 arctg BC    et qu'on obtient quatre valeurs possibles (dϕ1 - dϕ4) de déphasage par cellule, selon la commande appliquée à chacune des diodes D1 et D2. Les différents paramètres sont choisis pour que les quatre valeurs dϕ1 - dϕ4 soient équiréparties, par exemple mais non obligatoirement : 0, 90°, 180°, 270°. Ces quatre états correspondent à une commande numérique codée sur deux bits. Il est possible d'étendre une commande à trois bit correspondant à huit états, déphasés par exemple chacun de 45°, en ajoutant par exemple une diode sur le fil conducteur 51.It thus appears that, by neglecting the real part of the admittance of a cell, we have: d φ ≅ 2 arctg B VS and that four possible values (d ϕ1 - d ϕ4 ) of phase shift per cell are obtained, according to the command applied to each of the diodes D 1 and D 2 . The different parameters are chosen so that the four values d ϕ1 - d ϕ4 are evenly distributed, for example but not necessarily: 0, 90 °, 180 °, 270 °. These four states correspond to a digital control coded on two bits. It is possible to extend a three-bit command corresponding to eight states, phase shifted for example each by 45 °, by adding for example a diode on the conductive wire 51.

Il est à noter qu'on a décrit ci-dessus le cas dans lequel on choisit les paramètres du circuit pour que les susceptances nulles (ou sensiblement nulles) soient telles qu'elles correspondent aux diodes polarisées dans le sens direct, mais qu'on peut bien entendu choisir un fonctionnement symétrique dans lequel les paramètres sont déterminés pour annuler sensiblement les susceptances Br ; plus généralement, il n'est pas nécessaire que l'une des susceptances Bd ou Br soit nulle, ces valeurs étant déterminées pour que la condition d'équirépartition des déphasages dϕ1-dϕ4 soit remplie.It should be noted that the case has been described above in which the parameters of the circuit are chosen so that the zero (or substantially zero) susceptances are such that they correspond to the diodes polarized in the direct direction, but that can of course choose a symmetrical operation in which the parameters are determined to substantially cancel the susceptances B r ; more generally, it is not necessary that one of the susceptances B d or B r is zero, these values being determined so that the condition of equal distribution of the phase shifts d ϕ1 -d ϕ4 is fulfilled.

Le fonctionnement d'une cellule élémentaire selon son deuxième fil conducteur 51' peut être décrit de façon analogue, pour les ondes émise par la deuxième source, par exemple SG, dans une autre bande de fréquence. Ainsi, selon l'invention, le réseau actif 4 est éclairé par deux sources SD, SG émettant respectivement en polarisation circulaire droite et gauche et dans deux bandes de fréquences différentes, la grille de rotation de polarisation 21 transformant ces deux polarisations circulaires en deux polarisations linéaires croisées permettant aux cellules du réseau actif 4 d'agir indépendamment sur deux polarisations et dans des bandes de fréquences différentes. Une cellule élémentaire 10 comporte en fait deux déphaseurs transversaux, de préférence commandables, le premier déphaseur 51, 521, 522 agissant sur les ondes d'une polarisation linéaire et le deuxième déphaseur 51', 521', 522' agissant sur les ondes de l'autre polarisation linéaire. En particulier, pour agir sur une onde de polarisation donnée, un déphaseur, et donc son fil conducteur, est sensiblement parallèle à la direction de cette polarisation. A cet effet, la grille de rotation de polarisation 21 est disposée de telle façon que les polarisations linéaires obtenues à partir des polarisations circulaires sont bien sensiblement paralléles aux déphaseurs les concernant.The operation of an elementary cell along its second conducting wire 51 ′ can be described in a similar manner, for the waves emitted by the second source, for example S G , in another frequency band. Thus, according to the invention, the active network 4 is illuminated by two sources S D , S G emitting respectively in right and left circular polarization and in two different frequency bands, the polarization rotation grid 21 transforming these two circular polarizations into two crossed linear polarizations allowing the cells of the active network 4 to act independently on two polarizations and in different frequency bands. An elementary cell 10 in fact comprises two transverse phase shifters, preferably controllable, the first phase shifter 51, 521, 522 acting on the waves of a linear polarization and the second phase shifter 51 ', 521', 522 'acting on the waves of the other linear polarization. In particular, to act on a given polarization wave, a phase shifter, and therefore its conducting wire, is substantially parallel to the direction of this polarization. To this end, the polarization rotation grid 21 is arranged in such a way that the linear polarizations obtained from the circular polarizations are very substantially parallel to the phase shifters concerning them.

Après réflexion et déphasage sur le réflecteur actif 4, les ondes traversent de nouveau la grille de rotation de polarisation 21. Les polarisations linéaires croisées redeviennent alors des polarisations circulaires gauche et droite, une polarisation verticale étant par exemple transformée en une polarisation circulaire droite et une polarisation horizontale étant par exemple transformée en une polarisation circulaire gauche. La grille de rotation de polarisation peut être un rotateur de polarisation quelconque, en particulier, elle peut être une grille à méandre ou une grille à fils.After reflection and phase shift on the active reflector 4, the waves again cross the polarization rotation grid 21. The crossed linear polarizations then become polarizations again left and right circular, vertical polarization being for example transformed into a right circular polarization and a polarization horizontal being for example transformed into a circular polarization left. The polarization rotation grid can be a rotator of any polarization, in particular, it can be a meandering grid or a wire grid.

L'invention permet avantageusement de fonctionner sur deux bandes de fréquences et de régler les déphasages des ondes réfléchies par le réseau actif, indépendamment d'une bande à l'autre. Sachant que ces déphasages déterminent la direction des faisceaux émis par l'antenne, il est donc aisé et rapide de changer la direction du faisceau pour les deux bandes de fréquences. Cela est particulièrement bien adapté pour suivre des satellites à défilement disposés autour de la Terre utilisés notamment pour toutes sortes d'applications multimédia. Enfin, une antenne selon l'invention est bien adapté pour une utilisation de masse, c'est-à-dire destinée à un large public, dans la mesure où elle peut être réalisée à faible coût. En effet, elle ne comporte pas de composants coûteux ou complexes à mettre en oeuvre. En particulier, le réseau actif, constitué d'un circuit imprimé multicouche avec des composants disposés sur ces faces avant et arrière n'est pas de réalisation coûteuse. De plus, il est parfaitement adapté à une réalisation de grande série. Enfin, la grille de rotation de polarisation, utilisée dans le cas notamment où les sources élémentaires sont à polarisations circulaires comme c'est le cas par exemple pour des applications multimédia, est elle aussi bon marché.The invention advantageously makes it possible to operate on two frequency bands and adjust the phase shifts of the waves reflected by the active network, independently from one band to another. Knowing that these phase shifts determine the direction of the beams emitted by the antenna, it is so easy and quick to change the direction of the beam for the two bands frequencies. This is particularly well suited for tracking traveling satellites arranged around the Earth used in particular for all kinds of multimedia applications. Finally, an antenna according to the invention is well suited for mass use, i.e. intended for a large audience, insofar as it can be carried out at low cost. Indeed, it does not contain expensive or complex components to install artwork. In particular, the active network, consisting of a printed circuit multilayer with components arranged on these front and rear faces is not expensive. In addition, it is perfectly suited to a production of large series. Finally, the polarization rotation grid, used in the case in particular where the elementary sources are polarized circular as is the case for example for applications multimedia is also inexpensive.

Claims (10)

  1. Electronic scanning antenna, comprising at least two microwave sources (SD, SG) transmitting in different frequency bands, an active reflecting array (4) comprising elementary cells (10) illuminated by the sources (SD, SG), characterized in that the waves from the two microwave sources have crossed polarizations, an elementary cell (10) comprising a conducting plane (42) and two transverse phase shifters, the first phase shifter (51, 521, 522) being substantially parallel to one linear polarization and the second phase shifter (51', 521', 522') being substantially parallel to the other linear polarization, the conducting plane (42) being placed substantially parallel to the phase shifters, a phase shifter comprising at least one dielectric support (43), at least one conducting wire (51) placed on the support and bearing at least two semiconducting elements (521, 522) with two states, the wire being connected to control conductors (53,54) of the semiconducting elements connected to an electronic control circuit, the characteristics of the cell being such that a given phase shift value (dϕ1, dϕ2, dϕ3, dϕ4) of the electromagnetic wave reflected by the cell (10) whose polarization is substantially parallel to the conducting wire (51), corresponds to each of the states of the semiconducting elements.
  2. Antenna according to Claim 1, characterized in that since one of the control conductors (53) is central and each phase shifter comprises two semiconducting elements, the central conductor (53) is connected to the four semiconducting elements.
  3. Antenna according to either of the preceding claims, characterized in that the elementary cells (10) are separated by microwave decoupling regions (20), a decoupling region comprising a conducting band (62) surrounding a cell substantially parallel to the polarization directions and forming, with the conducting plane (42), a guided space where a wave of the two frequency bands cannot be propagated.
  4. Antenna according to any one of the preceding claims, characterized in that since the support (43) is of the multilayer printed circuit type, a first face (44) of which bears the microwave circuits, a first interlayer bears the conducting plane (42) and the second face (45) bears components (46) of the electronic control circuit.
  5. Antenna according to Claim 4, characterized in that the dielectric support (43) comprises in addition at least a second interlayer (47) bearing interconnections of the electronic control circuit.
  6. Antenna according to either of Claims 4 and 5, characterized in that the microwave decoupling region (20) comprises plated-through holes (541, 61), made in the dielectric support (43) at a distance one from the other of less than the electromagnetic wavelength.
  7. Antenna according to Claim 6, characterized in that some of the plated-through holes (541) provide the connection between the control circuit and control conductors (54).
  8. Antenna according to either of Claims 6 and 7, characterized in that the plated-through holes (541, 61) are made in the conducting band (62) but without electrical contact with the latter.
  9. Antenna according to any one of the preceding claims, characterized in that the semiconducting elements are diodes.
  10. Antenna according to any one of the preceding claims, characterized in that the sources have opposite circular polarizations, it comprises a polarization rotator (21) inserted between the reflecting array (4) and the sources, changing the circular polarizations into two crossed linear polarizations.
EP00901684A 1999-02-05 2000-01-31 Antenna with double-band electronic scanning, with active microwave reflector Expired - Lifetime EP1157444B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9901378A FR2789521A1 (en) 1999-02-05 1999-02-05 TWO-BAND ELECTRONIC SCANNING ANTENNA WITH ACTIVE MICROWAVE REFLECTOR
FR9901378 1999-02-05
PCT/FR2000/000220 WO2000046876A1 (en) 1999-02-05 2000-01-31 Antenna with double-band electronic scanning, with active microwave reflector

Publications (2)

Publication Number Publication Date
EP1157444A1 EP1157444A1 (en) 2001-11-28
EP1157444B1 true EP1157444B1 (en) 2003-07-30

Family

ID=9541662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00901684A Expired - Lifetime EP1157444B1 (en) 1999-02-05 2000-01-31 Antenna with double-band electronic scanning, with active microwave reflector

Country Status (6)

Country Link
US (1) US6437752B1 (en)
EP (1) EP1157444B1 (en)
AU (1) AU2300700A (en)
DE (1) DE60004174T2 (en)
FR (1) FR2789521A1 (en)
WO (1) WO2000046876A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814594B1 (en) * 2000-09-22 2002-12-06 Thomson Csf REFLECTOR NETWORK WITH INTEGRATED DECOUPLING CAPACITIES
FR2820886A1 (en) * 2001-02-13 2002-08-16 Thomson Csf MICROWAVE REFLECTOR PANEL
FR2879359B1 (en) * 2004-12-15 2007-02-09 Thales Sa BROADBAND ELECTRONIC SCANNING ANTENNA
GB201811092D0 (en) * 2018-07-05 2018-08-22 Npl Management Ltd Reflectarray antenna element
CN112332106B (en) * 2020-09-15 2022-10-18 上海大学 Lens unit with polarization and phase adjustable by 360 degrees

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569974A (en) * 1967-12-26 1971-03-09 Raytheon Co Dual polarization microwave energy phase shifter for phased array antenna systems
DE2055443C3 (en) * 1970-11-11 1982-02-25 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Polarization converter for microwaves
US3706998A (en) * 1971-02-03 1972-12-19 Raytheon Co Multiple interleaved phased antenna array providing simultaneous operation at two frequencies and two polarizations
FR2382109A1 (en) * 1977-02-25 1978-09-22 Thomson Csf HYPERFREQUENCY POLARIZATION TRANSFORMER
FR2395620A1 (en) 1977-06-24 1979-01-19 Radant Etudes IMPROVEMENT OF THE ELECTRONIC SWEEPING PROCESS USING DEPHASER DIELECTRIC PANELS
FR2448231A1 (en) 1979-02-05 1980-08-29 Radant Et MICROWAVE ADAPTIVE SPATIAL FILTER
FR2469808A1 (en) 1979-11-13 1981-05-22 Etude Radiant Sarl ELECTRONIC SCANNING DEVICE IN THE POLARIZATION PLAN
FR2733091B1 (en) 1983-05-06 1997-05-23 Cmh Sarl ELECTRICALLY CONTROLLABLE MICROWAVE ANSWER AND ITS APPLICATIONS TO THE PRODUCTION OF ELECTROMAGNETIC LURES
FR2723210B1 (en) 1983-05-06 1997-01-10 Cmh Sarl ANTI-DETECTION METHOD AND DEVICE FOR RADAR
FR2629920B1 (en) 1984-01-23 1991-09-20 Cmh Sarl REFLECTIVE MICROWAVE ADAPTIVE SPATIAL FILTER AND METHOD FOR IMPLEMENTING SAME
FR2732469B1 (en) 1984-01-23 1997-04-11 Cmh Sarl DEVICE USING AN AUXILIARY ANTENNA EQUIPPED WITH AN ADAPTIVE SPATIAL FILTER FOR THE INTERFERENCE OF AN ASSOCIATED MAIN ANTENNA, AND ITS IMPLEMENTING METHOD
US4975712A (en) * 1989-01-23 1990-12-04 Trw Inc. Two-dimensional scanning antenna
US5055805A (en) * 1989-10-02 1991-10-08 Rockwell International Corporation High speed polarization switch array for selecting a particular orthogonal polarization
FR2656468B1 (en) 1989-12-26 1993-12-24 Thomson Csf Radant MAGIC MICROWAVE RADIATION SOURCE AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA.
FR2747842B1 (en) * 1990-06-15 1998-09-11 Thomson Csf Radant MULTIBAND MICROWAVE LENS AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA
FR2725077B1 (en) * 1990-11-06 1997-03-28 Thomson Csf Radant BIPOLARIZATION MICROWAVE LENS AND ITS APPLICATION TO AN ELECTRONICALLY SCANNED ANTENNA
FR2671194B1 (en) 1990-12-27 1993-12-24 Thomson Csf Radant PROTECTION SYSTEM FOR ELECTRONIC EQUIPMENT.
FR2689320B1 (en) * 1992-03-24 1994-05-13 Thomson Csf ELECTRONIC SCANNING SLAB ANTENNA WITH BIPOLARIZATION OPERATION.
US5280297A (en) 1992-04-06 1994-01-18 General Electric Co. Active reflectarray antenna for communication satellite frequency re-use
CA2105745C (en) * 1992-09-21 1997-12-16 Parthasarathy Ramanujam Identical surface shaped reflectors in semi-tandem arrangement
US5389939A (en) * 1993-03-31 1995-02-14 Hughes Aircraft Company Ultra wideband phased array antenna
FR2708808B1 (en) * 1993-08-06 1995-09-01 Thomson Csf Radant Four phase phase shifting panel and its application to a microwave lens and an electronic scanning antenna.
US5847681A (en) * 1996-10-30 1998-12-08 Hughes Electronics Corporation Communication and tracking antenna systems for satellites
FR2786610B1 (en) 1997-02-03 2001-04-27 Thomson Csf ACTIVE MICROWAVE REFLECTOR FOR ELECTRONIC SCANNING ANTENNA
US5892485A (en) * 1997-02-25 1999-04-06 Pacific Antenna Technologies Dual frequency reflector antenna feed element

Also Published As

Publication number Publication date
DE60004174D1 (en) 2003-09-04
EP1157444A1 (en) 2001-11-28
DE60004174T2 (en) 2004-04-15
US6437752B1 (en) 2002-08-20
FR2789521A1 (en) 2000-08-11
AU2300700A (en) 2000-08-25
WO2000046876A1 (en) 2000-08-10

Similar Documents

Publication Publication Date Title
EP2656438B1 (en) Radio cell with two phase states for transmit array
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
FR2725077A1 (en) BIPOLARIZATION HYPERFREQUENCY LENS AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA
FR2868216A1 (en) LINEAR POLARIZED DEHASE CELL WITH VARIABLE RESONANT LENGTH USING MEMS SWITCHES
EP0462864A1 (en) Device for feeding radiating elements of an antenna array and its application for an antenna of a landing help system type MLS
EP1234356B1 (en) Active electronic scan microwave reflector
EP3180816B1 (en) Multiband source for a coaxial horn used in a monopulse radar reflector antenna.
EP0518271A1 (en) Elemental microwave antenna with two polarisations
EP1305846B1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
EP0047686A1 (en) Hybrid microwave mixer
EP1157444B1 (en) Antenna with double-band electronic scanning, with active microwave reflector
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
FR2786610A1 (en) Reflective active ultrahigh frequency linearly polarized receiving antenna has second zone driver disposed between every cell, in given direction, that forms space guide with that plane driver
EP1139484B1 (en) Microwave phase shifter and phased array antenna with such phase shifters
EP1133000B1 (en) Active microwave reflector for antenna with electronic scanning
EP3900113B1 (en) Elementary microstrip antenna and array antenna
FR2738398A1 (en) Diode phase shift panel for electronic sweep antenna
FR2747842A1 (en) Microwave lens with panel of stacked phase shifting channels
EP0380397B1 (en) Balanced modulator for an electromagnetic microwave power signal
EP0156684A1 (en) Microwave radiating element and its use in an electronically scanned array
FR2815479A1 (en) Active ultrahigh frequency reflector with two independent polarizations, notably in an electronic scanning antenna
WO2021023511A1 (en) Planar optoelectronic device for generating a microwave signal
FR2522888A1 (en) ANTENNA WITH DOUBLE REFLECTOR WITH POLARIZATION TRANSFORMER INCORPORATED
WO2012131086A1 (en) Wide-band directional printed-circuit array antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020130

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60004174

Country of ref document: DE

Date of ref document: 20030904

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031114

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060103

Year of fee payment: 7

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120117

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130123

Year of fee payment: 14

Ref country code: FR

Payment date: 20130204

Year of fee payment: 14

Ref country code: SE

Payment date: 20130114

Year of fee payment: 14

Ref country code: GB

Payment date: 20130130

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60004174

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60004174

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131