EP0548876B1 - An active offset antenna having two reflectors - Google Patents

An active offset antenna having two reflectors Download PDF

Info

Publication number
EP0548876B1
EP0548876B1 EP92121692A EP92121692A EP0548876B1 EP 0548876 B1 EP0548876 B1 EP 0548876B1 EP 92121692 A EP92121692 A EP 92121692A EP 92121692 A EP92121692 A EP 92121692A EP 0548876 B1 EP0548876 B1 EP 0548876B1
Authority
EP
European Patent Office
Prior art keywords
collector
sources
source
primary array
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92121692A
Other languages
German (de)
French (fr)
Other versions
EP0548876A1 (en
Inventor
Régis Lenormand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0548876A1 publication Critical patent/EP0548876A1/en
Application granted granted Critical
Publication of EP0548876B1 publication Critical patent/EP0548876B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/192Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with dual offset reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas

Definitions

  • the present invention relates to an active "offset" antenna with double reflectors, these two reflectors being opposite with respect to their homes in a configuration of the "periscopic” type, well known under the Anglo-Saxon name: "offset fed Gregorian geometry” .
  • This antenna uses the principle of the optical periscope, and it comprises an active network 1, of reduced dimensions compared to the active direct radiation network which would radiate according to a beam of diameter D identical to that finally radiated by this antenna with double reflectors with configuration " offset".
  • This active network 1 is associated, in a conventional manner for this type of network, with devices 2 for adjusting the phases, as well as with amplifiers and filters (not shown), devices which will hereinafter be called “controls”. to respect the terminology used by those skilled in the art.
  • the beam of diameter "d" which is radiated by the active grating 1 is firstly reflected by a first parabolic reflector 3, which concentrates it in its focal point F, then it continues on its path from this focal point F to illuminate a second parabolic reflector 4, opposite by the apex F to the reflector 3 and confocal to the latter, to finally radiate according to the beam of parallel rays of width D.
  • the emitting source 1 is offset with respect to the finally radiated beam of width D, and that it is therefore indeed an antenna called “offset" in term business.
  • This “periscope” type configuration with two reflectors 3, 4 is used to reduce the dimensions of the active source 1, and is a priori more advantageous than the simple configuration consisting in having an active source of dimensions D equal to those of the beam that 'it transmits directly.
  • the invention aims to remedy this drawback. It relates for this purpose to an active antenna of the "offset" type and to two reflectors, this antenna comprising, at the focal points of these two reflectors, a radioelectric lens of which a first face, called “collector”, receives and picks up the concentrated beam reflected, from that emitted by the active source of this antenna, by the first reflector that the beam meets, this collector being placed at the focus of this first reflector, and the opposite face of which, called “primary network” re-emits towards the second reflector the energy which is transmitted to it, by interconnections, by said collector, this primary network being placed at the focus of this second reflector.
  • a radioelectric lens of which a first face, called “collector” receives and picks up the concentrated beam reflected, from that emitted by the active source of this antenna, by the first reflector that the beam meets, this collector being placed at the focus of this first reflector, and the opposite face of which, called “primary network” re-e
  • the sources of the collector are respectively connected, one by one and respecting the same geometrical configuration, to those of the primary network, but said sources of the collector are each of much smaller dimensions than those of the sources of the primary network which are associated with them.
  • the connection between each "small" source of the collector and the corresponding "large” source of the primary network includes a device for fine adjustment of the phase. This phase adjustment device is sampled on several distinct portions of said source of the primary network, which therefore in fact consists of an assembly of as many elementary sources as there are portions.
  • FIG. 2 the elements identical to those in FIG. 1 are designated by the same reference numbers to facilitate understanding and to avoid describing them again.
  • the "small" receiving sources 8 of the collector 6 correspond one by one, geographically homothetically, with the “large” re-emitting sources 9 of the primary network 7, that is to say that the respective distributions of these sources 8 and 9 are the same on each network 6 and 7.
  • a source 8 of the collector is connected to the geographically corresponding source 9 of the primary network by means of a connector which includes a device for fine-tuning of phases, which will now be described in reference to Figure 5.
  • the "large" unit source 9 is assumed to be composed of a mosaic of four horns 10A, 10B, 10C, and 10D.
  • this mosaic could include another whole number p of cones: six, eight, or even more.
  • the receiving horn 8 is connected to a divider circuit by p (that is to say here by four), referenced 11.
  • the p (here: four) outputs 12A to 12D of this divider 11 are connected to the corresponding source plot 10A to 10D via a respective adjustable phase shifter 13A to 13D.
  • phase shifters 13A to 13D Thanks to these phase shifters 13A to 13D, a fine adjustment is made of the phase of the signal which is retransmitted, by the "large" unit source 9, in the direction of the second reflector 4.
  • the primary network 7 is here positioned in the focal focal plane F 'of the reflector 4, while the collector 6 is placed in the focal focal plane F of the reflector 3.
  • the collector 6 is fairly close to the primary network 7 and, as a first approximation, the two paraboloids 4 and 3 can here be practically considered confocal.
  • One of the original features of the invention therefore consists in using sources of different diameters for the collector 6 and the primary network 7.
  • the source-to-source connections of the collector and primary network are such that in fact the sources of the primary network are excited with energy levels respectively substantially equal to the levels received by the corresponding sources of the collector.
  • the law of illumination of the second reflector 4 is the image of the distribution captured by the sources of the collector 6.
  • the transformation between the distribution of energy received by the collector and that radiated by the primary network is a function of the characteristics of the sources 8 of the collector and the sources 9 of the primary network, of course taking into account the phase adjustment finely introduced by the different phase shifters 13A, 13B, 13C, ...
  • connections according to Figure 5 are made from source to source, respecting the rank they occupy in each of the networks 6 and 7.
  • FIG. 6 illustrates a variant of the antenna which has just been described.
  • the collector 6 and the primary network 7 are placed on surfaces which are no longer at all parallel as is in fact the case for the antenna according to FIG. 2.
  • the lens at is therefore not a lens with parallel faces.
  • This configuration has the advantage of making it possible to dissociate the radioelectric constraints from those of the mechanical locations of the elements constituting the antenna.
  • the invention is not limited to the embodiment which has just been described. Although it is normally intended to be applied to an antenna on board a satellite, its field is not as limited, and it could just as easily be a ground antenna.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention se rapporte à une antenne active "offset" à double réflecteurs, ces deux réflecteurs étant opposés par rapport à leurs foyers selon une configuration du genre "périscopique", bien connue sous la dénomination anglo-saxone : "offset fed Gregorian geometry".The present invention relates to an active "offset" antenna with double reflectors, these two reflectors being opposite with respect to their homes in a configuration of the "periscopic" type, well known under the Anglo-Saxon name: "offset fed Gregorian geometry" .

Il est en particulier question d'une antenne "offset" de ce type dans l'article de Robert J. Mailloux "Phased Array Theory and Technology" publié dans la revue américaine "Proceedings of the IEEE", Volume 70, N°3, Mars 1982: voir la Figure 44(b), page 281, et son commentaire et références en page 280.In particular, there is a question of an "offset" antenna of this type in the article by Robert J. Mailloux "Phased Array Theory and Technology" published in the American review "Proceedings of the IEEE", Volume 70, N ° 3, March 1982: see Figure 44 (b), page 281, and its commentary and references on page 280.

A titre indicatif, la Figure 1 jointe rappelle très schématiquement la configuration connue d'une antenne active à double réflecteurs de type "offset", qui est donc l'antenne concernée par la présente invention.As an indication, the attached Figure 1 very schematically recalls the known configuration of an active antenna with double "offset" type reflectors, which is therefore the antenna concerned by the present invention.

Cette antenne utilise le principe du périscope optique, et elle comporte un réseau actif 1, de dimensions réduites par rapport au réseau actif à rayonnement direct qui rayonnerait selon un faisceau de diamètre D identique à celui finalement rayonné par cette antenne à double réflecteurs à configuration "offset".This antenna uses the principle of the optical periscope, and it comprises an active network 1, of reduced dimensions compared to the active direct radiation network which would radiate according to a beam of diameter D identical to that finally radiated by this antenna with double reflectors with configuration " offset".

Ce réseau actif 1 est associé, de manière classique pour ce genre de réseau, à des dispositifs 2 de réglage de phases, ainsi qu'à des amplificateurs et filtres (non représentés), dispositifs que l'on appellera par la suite "contrôles" pour respecter la terminologie utilisée par l'homme de métier.This active network 1 is associated, in a conventional manner for this type of network, with devices 2 for adjusting the phases, as well as with amplifiers and filters (not shown), devices which will hereinafter be called "controls". to respect the terminology used by those skilled in the art.

Le faisceau de diamètre "d" qui est rayonné par le réseau actif 1 est tout d'abord réfléchi par un premier réflecteur parabolique 3, qui le concentre en son foyer F, puis il continue son chemin à partir de ce foyer F pour illuminer un second réflecteur parabolique 4, opposé par le sommet F au réflecteur 3 et confocal à ce dernier, pour finalement rayonner selon le faisceau de rayons parallèles de largeur D.The beam of diameter "d" which is radiated by the active grating 1 is firstly reflected by a first parabolic reflector 3, which concentrates it in its focal point F, then it continues on its path from this focal point F to illuminate a second parabolic reflector 4, opposite by the apex F to the reflector 3 and confocal to the latter, to finally radiate according to the beam of parallel rays of width D.

A noter que dans une telle configuration, la source émettrice 1 est décalée par rapport au faisceau finalement rayonné de largeur D, et qu'il s'agit donc bien là d'une antenne dite "offset" en terme de métier.Note that in such a configuration, the emitting source 1 is offset with respect to the finally radiated beam of width D, and that it is therefore indeed an antenna called "offset" in term business.

Cette configuration de type "périscopique" à deux réflecteurs 3, 4 est utilisée pour réduire les dimensions de la source active 1, et est à priori plus avantageuse que la configuration simple consistant à avoir une source active de dimensions D égales à celles du faisceau qu'elle émet directement.This “periscope” type configuration with two reflectors 3, 4 is used to reduce the dimensions of the active source 1, and is a priori more advantageous than the simple configuration consisting in having an active source of dimensions D equal to those of the beam that 'it transmits directly.

En fait, il s'avère que les contraintes qui s'exercent sur les éléments de la source active 1 de petites dimensions sont différentes de celles qui s'exercent sur la source active équivalente de grandes dimensions qui rayonnerait directement le faisceau de largeur D. Il s'ensuit qu'en réalité, pour obtenir les mêmes performances, on se trouve contraint de réduire les dimensions des éléments de la source 1, et finalement d'augmenter le nombre des dispositifs de réglage, ou "contrôles", associés à cette source.In fact, it turns out that the stresses which are exerted on the elements of the active source 1 of small dimensions are different from those which are exerted on the equivalent active source of large dimensions which would directly radiate the beam of width D. It follows that in reality, to obtain the same performance, we are forced to reduce the dimensions of the elements of the source 1, and ultimately to increase the number of adjustment devices, or "controls", associated with this. source.

Finalement, le bilan économique et les caractéristiques d'encombrement d'une antenne classique selon Figure 1 montrent qu'une telle antenne ne procure, contrairement à ce que l'on pourrait penser à priori, pas d'avantage significatif par rapport à la toute simple antenne à réseau actif de rayonnement direct.Finally, the economic assessment and the congestion characteristics of a conventional antenna according to Figure 1 show that such an antenna does not, contrary to what one might think a priori, have any significant advantage compared to the whole simple antenna with active direct radiation array.

L'invention vise à remédier à cet inconvénient. Elle se rapporte à cet effet à une antenne active de type "offset" et à deux réflecteurs, cette antenne comportant, aux foyers de ces deux réflecteurs, une lentille radioélectrique dont une première face, dite "collecteur", reçoit et capte le faisceau concentré réfléchi, à partir de celui émis par la source active de cette antenne, par le premier réflecteur que rencontre le faisceau, ce collecteur étant placé au foyer de ce premier réflecteur, et dont la face opposée, dite "réseau primaire" réémet vers le second réflecteur l'énergie qui lui est transmise, par interconnexions, par ledit collecteur, ce réseau primaire étant placé au foyer de ce second réflecteur. Les sources du collecteur sont respectivement connectées, une à une et en respectant la même configuration géométrique, à celles du réseau primaire, mais lesdites sources du collecteur sont chacune de bien plus petites dimensions que celles des sources du réseau primaire qui leur sont associées. La connexion entre chaque "petite" source du collecteur et la "grande" source correspondante du réseau primaire comporte un dispositif de réglage fin de la phase. Ce dispositif de réglage de phase est échantillonné sur plusieurs portions distinctes de ladite source du réseau primaire, qui est donc en fait constituée d'un assemblage d'autant de sources élémentaires qu'il y a de portions.The invention aims to remedy this drawback. It relates for this purpose to an active antenna of the "offset" type and to two reflectors, this antenna comprising, at the focal points of these two reflectors, a radioelectric lens of which a first face, called "collector", receives and picks up the concentrated beam reflected, from that emitted by the active source of this antenna, by the first reflector that the beam meets, this collector being placed at the focus of this first reflector, and the opposite face of which, called "primary network" re-emits towards the second reflector the energy which is transmitted to it, by interconnections, by said collector, this primary network being placed at the focus of this second reflector. The sources of the collector are respectively connected, one by one and respecting the same geometrical configuration, to those of the primary network, but said sources of the collector are each of much smaller dimensions than those of the sources of the primary network which are associated with them. The connection between each "small" source of the collector and the corresponding "large" source of the primary network includes a device for fine adjustment of the phase. This phase adjustment device is sampled on several distinct portions of said source of the primary network, which therefore in fact consists of an assembly of as many elementary sources as there are portions.

De toute façon, l'invention sera bien comprise, et ses avantages et autres caractéristiques ressortiront, lors de la description suivante d'un exemple non limitatif de réalisation, en référence au dessin schématique annexé dans lequel :

  • . Figure 2 est un schéma très simplifié de cette antenne active offset à double-réflecteurs, ce schéma étant à comparer avec celui selon Figure 1, précédemment décrit, qui illustre l'art antérieur;
  • . Figures 3 et 4 sont respectivement des représentations de principe, destinées à faciliter la compréhension de l'invention, de la zone illuminée du collecteur et de la zone réémettrice correspondante sur le réseau primaire;
  • . Figure 5 est un schéma électrique de principe d'un mode possible de connexion, avec réglage de phase, entre une "petite" source du collecteur et la "grande" source correspondante du réseau primaire; et
  • . Figure 6 est une vue similaire à Figures 1 et 2, et montrant une variante de réalisation d'une antenne selon l'invention.
In any case, the invention will be well understood, and its advantages and other characteristics will emerge during the following description of a non-limiting example of embodiment, with reference to the appended schematic drawing in which:
  • . Figure 2 is a very simplified diagram of this active offset antenna with double reflectors, this diagram being compared with that according to Figure 1, previously described, which illustrates the prior art;
  • . Figures 3 and 4 are respectively representations of principle, intended to facilitate understanding of the invention, of the illuminated area of the collector and the corresponding re-emitting area on the primary network;
  • . Figure 5 is an electrical schematic diagram of a possible mode of connection, with phase adjustment, between a "small" source of the collector and the corresponding "large" source of the primary network; and
  • . Figure 6 is a view similar to Figures 1 and 2, and showing an alternative embodiment of an antenna according to the invention.

Sur la Figure 2, les éléments identiques à ceux de la Figure 1 sont désignés par de mêmes chiffres de référence pour faciliter la compréhension et éviter de les décrire à nouveau.In FIG. 2, the elements identical to those in FIG. 1 are designated by the same reference numbers to facilitate understanding and to avoid describing them again.

Cette antenne se distingue de celle selon Figure 1 par le fait qu'elle comporte, aux foyers F et F' des deux réflecteurs paraboliques 3 et 4, une lentille hyperfréquence 5 qui se compose de deux réseaux de sources interconnectés entre eux :

  • . Un premier réseau de sources 6, dit "collecteur", qui est placé au foyer F du réflecteur 3 et qui reçoit le faisceau réfléchi et concentré par ce réflecteur 3. Ce collecteur 6 est de relativement petites dimensions, et (voir Figure 3) est composé d'une mosaîque d'un nombre entier n de "petites" sources élémentaires 8, chacune de ces sources réceptrices 8 étant par exemple constituée par un petit cornet.
  • . Un second réseau de sources 7, dit "réseau primaire", qui est de bien plus grandes dimensions, en tous cas de dimensions plusieurs fois supérieures à celles du réseau 6, et qui est placé au foyer F' du second réflecteur 4. Ce réseau primaire 7 est placé sur une surface parallèle à celle du collecteur 6, et il est (voir Figure 4) composé d'une mosaïque, homothétique de celle du collecteur 6, d'un même nombre entier n de "grandes" sources unitaires 9, chacune de ces sources unitaires réémettrices étant elle-même composée d'une petite mosaïque d'un nombre entier p (égal à 4 sur le dessin) de petits cornets 10.
This antenna is distinguished from that according to FIG. 1 by the fact that it comprises, at the focal points F and F 'of the two parabolic reflectors 3 and 4, a microwave lens 5 which consists of two networks of sources interconnected with one another:
  • . A first network of sources 6, called "collector", which is placed at the focal point F of the reflector 3 and which receives the beam reflected and concentrated by this reflector 3. This collector 6 is relatively small, and (see Figure 3) is composed of a mosaic of an integer n of "small" elementary sources 8, each of these receiving sources 8 being for example constituted by a small horn.
  • . A second network of sources 7, called "primary network", which is of much larger dimensions, in any case of dimensions several times greater than those of the network 6, and which is placed at the focus F 'of the second reflector 4. This network primary 7 is placed on a surface parallel to that of the collector 6, and it is (see Figure 4) composed of a mosaic, homothetic of that of the collector 6, of the same integer n of "large" unit sources 9, each of these re-emitting unit sources being itself composed of a small mosaic of an integer p (equal to 4 in the drawing) of small cones 10.

Les "petites" sources réceptrices 8 du collecteur 6 se correspondent une à une, de manière géographiquement homothétique, avec les "grandes" sources réémettrices 9 du réseau primaire 7, c'est-à-dire que les répartitions respectives de ces sources 8 et 9 sont les mêmes sur chaque réseau 6 et 7. Une source 8 du collecteur est connectée à la source géographiquement correspondante 9 du réseau primaire par l'intermédiaire d'une connectique qui comprend un dispositif de réglage fin de phases, qui sera maintenant décrit en référence à la Figure 5.The "small" receiving sources 8 of the collector 6 correspond one by one, geographically homothetically, with the "large" re-emitting sources 9 of the primary network 7, that is to say that the respective distributions of these sources 8 and 9 are the same on each network 6 and 7. A source 8 of the collector is connected to the geographically corresponding source 9 of the primary network by means of a connector which includes a device for fine-tuning of phases, which will now be described in reference to Figure 5.

Sur cette Figure 5 la "grande" source unitaire 9 est supposée composée d'une mosaïque de quatre cornets 10A, 10B, 10C, et 10D. Bien entendu, cette mosaïque pourrait comprendre un autre nombre entier p de cornets : six, huit, ou même plus.In this Figure 5 the "large" unit source 9 is assumed to be composed of a mosaic of four horns 10A, 10B, 10C, and 10D. Of course, this mosaic could include another whole number p of cones: six, eight, or even more.

Le cornet récepteur 8 est connecté à un circuit diviseur par p (c'est-à-dire ici par quatre), référencé 11.The receiving horn 8 is connected to a divider circuit by p (that is to say here by four), referenced 11.

Les p (ici : quatre) sorties 12A à 12D de ce diviseur 11 sont reliées à la parcelle de source correspondante 10A à 10D par l'intermédiaire d'un déphaseur ajustable respectif 13A à 13D.The p (here: four) outputs 12A to 12D of this divider 11 are connected to the corresponding source plot 10A to 10D via a respective adjustable phase shifter 13A to 13D.

Grâce à ces déphaseurs 13A à 13D, on procède à un réglage fin de la phase du signal qui est réémis, par la "grande" source unitaire 9, en direction du second réflecteur 4.Thanks to these phase shifters 13A to 13D, a fine adjustment is made of the phase of the signal which is retransmitted, by the "large" unit source 9, in the direction of the second reflector 4.

En fait, le réseau primaire 7 est ici positionné dans le plan focal de foyer F' du réflecteur 4, tandis que le collecteur 6 est placé dans le plan focal de foyer F du réflecteur 3. Dans le cas de figure représenté, le collecteur 6 est assez proche du réseau primaire 7 et, en première approximation, les deux paraboloïdes 4 et 3 peuvent ici être pratiquement considérés comme confocaux.In fact, the primary network 7 is here positioned in the focal focal plane F 'of the reflector 4, while the collector 6 is placed in the focal focal plane F of the reflector 3. In the illustrated case, the collector 6 is fairly close to the primary network 7 and, as a first approximation, the two paraboloids 4 and 3 can here be practically considered confocal.

Une des originalités de l'invention consiste donc à utiliser des sources de diamètres différents pour le collecteur 6 et le réseau primaire 7. Les connexions source-à-source du collecteur et réseau primaire sont telles qu'en fait les sources du réseau primaire sont excitées avec des niveaux d'énergie respectivement sensiblement égaux aux niveaux reçus par les sources correspondantes du collecteur.One of the original features of the invention therefore consists in using sources of different diameters for the collector 6 and the primary network 7. The source-to-source connections of the collector and primary network are such that in fact the sources of the primary network are excited with energy levels respectively substantially equal to the levels received by the corresponding sources of the collector.

La loi d'illumination du second réflecteur 4 est l'image de la distribution captée par les sources du collecteur 6. La transformation entre la répartition d'énergie reçue par le collecteur et celle rayonnée par le réseau primaire est fonction des caractéristiques des sources 8 du collecteur et des sources 9 du réseau primaire, compte-tenu bien-entendu du réglage de phase finement introduit par les différents déphaseurs 13A, 13B, 13C, ...The law of illumination of the second reflector 4 is the image of the distribution captured by the sources of the collector 6. The transformation between the distribution of energy received by the collector and that radiated by the primary network is a function of the characteristics of the sources 8 of the collector and the sources 9 of the primary network, of course taking into account the phase adjustment finely introduced by the different phase shifters 13A, 13B, 13C, ...

Il convient bien de faire remarquer que les connexions selon Figure 5 se font de source à source, en respectant le rang qu'elles occupent dans chacun des réseaux 6 et 7.It should be noted that the connections according to Figure 5 are made from source to source, respecting the rank they occupy in each of the networks 6 and 7.

La figure 6 illustre un variante de l'antenne qui vient d'être décrite. Selon cette variante, le collecteur 6 et le réseau primaire 7 sont placés sur des surfaces qui ne sont plus du tout parallèles comme c'est en fait le cas pour l'antenne selon Figure 2. La lentille à n'est alors donc pas une lentille à faces parallèles.FIG. 6 illustrates a variant of the antenna which has just been described. According to this variant, the collector 6 and the primary network 7 are placed on surfaces which are no longer at all parallel as is in fact the case for the antenna according to FIG. 2. The lens at is therefore not a lens with parallel faces.

Cette configuration présente l'avantage de permettre de dissocier les contraintes radioélectriques de celles des implantations mécaniques des éléments constituant l'antenne.This configuration has the advantage of making it possible to dissociate the radioelectric constraints from those of the mechanical locations of the elements constituting the antenna.

Comme il va de soi, l'invention n'est pas limitée à l'exemple de réalisation qui vient d'être décrit. Bien qu'elle soit normalement prévue pour être appliquée à une antenne embarquée sur un satellite, son champ n'est pas aussi limité, et il pourrait tout aussi bien s'agir d'une antenne au sol.It goes without saying that the invention is not limited to the embodiment which has just been described. Although it is normally intended to be applied to an antenna on board a satellite, its field is not as limited, and it could just as easily be a ground antenna.

Claims (4)

  1. A two-reflector offset type active antenna (3, 4) characterized:
    in that it includes a radio lens (5) at the focuses (F, F') of the two reflectors (3, 4), the lens having a "collector" first face (6) that receives and picks up a concentrated and reflected beam derived from the beam emitted by the active source (1) of the antenna towards the first reflector (3) that encounters said beam, the collector (6) being placed at the focus (F) of the first reflector (3), and a "primary array" opposite face (7) which re-emits, towards the second reflector (4), the energy transmitted to the primary array second face from the collector first face by means of interconnections (12, 13), said primary array (7) being placed at the focus (F') of said second reflector (4);
    in that the sources (8) of the collector (6) are respectively connected in a one-to-one geometrical configuration preserving relationship to respective ones of the sources (9) of the primary array (7); and
    in that the connection between each source (8) of the collector and the corresponding source (9) of the primary array includes a device (13A to 13D) for providing fine phase adjustment.
  2. An antenna according to claim 1, characterized in that the sources (8) of the collector are considerably smaller in size than the sources (9) of the primary array, said collector (6) being considerably smaller than said primary array (7).
  3. An antenna according to claim 1 or 2, characterized in that each source (9) of the primary array is in fact built up from an integer number of juxtaposed smaller sources (10A, 10B, 10C, 10D) each of which is connected to the source (8) in the collector having the geographical position that corresponds to the position of said source (9) in the primary array by means of its own phase adjustment circuit (13A, 13B, 13C, 13D).
  4. An antenna according to any one of claims 1 to 3, characterized in that the collector (6) and the primary array (7) are carried by surfaces that are not parallel.
EP92121692A 1991-12-23 1992-12-21 An active offset antenna having two reflectors Expired - Lifetime EP0548876B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9116028A FR2685551B1 (en) 1991-12-23 1991-12-23 ACTIVE OFFSET ANTENNA WITH DOUBLE REFLECTORS.
FR9116028 1991-12-23

Publications (2)

Publication Number Publication Date
EP0548876A1 EP0548876A1 (en) 1993-06-30
EP0548876B1 true EP0548876B1 (en) 1996-10-09

Family

ID=9420400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92121692A Expired - Lifetime EP0548876B1 (en) 1991-12-23 1992-12-21 An active offset antenna having two reflectors

Country Status (5)

Country Link
US (1) US5321413A (en)
EP (1) EP0548876B1 (en)
AU (1) AU663137B2 (en)
DE (1) DE69214412T2 (en)
FR (1) FR2685551B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427420B (en) * 2006-05-23 2013-05-01 英特尔公司 Millimeter-wave chip-lens array antenna systems for wireless networks

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709836B1 (en) * 1993-08-04 1995-10-20 Alcatel Espace Dual coverage area microwave radar imaging system for use on satellite.
FR2709877B1 (en) * 1993-08-04 1995-10-13 Alcatel Espace Active antenna with electronic scanning in azimuth and elevation, in particular for microwave microwave imagery.
US5485168A (en) * 1994-12-21 1996-01-16 Electrospace Systems, Inc. Multiband satellite communication antenna system with retractable subreflector
FR2759204B1 (en) * 1997-02-03 1999-02-26 Alsthom Cge Alcatel MULTIPLEX CHANNEL BEAM TRAINING UNIT
US5936588A (en) * 1998-06-05 1999-08-10 Rao; Sudhakar K. Reconfigurable multiple beam satellite phased array antenna
US6236375B1 (en) * 1999-01-15 2001-05-22 Trw Inc. Compact offset gregorian antenna system for providing adjacent, high gain, antenna beams
US6320553B1 (en) * 1999-12-14 2001-11-20 Harris Corporation Multiple frequency reflector antenna with multiple feeds
JP2003332838A (en) * 2002-05-17 2003-11-21 Mitsubishi Electric Corp Multi-beam antenna device
WO2007136290A1 (en) 2006-05-23 2007-11-29 Intel Corporation Millimeter-wave communication system with directional antenna and one or more millimeter-wave reflectors
US8320942B2 (en) 2006-06-13 2012-11-27 Intel Corporation Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering
DE102008011350A1 (en) * 2008-02-27 2009-09-03 Loeffler Technology Gmbh Apparatus and method for real-time detection of electromagnetic THz radiation
GB2546309B (en) * 2016-01-15 2020-03-18 Cambridge Broadband Networks Ltd An Antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975419A (en) * 1959-10-13 1961-03-14 Newell H Brown Microwave antenna reflector system for scanning by displacement of focal image
US4246585A (en) * 1979-09-07 1981-01-20 The United States Of America As Represented By The Secretary Of The Air Force Subarray pattern control and null steering for subarray antenna systems
US4259674A (en) * 1979-10-24 1981-03-31 Bell Laboratories Phased array antenna arrangement with filtering to reduce grating lobes
US4435714A (en) * 1980-12-29 1984-03-06 Ford Aerospace & Communications Corp. Grating lobe eliminator
US4755826A (en) * 1983-01-10 1988-07-05 The United States Of America As Represented By The Secretary Of The Navy Bicollimated offset Gregorian dual reflector antenna system
US4595926A (en) * 1983-12-01 1986-06-17 The United States Of America As Represented By The Secretary Of The Army Dual space fed parallel plate lens antenna beamforming system
US4743914A (en) * 1986-04-14 1988-05-10 Raytheon Company Space fed antenna system with squint error correction
US4975712A (en) * 1989-01-23 1990-12-04 Trw Inc. Two-dimensional scanning antenna
EP0446610A1 (en) * 1990-03-07 1991-09-18 Hughes Aircraft Company Magnified phased array with a digital beamforming network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427420B (en) * 2006-05-23 2013-05-01 英特尔公司 Millimeter-wave chip-lens array antenna systems for wireless networks

Also Published As

Publication number Publication date
FR2685551A1 (en) 1993-06-25
AU663137B2 (en) 1995-09-28
AU3010692A (en) 1993-06-24
US5321413A (en) 1994-06-14
DE69214412T2 (en) 1997-02-13
FR2685551B1 (en) 1994-01-28
DE69214412D1 (en) 1996-11-14
EP0548876A1 (en) 1993-06-30

Similar Documents

Publication Publication Date Title
EP2415120B1 (en) Multilayer pillbox antenna having parallel planes, and corresponding antenna system
EP0548876B1 (en) An active offset antenna having two reflectors
EP0415818B1 (en) Control of beam direction for antenna system with electronic scanning and beamforming by computation
EP0012055B1 (en) Microstrip monopulse primary feed and antenna using same
WO2011095384A1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
FR2640431A1 (en) RADIANT MULTI-FREQUENCY DEVICE
CA2074657C (en) Microwave antenna array
EP0640844A1 (en) Electronically scanning dual beam antenna
EP0546913A1 (en) Antenna with fixed reflector for plural beams of communication systems
FR2993716A1 (en) MULTIFUNCTIONAL MULTI-SOURCE SENDING AND RECEIVING ANTENNA BY BEAM, ANTENNA SYSTEM AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH ANTENNA
FR2806214A1 (en) REFLECTOR ANTENNA COMPRISING A PLURALITY OF PANELS
EP0512487B1 (en) Antenna with shaped lobe and high gain
EP0072316B1 (en) Electronic scanning antenna with multiple ports and radar using such antenna
EP0131512A1 (en) Dual reflector antenna with quasitoroidal coverage
FR2814614A1 (en) DIVERGENT DOME LENS FOR MICROWAVE WAVES AND ANTENNA COMPRISING SUCH A LENS
EP0032081B1 (en) Directable-beam antenna for communication satellite
FR2775146A1 (en) Satellite high frequency radiometer system
EP0638956A1 (en) Active antenna with electronic scanning in azimuth and elevation, particularly for microwave imaging by satellite
FR2835356A1 (en) RECEIVING ANTENNA FOR MULTI-BEAM COVERING
EP0762534A1 (en) Method for enlarging the radiation diagram of an antenna array with elements distributed in a volume
EP3220181A1 (en) Hybrid optical system with reduced size for imaging array antenna
FR2767226A1 (en) CYLINDRICAL ANTENNA WITH SLIDING RADIANT ELEMENTS
EP3155689A1 (en) Flat antenna for satellite communication
FR2596208A1 (en) Two-frequency antenna with independent steerable beams
FR3141002A1 (en) Quasi-optical beamformer including two reflectors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19931215

17Q First examination report despatched

Effective date: 19951016

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961010

REF Corresponds to:

Ref document number: 69214412

Country of ref document: DE

Date of ref document: 19961114

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001115

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001204

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001213

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011221

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051221