EP0518813A1 - Anlage zum Kühlen von heissem, staubbeladenem Gas und Verfahren zum Betrieb der Anlage - Google Patents

Anlage zum Kühlen von heissem, staubbeladenem Gas und Verfahren zum Betrieb der Anlage Download PDF

Info

Publication number
EP0518813A1
EP0518813A1 EP92810373A EP92810373A EP0518813A1 EP 0518813 A1 EP0518813 A1 EP 0518813A1 EP 92810373 A EP92810373 A EP 92810373A EP 92810373 A EP92810373 A EP 92810373A EP 0518813 A1 EP0518813 A1 EP 0518813A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
gas
reactor
heat
convection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92810373A
Other languages
English (en)
French (fr)
Other versions
EP0518813B1 (de
Inventor
Roland Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
ABB Management AG
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG, Sulzer AG, Gebrueder Sulzer AG filed Critical ABB Management AG
Publication of EP0518813A1 publication Critical patent/EP0518813A1/de
Application granted granted Critical
Publication of EP0518813B1 publication Critical patent/EP0518813B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1687Integration of gasification processes with another plant or parts within the plant with steam generation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam

Definitions

  • the invention relates to a system for cooling hot, dust-laden gas in a steam generator, which consists of a first radiant heat exchanger and a second convection heat exchanger.
  • a steam generator which consists of a first radiant heat exchanger and a second convection heat exchanger.
  • the gas coming from the reactor is usually cooled in the radiant heat exchanger to a temperature which is below the softening point of the dust.
  • the dust particles are no longer sticky and can no longer stick to the heating surfaces of this heat exchanger.
  • the dust particles can deposit and form blockages, so that the heat transfer from the gas to the heating surfaces is impaired.
  • the invention has for its object to improve a system of the type mentioned in such a way that it is possible to remove the dust particles deposited in the convection cooler in a simple manner, both structurally and operationally.
  • This object is achieved in that at least two second heat exchangers Radiant heat exchangers are connected downstream in the gas stream and are connected in parallel with one another and that a shut-off element is arranged in the gas stream behind every second heat exchanger.
  • the new system is particularly economical if more than two convection heat exchangers are connected to the radiant heat exchanger. This results in various circuits on the working medium side for the convection heat exchangers, for example by switching some of the convection heat exchangers as economizers or as economizers and evaporators and the remaining convection heat exchangers as superheaters. In such a case, the operation of the system can also be continued if, for example, a superheater and / or an economizer fails due to a fault. In such a case, the shut-off device is then closed behind the convection heat exchanger in question, so that gas no longer flows through this heat exchanger.
  • Another advantage of the system according to the invention is that revisions are possible on individual convection heat exchangers while the rest of the system is still in operation.
  • the shut-off device located behind the convection heat exchanger to be revised is then closed, see above that the inspection work can be carried out after the heat exchanger has cooled down.
  • radiant heat exchanger should also be understood to mean those heat exchangers in which a so-called quenching takes place, i.e. that already cooled gas is returned to the first heat exchanger, which is a known measure.
  • the system has a first heat exchanger 50, which at its upper end in FIG. 1 is connected via a line 51 to a reactor 52, in which hot, dust-laden gas is generated in a known manner, for example by gasifying Coal.
  • a reactor 52 in which hot, dust-laden gas is generated in a known manner, for example by gasifying Coal.
  • second heat exchangers 53 and 54 are connected, each via a line 55 and 56, respectively
  • Shut-off device 58 solids separated in the heat exchanger 50, such as dust, Ash and slag can be drained off together with water.
  • a line 59 or 60 each with a shut-off element 61 or 62, is connected.
  • hot gas generated in the reactor 52 is supplied to the first heat exchanger 50 at a temperature of 1400 to 1600 ° C. and at a pressure of about 40 bar, in which it is essentially transferred to the working medium of a steam generator by radiant heat transfer is cooled down so far that its temperature is below the softening point of the dust which it also transports.
  • the solidified dust mainly collects in the lower part of the heat exchanger 50, while the gas reaches the second heat exchangers 53 and 54 via lines 55 and 56 for further cooling.
  • the heat is transferred by convection to the working medium of the steam generator, after which the cooled gas leaves the system via lines 59 and 60, since the shut-off devices 61 and 62 are fully open.
  • the first heat exchanger 50 has a cylindrical pressure vessel 3 with a vertical axis, which is penetrated at its upper end by a gas supply channel 4, which is connected to the coal gasification reactor 52 in FIG. 1 via the line 51, not shown here .
  • a gas supply channel 4 which is connected to the coal gasification reactor 52 in FIG. 1 via the line 51, not shown here .
  • an insert 5 is provided in the latter, which is formed from vertical tubes 6 that are welded tightly next to one another and gas-tight and that surrounds a first gas duct 7 through which the hot gas flows from top to bottom.
  • the insert 5 is surrounded by a shirt 8, which is also formed from vertical tubes 10 which are welded together in the manner of a membrane wall.
  • the shirt 8 surrounds the insert 5 at a distance, so that an annular space 9 remains between them, through which the gas flows from bottom to top and forms a second throttle cable.
  • the flow cross section in the second throttle cable 9 is selected in comparison to that of the first throttle cable 7 such that the flow speed in the second gas cable 9 slows down.
  • the tubes 6 of the insert 5 and the tubes 10 of the shirt 8 are connected at their lower and upper ends to ring collectors 13 and 15, respectively. Feed water is fed to the roller 13 via a line 16, which evaporates as it flows through the pipes and is discharged from the upper collector 15 via a line 14.
  • the tubes 6 and 10 of the insert 5 and the shirt 8 are suspended near their upper end on a support system consisting of profile beams 11, so that they can freely expand downwards.
  • a funnel 12 which tapers downwards and penetrates the bottom of the pressure vessel 3 and is partly filled with water and forms a water bath 1.
  • the water bath serves to collect ash and slag particles which are carried along by the hot gas stream and which are deflected from the first gas train 7 into the second gas train 2 when it is deflected.
  • this has three connecting pieces 27 (FIG. 3), to which the lines 55, 56 leading to the second heat exchangers 53 and 54 are connected.
  • the entire system therefore contains three convection heat exchangers.
  • the heat exchangers 53, 54 also each have a pressure vessel 17 with a vertical axis, which is provided with cooling tube bundles 18 in its interior.
  • the tube bundle 18 are at the lower and upper End connected to a line 22 or 23, via which feed water is supplied or preheated or evaporated working fluid is discharged.
  • shut-off devices 61 and 62 After the gas has been cooled further while flowing through the tube bundle 18, it leaves the system via lines 59 and 60 when the shut-off devices 61 and 62 are open.
  • the shut-off devices 61 and 62 By adjusting the shut-off devices 61 and 62 in such a way that their flow cross-section is substantially reduced or becomes zero the gas flow in the two upstream second heat exchangers 53 and 54 throttle or block and at the same time increase the flow rate in the third convection heat exchanger, not shown.
  • the third unthrottled heat exchanger can then be cleaned by this increased flow velocity of the gas, in that dust particles deposited between the tubes of the tube bundle 18 are entrained by the gas.
  • throttling and accumulation of the third convection heat exchanger and, for example, the convection heat exchanger 54 can produce an increased gas flow rate in the convection heat exchanger 53, so that the latter is then cleaned.
  • the arrangement of the reactor and the first heat exchanger is interchanged in that the gasification reactor 72 is arranged below the first heat exchanger 70. Since there is no deflection of the flow of the hot gas in this heat exchanger, its overall length is correspondingly greater, so that the hot gas is cooled to a temperature below the softening point before it is sent to the convection coolers 73 and 74.
  • the arrangement of the shut-off elements 75 and 76 behind the convection coolers 73 and 74 corresponds to that of the shut-off elements 61 and 62 and likewise the actuation of the shut-off elements 75, 76 for cleaning the coolers 73, 74 corresponds to the described actuation of the shut-off elements 61 and 62.
  • the number of convection coolers per system is at least two, but can also exceed three.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chimneys And Flues (AREA)

Abstract

Die Anlage weist einen Dampferzeuger auf, der aus einem ersten Wärmeübertrager (50) und zwei zweiten Wärmeübertragern (53, 54) besteht. Der erste Wärmeübertrager (50) ist ein Strahlungswärmeübertrager, in dem das aus einem Reaktor (52) kommende heisse Gas seine Wärme bis zu einer Temperatur unterhalb des Erweichungspunktes des Staubes abgibt. Die zweiten Wärmeübertrager (53, 54) sind Konvektionswärmeübertrager, die den ersten Wärmeübertrager (50) im Gasstrom nachgeschaltet und unter sich parallelgeschaltet sind. Im Gasstrom hinter jedem zweiten Wärmeübertrager (53, 54) ist ein Absperrorgan (61 bzw. 62) angeordnet. <IMAGE>

Description

  • Die Erfindung bezieht sich auf eine Anlage zum Kühlen von heissem, staubbeladenem Gas in einem Dampferzeuger, der aus einem ersten Strahlungswärmeübertrager und einem zweiten Konvektionswärmeübertrager besteht. In solchen Anlagen wird üblicherweise das vom Reaktor kommende Gas im Strahlungswärmeübertrager auf eine Temperatur abgekühlt, die unterhalb des Erweichungspunktes des Staubes liegt. Beim Eintreten des Gases in den Konvektionswärmeübertrager sind die Staubpartikel dann nicht mehr klebrig und können an den Heizflächen dieses Wärmeübertragers nicht mehr festbacken. In den eng angeordneten Heizflächen des Konvektionswärmeübertragers können sich die Staubpartikel aber ablagern und Verstopfungen bilden, so dass die Wärmeübertragung vom Gas an die Heizflächen beeinträchtigt wird.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Anlage der eingangs genannten Art so zu verbessern, dass sowohl konstruktiv wie auch betriebsmässig auf einfache Weise ein Entfernen der im Konvektionskühler abgelagerten Staubpartikel möglich ist.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass mindestens zwei zweite Wärmeübertrager dem Strahlungswärmeübertrager im Gasstrom nachgeschaltet und unter sich parallelgeschaltet sind und dass im Gasstrom hinter jedem zweiten Wärmeübertrager ein Absperrorgan angeordnet ist.
  • Hierdurch wird es möglich, das eine Absperrorgan zu drosseln oder zu schliessen, so dass die Strömungsgeschwindigkeit des Gases im anderen Konvektionswärmeübertrager sich erhöht, wodurch die Staubablagerungen in diesem Wärmeübertrager ausgetragen werden. Trotz dieser erhöhten Strömungsgeschwindigkeit wird die zulässige Wärmestromdichte in diesem Wärmeübertrager nicht überschritten. Durch zyklisches Drosseln oder Schliessen der Absperrorgane können also die Konvektionswärmeübertrager der Reihe nach gereinigt werden.
  • Die neue Anlage ist besonders dann günstig, wenn an den Strahlungswärmeübertrager mehr als zwei Konvektionswärmeübertrager angeschlossen werden. Dabei ergeben sich verschiedene arbeitsmittelseitige Schaltungen für die Konvektionswärmeübertrager, indem z.B. ein Teil der Konvektionswärmeübertrager als Economiser oder als Economiser und Verdampfer und die restlichen Konvektionswärmeübertrager als Ueberhitzer geschaltet werden. In einem solchen Falle lässt sich auch der Betrieb der Anlage weiterführen, wenn z.B. ein Ueberhitzer und/oder ein Economiser störungshalber ausfällt. In einem solchen Fall wird dann das Absperrorgan hinter dem betreffenden Konvektionswärmeübertrager geschlossen, so dass dieser Wärmeübertrager nicht mehr von Gas durchströmt wird. Ein weiterer Vorteil der erfindungsgemässen Anlage besteht darin, dass an einzelnen Konvektionswärmeübertragern Revisionen möglich sind,während die übrige Anlage weiter in Betrieb steht. Das hinter dem zu revidierenden Konvektionswärmeübertrager befindliche Absperrorgan wir dann also geschlossen, so dass nach dem Abkühlen des Wärmeübertragers die Revisionsarbeiten durchgeführt werden können.
  • Unter dem Begriff "Strahlungswärmeübertrager" sollen auch solche Wärmeübertrager verstanden werden, in denen ein sogenanntes Quenching stattfindet, d.h. dass in den ersten Wärmeübertrager bereits abgekühltes Gas zurückgeführt wird, was eine an sich bekannte Massnahme ist.
  • Ausführungsbeispiele der Erfindung sind in der folgenden Beschreibung anhand der Zeichnung näher erläutert. Es zeigen:
    • Fig.1 ein Schema einer Anlage zum Kühlen von heissem, staubbeladenem Gas,
    • Fig.2 schematisch vereinfacht einen Vertikalschnitt durch einen Strahlungs- und einen Konvektionswärmeübertrager,
    • Fig.3 einen Querschnitt durch das Druckgefäss des Strahlungswärmeübertragers und
    • Fig.4 ein Schema einer gegenüber Fig.1 abgewandelten Anlage.
  • Gemäss Fig.1 weist die Anlage einen ersten Wärmeübertrager 50 auf, der an seinem in Fig.1 oberen Ende über eine Leitung 51 mit einem Reaktor 52 in Verbindung steht, in dem in bekannter Weise heisses, staubbeladenes Gas erzeugt wird, z.B. durch Vergasen von Kohle.Im oberen Bereich des ersten Wärmeübertragers 50 sind zweite Wärmeübertrager 53 und 54 angeschlossen, und zwar über je eine Leitung 55 bzw. 56. Am unteren Ende des ersten Wärmeübertragers 50 ist eine ein Absperrorgan 58 aufweisende Leitung 57 angeschlossen, über die bei Oeffnen des Absperrorgans 58 im Wärmeübertrager 50 abgeschiedene Feststoffe, wie Staub, Asche und Schlacke zusammen mit Wasser abgelassen werden können. Am in Fig.1 unteren Ende der zweiten Wärmeübertrager 53 und 54 ist je eine Leitung 59 bzw. 60 mit je einem Absperrorgan 61 bzw. 62 angeschlossen.
  • Im Normalbetrieb der Anlage wird im Reaktor 52 erzeugtes heisses Gas mit einer Temperatur von 1400 bis 1600°C und mit einem Druck von etwa 40 bar über die Leitung 51 dem ersten Wärmeübertrager 50 zugeführt, in dem es im wesentlichen durch Strahlungswärmeübertragung an das Arbeitsmittel eines Dampferzeugers so weit abgekühlt wird, dass seine Temperatur unterhalb des Erweichungspunktes des von ihm mittransportierten Staubes liegt. Der verfestigte Staub sammelt sich zur Hauptsache im unteren Teil des Wärmeübertragers 50, während das Gas zur weiteren Abkühlung über die Leitungen 55 und 56 zu den zweiten Wärmeübertragern 53 und 54 gelangt. Hier erfolgt die Wärmeübertragung durch Konvektion ebenfalls an das Arbeitsmittel des Dampferzeugers, wonach das abgekühlte Gas die Anlage über die Leitungen 59 und 60 verlässt, da die Absperrorgane 61 und 62 voll geöffnet sind.
  • Der allgemeine Aufbau der in den Wärmeübertragern 50, 53 und 54 enthaltenen Heizflächen des Dampferzeugers ergibt sich aus Fig.2.
  • Gemäss Fig.2 weist der erste Wärmeübertrager 50 ein zylindrisches Druckgefäss 3 mit vertikaler Achse auf, das an seinem oberen Ende von einem Gaszufuhrkanal 4 durchdrungen wird, der über die hier nicht näher gezeichnete Leitung 51 mit dem Kohlevergasungsreaktor 52 in Fig.1 in Verbindung steht. Koaxial zum Druckgefäss 3 ist in diesem ein Einsatz 5 vorgesehen, der aus vertikalen, eng nebeneinanderliegenden und gasdicht verschweissten Rohren 6 gebildet ist und der einen vom Heissgas vom oben nach unten durchströmten ersten Gaszug 7 umschliesst. Der Einsatz 5 ist von einem Hemd 8 umgeben, das ebenfalls aus vertikalen Rohren 10 gebildet ist, die nach Art einer Membranwand dicht zusammengeschweisst sind. Das Hemd 8 umgibt den Einsatz 5 mit Abstand, so dass dazwischen ein Ringraum 9 freibleibt, der vom Gas von unten nach oben durchströmt wird und einen zweiten Gaszug bildet. Der Strömungsquerschnitt im zweiten Gaszug 9 ist im Vergleich zu dem des ersten Gaszuges 7 so gewählt, dass eine Verlangsamung der Strömungsgeschwindigkeit im zweiten Gaszug 9 eintritt.
  • Die Rohre 6 des Einsatzes 5 und die Rohre 10 des Hemdes 8 sind an ihren unteren und oberen Enden mit Ringkollektoren 13 bzw. 15 verbunden. Dem Rollektor 13 wird über eine Leitung 16 Speisewasser zugeführt, das beim Durchströmen der Rohre verdampft und aus dem oberen Kollektor 15 über eine Leitung 14 abgeleitet wird.
  • Die Rohre 6 und 10 des Einsatzes 5 bzw. des Hemdes 8 sind nahe ihrem oberen Ende an einem aus Profilträgern 11 bestehenden Tragsystem aufgehängt, so dass sie sich nach unten frei dehnen können. Unterhalb des unteren Kollektors 13 ist ein sich nach unten verjüngender, den Boden des Druckgefässes 3 durchdringender Trichter 12 vorgesehen, der teilweise mit Wasser gefüllt ist und ein Wasserbad 1 bildet. Das Wasserbad dient zum Auffangen von Asche und Schlacketeilchen, die vom Heissgasstrom mitgeführt werden und bei dessen Umlenkung vom ersten Gaszug 7 in den zweiten Gaszug 2 ausgeschleudert werden.
  • Im oberen Bereich des Druckgefässes 3 weist dieses drei Anschlussstutzen 27 auf (Fig.3), an denen die zu den zweiten Wärmeübertragern 53 und 54 führenden Leitungen 55, 56 angeschlossen sind. Die gesamte Anlage enthält also drei Konvektionswärmeübertrager. Die Wärmeübertrager 53, 54 weisen ebenfalls je ein Druckgefäss 17 mit vertikaler Achse auf, das in seinem Inneren mit Kühlrohrbündeln 18 versehen ist. Die Rohrbündel 18 sind am unteren und oberen Ende mit einer Leitung 22 bzw. 23 verbunden, über die Speisewasser zugeführt bzw. vorgewärmtes oder verdampftes Arbeitsmittel abgeleitet wird.
  • Nachdem das Gas beim Durchströmen der Rohrbündel 18 weiter abgekühlt worden ist, verlässt es bei offenen Absperrorganen 61 und 62 die Anlage über die Leitungen 59 und 60. Durch Verstellen der Absperrorgane 61 und 62 so, dass deren Durchflussquerschnitt wesentlich verringert oder Null wird, lässt sich der Gasstrom in den beiden vorgeschalteten zweiten Wärmeübertragern 53 und 54 drosseln oder stauen und gleichzeitig die Strömungsgeschwindigkeit im dritten, nicht näher dargestellten Konvektionswärmeübertrager erhöhen. Durch diese erhöhte Strömungsgeschwindigkeit des Gases lässt sich dann der dritte ungedrosselte Wärmeübertrager reinigen, indem zwischen den Rohren der Rohrbündel 18 abgelagerte Staubteilchen vom Gas mitgerissen werden. In analoger Weise lässt sich durch Drosseln und Stauen des dritten Konvektionswärmeübertragers und beispielsweise des Konvektionswärmeübertragers 54 eine erhöhte Gasströmungsgeschwindigkeit im Konvektionswärmeübertrager 53 erzeugen, so dass dann dieser gereinigt wird. Sinngemäss das Gleiche gilt für den Konvektionswärmeübertrager 54 beim Drosseln des Konvektionswärmeübertragers 53 und des dritten Konvektionswärmeübertragers. Nach Abschluss der jeweiligen Reinigungsphase werden die Absperrorgane der beiden andern Konvektionswärmeübertrager wieder in die normale Oeffnungsstellung zurückgeführt.
  • Beim Ausführungsbeispiel nach Fig.4 ist die Anordnung von Reaktor und erstem Wärmeübertrager vertauscht, indem der Vergasungsreaktor 72 unterhalb des ersten Wärmeübertragers 70 angeordnet ist. Da bei diesem Wärmeübertrager keine Umlenkung der Strömung des heissen Gases stattfindet, ist seine Baulänge entsprechend grösser, damit das heisse Gas bis auf eine Temperatur unterhalb des Erweichungspunktes abgekühlt wird, bevor es zu den Konvektionskühlern 73 und 74 geleitet wird. Die Anordnung der Absperrorgane 75 und 76 hinter den Konvektionskühlern 73 und 74 entspricht der der Absperrorgane 61 und 62 und ebenso entspricht die Betätigung der Absperrorgane 75, 76 zwecks Reinigens der Kühler 73, 74 der beschriebenen Betätigung der Absperrorgane 61 und 62.
  • Die Zahl der Konvektionskühler pro Anlage ist mindestens zwei, kann aber auch die Zahl drei übersteigen.

Claims (6)

  1. Anlage zum Kühlen von heissem, staubbeladenem Gas, das unter einem Druck von mehr als 1 bar steht, in einem Dampferzeuger, der aus einem ersten Wärmeübertrager, in dem das aus einem Reaktor kommende heisse Gas seine Wärme im wesentlichen durch Strahlung bis zu einer Temperatur unterhalb des Erweichungspunktes des Staubes abgibt, und mindestens zwei zweiten Wärmeübertragern besteht, die dem ersten Wärmeübertrager im Gasstrom nachgeschaltet und unter sich parallelgeschaltet sind und in denen das Gas seine Wärme durch Konvektion abgibt, sowie mit einem im Gasstrom hinter jedem zweiten Wärmeübertrager angeordneten Absperrorgan.
  2. Anlage nach Anspruch 1, dadurch gekennzeichnet, dass der Reaktor oberhalb des ersten Wärmeübertragers angeordnet ist.
  3. Anlage nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der erste Wärmeübertrager ein Druckgefäss aufweist, in dem als Dampferzeugerheizflächen ein zylindrischer Einsatz aus nebeneinanderliegenden, gasdicht verschweissten Rohren und ein den Einsatz umgebendes Hemd aus nebeneinanderliegenden Rohren angeordnet sind, wobei das vom Reaktor kommende Gas den Einsatz von oben nach unten und anschliessend den Zwischenraum zwischen dem Einsatz und dem Hemd von unten nach oben durchströmt.
  4. Anlage nach Anspruch 1, dadurch gekennzeichnet, dass der Reaktor unterhalb des ersten Wärmeübertragers angeordnet ist und das vom Reaktor kommende Gas den ersten Wärmeübertrager von unten nach oben durchströmt.
  5. Anlage nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die zweiten Wärmeübertrager ebenfalls je ein Druckgefäss aufweisen, in denen als Heizflächen des Dampferzeugers je mindestens ein Rohrbündel angeordnet ist, wobei das vom ersten Wärmeübertrager kommende Gas die Rohrbündel von oben nach unten durchströmt.
  6. Verfahren zum Betrieb einer Anlage nach Anspruch 1, dadurch gekennzeichnet, dass jeweils ein Absperrorgan in offene Stellung gebracht wird, während die übrigen Asperrorgane in Schliessstellung gebracht werden, so dass sich im Konvektionswärmeübertrager vor dem in offener Stellung befindlichen Asperrorgan eine erhöhte Strömungsgeschwindigkeit des Gases einstellt.
EP92810373A 1991-06-12 1992-05-19 Anlage zum Kühlen von heissem, staubbeladenem Gas und Verfahren zum Betrieb der Anlage Revoked EP0518813B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1753/91 1991-06-12
CH175391 1991-06-12

Publications (2)

Publication Number Publication Date
EP0518813A1 true EP0518813A1 (de) 1992-12-16
EP0518813B1 EP0518813B1 (de) 1994-12-28

Family

ID=4217761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810373A Revoked EP0518813B1 (de) 1991-06-12 1992-05-19 Anlage zum Kühlen von heissem, staubbeladenem Gas und Verfahren zum Betrieb der Anlage

Country Status (6)

Country Link
US (1) US5251575A (de)
EP (1) EP0518813B1 (de)
JP (1) JPH05209176A (de)
CN (1) CN1067725A (de)
DE (1) DE59201064D1 (de)
ZA (1) ZA923387B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845522A2 (de) * 1996-11-29 1998-06-03 MAN Gutehoffnungshütte Aktiengesellschaft Synthesegas-Wärmetauscher-Anlage

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8684070B2 (en) * 2006-08-15 2014-04-01 Babcock & Wilcox Power Generation Group, Inc. Compact radial platen arrangement for radiant syngas cooler
JP2008056808A (ja) * 2006-08-31 2008-03-13 Babcock & Wilcox Co:The 合成ガスを収容及び冷却するための蒸気発生装置
US8951313B2 (en) * 2012-03-28 2015-02-10 General Electric Company Gasifier cooling system with convective syngas cooler and quench chamber
CN102977925B (zh) * 2012-12-11 2014-08-27 中国东方电气集团有限公司 一体化回转状辐射锅炉预热锅炉混合式能源利用装置
CN103013581B (zh) * 2012-12-11 2014-08-27 中国东方电气集团有限公司 一体化回转状辐射锅炉预热锅炉混合式热回收装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2948201A1 (de) * 1979-11-30 1981-06-11 Degussa Ag, 6000 Frankfurt Vorrichtung und verfahren zum periodischen abreinigen von waermeaustauscherrohren von feststoffablagerungen
DE3618268A1 (de) * 1986-05-30 1987-12-03 Didier Werke Ag Reinigungseinrichtung an einem reaktor
EP0366606A1 (de) * 1988-10-26 1990-05-02 GebràœDer Sulzer Aktiengesellschaft Heissgaskühlanlage zu einer Kohlevergasungsanlage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270493A (en) * 1979-01-08 1981-06-02 Combustion Engineering, Inc. Steam generating heat exchanger
US4377132A (en) * 1981-02-12 1983-03-22 Texaco Development Corp. Synthesis gas cooler and waste heat boiler
CH656637A5 (de) * 1981-10-26 1986-07-15 Sulzer Ag Gaskuehler-anordnung zu kohlevergasungsanlage.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2948201A1 (de) * 1979-11-30 1981-06-11 Degussa Ag, 6000 Frankfurt Vorrichtung und verfahren zum periodischen abreinigen von waermeaustauscherrohren von feststoffablagerungen
DE3618268A1 (de) * 1986-05-30 1987-12-03 Didier Werke Ag Reinigungseinrichtung an einem reaktor
EP0366606A1 (de) * 1988-10-26 1990-05-02 GebràœDer Sulzer Aktiengesellschaft Heissgaskühlanlage zu einer Kohlevergasungsanlage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845522A2 (de) * 1996-11-29 1998-06-03 MAN Gutehoffnungshütte Aktiengesellschaft Synthesegas-Wärmetauscher-Anlage
EP0845522A3 (de) * 1996-11-29 1999-01-27 MAN Gutehoffnungshütte Aktiengesellschaft Synthesegas-Wärmetauscher-Anlage
US6051195A (en) * 1996-11-29 2000-04-18 Man Gutehoffnungshutte Aktiengesellschaft Synthesis gas heat exchanger unit

Also Published As

Publication number Publication date
ZA923387B (en) 1993-01-27
JPH05209176A (ja) 1993-08-20
EP0518813B1 (de) 1994-12-28
DE59201064D1 (de) 1995-02-09
US5251575A (en) 1993-10-12
CN1067725A (zh) 1993-01-06

Similar Documents

Publication Publication Date Title
EP0077851B1 (de) Gaskühler-Anordnung zu Kohlevergasungsanlage
DE60213866T2 (de) Dampfüberhitzer mit schutzrohren
DE4324586C1 (de) Vorrichtung zum Abkühlen eines belagbildenden Gases
EP0518813B1 (de) Anlage zum Kühlen von heissem, staubbeladenem Gas und Verfahren zum Betrieb der Anlage
CH670501A5 (de)
EP0314929B1 (de) Abhitzekessel zur Kühlung von Partialoxidationsrohgas
EP0048325A2 (de) Heissgaskühler mit einem Druckbehälter
DE3208421A1 (de) Vorrichtung zum kuehlen eines in einem vergaser erzeugten gases
DE3538515C2 (de)
EP0663561A1 (de) Dampferzeuger
DE202007019690U1 (de) Vorrichtung zur Reinigung von Heizflächen in thermischen Anlagen
EP0233998B1 (de) Vorrichtung zur Einstellung vorgegebener Rauchgastemperatur
DE60107618T2 (de) Verfahren zum Erzeugen von Dampf mittels einer Müllverbrennungsanlage
DE4218016A1 (de) Verfahren und Vorrichtung zur Regelung der Rauchgastemperatur am Austritt eines Dampferzeugers
DE69210619T2 (de) Temperaturmessung am ausgang eines verdampfers
EP2737273B1 (de) Verfahren zur erhöhung des wirkungsgrades einer verbrennungsanlage, insbesondere eines müllverbrennungs- oder biomassekraftwerkes
DE60100604T2 (de) Wärmerückgewinnungsvorrichtung und Verfahren zur Minimierung der Verschmutzung in einer Wärmerückgewinnungsvorrichtung
CH628131A5 (de) Dampferzeuger mit einem druckkessel und einem rohrbuendel.
DE19630482A1 (de) Wärmeaustauscher
DE3436561A1 (de) Gasvorwaermer
EP1059486A2 (de) Verfahren und Abhitzedampferzeuger zum Erzeugen von Dampf mittels heisser Prozessgase
DE3511877A1 (de) Durchlaufdampferzeuger
DE3121297A1 (de) Verfahren und vorrichtung zur regelung der waerme von einem waermetauscher zuzufuehrenden waermeabgebenden gasen
DE4120251C2 (de) Wasserrohr-Wärmetauscher mit geneigten Rohren
DE627513C (de) Dampfseitig in Abschnitte unterteilter UEberhitzer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK GR IT LI NL SE

17P Request for examination filed

Effective date: 19930112

17Q First examination report despatched

Effective date: 19930521

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB KESSELANLAGEN AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB MANAGEMENT AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19941228

REF Corresponds to:

Ref document number: 59201064

Country of ref document: DE

Date of ref document: 19950209

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950331

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: RHEINBRAUN AKTIENGESELLSCHAFT

Effective date: 19950919

NLR1 Nl: opposition has been filed with the epo

Opponent name: RHEINBRAUN AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960422

Year of fee payment: 5

Ref country code: DE

Payment date: 19960422

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960502

Year of fee payment: 5

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: RHEINBRAUN AKTIENGESELLSCHAFT

Effective date: 19950919

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

NLR1 Nl: opposition has been filed with the epo

Opponent name: RHEINBRAUN AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19970217

NLR2 Nl: decision of opposition