EP0514532A1 - Procede pour l'analyse d'un echantillon de gaz, dispositif d'analyse, utilisations et installation d'essai avec le dispositif mentionne - Google Patents

Procede pour l'analyse d'un echantillon de gaz, dispositif d'analyse, utilisations et installation d'essai avec le dispositif mentionne

Info

Publication number
EP0514532A1
EP0514532A1 EP92902518A EP92902518A EP0514532A1 EP 0514532 A1 EP0514532 A1 EP 0514532A1 EP 92902518 A EP92902518 A EP 92902518A EP 92902518 A EP92902518 A EP 92902518A EP 0514532 A1 EP0514532 A1 EP 0514532A1
Authority
EP
European Patent Office
Prior art keywords
gas
sensor
semiconductor
analysis
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP92902518A
Other languages
German (de)
English (en)
Inventor
Ulrich Matter
René NUENLIST
Heinz Burtscher
Michael Mukrowsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0514532A1 publication Critical patent/EP0514532A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0078Testing material properties on manufactured objects
    • G01N33/0081Containers; Packages; Bottles

Definitions

  • the present invention relates to a method according to the preamble of claim 1, an analysis arrangement according to that of claim 12 and a test facility with such an arrangement according to claim 22 and a use thereof according to claim 23.
  • Semiconductor gas sensors are known, such as those manufactured and sold by Figaro Engineering, Osaka / Japan. Such semiconductor gas sensors can be introduced extremely simply and, owing to their small volume, directly into containers with gas samples or along a flow path for gas samples from the containers, at any location, for analyzing the gas samples. The reliability aspect can be taken into account even more by providing several such semiconductor gas sensors.
  • This problem relates to the use of semiconductor gas sensors in terms of process speed opposed and is resolved when proceeding according to the wording of claim 1.
  • the analysis signal can be determined on the input side shortly after a change in gas concentration and / or substance, from the derivative mentioned.
  • a carrier gas is preferably used and, in the sense of what has been said about claim 6, according to claim 7, the carrier gas is used as the flushing gas.
  • the output signals are checked on the provided semiconductor sensor sets to determine whether they exceed a predetermined value, if so, the assigned set is not at least for the immediately following analysis used.
  • One of the further semiconductor sensor sets which is ready for measurement is then used.
  • the time derivative of the semiconductor sensor output signals is checked to determine whether it exceeds the specified value, so that here too there is no need to wait until the semiconductor sensor output signal has settled to the output signal level corresponding to the gas sample portion.
  • the following gas samples are preferably supplied to different semiconductor sensor sets, for example in order to rinse the one that has just been used, more than one is preferably used in the cases mentioned here Measurement cycle omitted until the oversaturated sentence in the sense mentioned becomes effective again, which can be determined by monitoring its output signal, according to claim 9, while the subsequent measurement cycles are carried out unimpaired on other sentences.
  • a test system according to the invention with an analysis arrangement according to the invention is specified in claim 22, in which a conveying device is provided for plastic bottles occurring in a stream as containers to and from the analysis arrangement and with which each bottle is tested in a rapid rhythm can, in contrast to spot checks, which, particularly in connection with the reuse of food containers, are not applicable for safety reasons.
  • FIG. 1 shows a signal flow / function block diagram of an analysis station according to the invention, which operates according to the method of the invention, with semiconductor sensors, in particular semiconductor gas sensors,
  • FIG. 3 schematically, the block diagram of a preferred gas sampling unit at the analysis station according to the invention.
  • the present invention relates to the problem, in particular in the case of empty containers, of examining the contamination state on the basis of gas samples.
  • plastic bottles that are incurred to be recycled there is great uncertainty as to how they were used after their emptying from their original filling, such as mineral water, fruit juices, etc.
  • bottles of this type are often used in an inappropriate manner, for example in households, e.g. for storing soapy water, pesticides, motor oil, acids, petrol, petrol etc.
  • the invention can also be used in all its aspects on containers that have already been filled.
  • the analysis technique of interest in the present context is that using semiconductor sensors, e.g. for IR absorption measurements on gas, IR semiconductor sensors or, and in particular, by means of semiconductor gas sensors which directly detect gas components on the gas sample.
  • semiconductor sensors suitable for IR absorption measurements are e.g. sold by Kohl Sensors Inc., 70W Barham Avenue, U.S.-Santa Rosa.
  • Semiconductor gas sensors that are of particular interest here are e.g. distributed by Figaro Engineering, Osaka / Japan.
  • a problem with the use of such semiconductor components is that their step response is slow. If, as with the flow of contaminated gas as a gas sample, a contamination pulse or a gas fraction pulse is generated on the input side of such a sensor, the semiconductor sensor output signal tends towards a corresponding maximum value relatively slowly, and accordingly accordingly slowly to fall off again.
  • the output signals of sets 60a, 60b or 60c shown therein are each with at least one semiconductor sensor HL in such a way that, depending on the contamination that occurs, they strive for the maximum value A, which takes a relatively long ax.
  • Measured variable A as shown in FIG. 1, is evaluated.
  • A corresponds to the resistance curve.
  • two or more such sensors or sets of such sensors are used for subsequent gas sample analyzes. This is said controls by a control unit, for example with a cyclic register 62 via control inputs G 'at flow changeover switches 59. It is preferably monitored, as with comparator units 64, whether the output signal of one of the sensors or sets has an impermissibly high value, and this one The sensor or sensor set is then switched off from the cycle for a predetermined time Z ⁇ .
  • sets 60a, b ... with at least one semiconductor sensor each are provided, which are used sequentially for subsequent gas samples G. If the output signal of a semiconductor sensor deflects above a threshold value specified on comparator units 64 or its time derivative, the corresponding sensor or sensor set is put out of operation for a predetermined number of subsequent sample gas measuring cycles.
  • FIG. 2a shows qualitatively over the time axis _: a purge gas flow S, hatched, and, dash-dotted lines, the resulting profile of the output signal A at a semiconductor gas sensor. It can be seen from this that only after a decay time has elapsed can the test gas supply G be used to start a new measurement cycle on the semiconductor gas sensor under consideration. However, the aim should be to hang measuring cycles on rinsing cycles and vice versa for reasons of time economy.
  • test gas flow G and purge gas flow S with flow control elements as shown schematically in FIG.
  • the test gas flow is preferably generated by the flow of a carrier gas, in which gas from the container which is subjected to the test is added.
  • the same gas is then preferably used as the purge gas as the carrier gas, for example and preferably for both dry, cleaned air. If different gases are used for purging and as carrier gas, it has been shown that the influence of the different gas types can be compensated within wide limits by changing the flow ratio of test gas G and purging gas S.
  • purging cycles S, a measuring cycle G with uncontacted gas, and therefore carrier gas, then a measuring cycle G with contaminated gas are schematically shown for the same carrier and purging gases.
  • the adjustment is carried out while observing the semiconductor output signals in such a way that in the subsequent cycles of purge gas / carrier gas or uncontaminated test gas, essentially no output signal or, if appropriate, an essentially time-constant output signal appears at the semiconductor gas sensors, which is made possible in the sense mentioned above to test and rinse in a row.
  • a carrier gas is used, for example, as shown in FIG. 3, by connecting a carrier gas tank 70 to the container 71, shown on a conveying device 72, as via a sealing connection 74.
  • a pump 76 becomes Carrier gas with container content gas is fed to the measuring device, as shown at 78.
  • the water jet pumping principle can also be used with the carrier gas as the pump gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Pour l'analyse d'échantillons de gaz (G) se succédant à brefs intervalles, ces échantillons sont apportés au capteur à semi-conducteurs (60a, b, c). Le processus d'analyse est accéléré par le fait que les signaux de sortie des capteurs à semi-conducteurs sont différenciés dans le temps (61) et que des échantillons de gaz successifs sont apportés séquentiellement au capteur à semi-conducteurs (60a à 60c). Dans les phases du cycle où aucun échantillon de gaz n'est apporté aux capteurs à semi-conducteurs (60a à 60c), une purge de gaz est effectuée dans les conduites d'admission et dans le boîtier, l'effet du processus de purge sur le signal de sortie (A) des semi-conducteurs étant réduit au minimum au niveau des semi-conducteurs par une adpatation du gaz de purge et/ou par une adaptation des conditions d'écoulement entre le gaz de purge et l'échantillon de gaz.
EP92902518A 1990-12-06 1991-12-04 Procede pour l'analyse d'un echantillon de gaz, dispositif d'analyse, utilisations et installation d'essai avec le dispositif mentionne Ceased EP0514532A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4038993A DE4038993C2 (de) 1990-12-06 1990-12-06 Verfahren zum Selektionieren von Behältnissen und Meßanordnung zur Durchführungs des Verfahrens
DE4038993 1990-12-06

Publications (1)

Publication Number Publication Date
EP0514532A1 true EP0514532A1 (fr) 1992-11-25

Family

ID=6419763

Family Applications (2)

Application Number Title Priority Date Filing Date
EP91920182A Withdrawn EP0513276A1 (fr) 1990-12-06 1991-12-04 Procede pour la selection automatique de recipients et dispositif de mesure a cet effet, et installation avec un tel dispositif de mesure
EP92902518A Ceased EP0514532A1 (fr) 1990-12-06 1991-12-04 Procede pour l'analyse d'un echantillon de gaz, dispositif d'analyse, utilisations et installation d'essai avec le dispositif mentionne

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP91920182A Withdrawn EP0513276A1 (fr) 1990-12-06 1991-12-04 Procede pour la selection automatique de recipients et dispositif de mesure a cet effet, et installation avec un tel dispositif de mesure

Country Status (14)

Country Link
US (2) US5369975A (fr)
EP (2) EP0513276A1 (fr)
JP (1) JPH05504410A (fr)
CN (2) CN1085660A (fr)
AU (2) AU8928291A (fr)
BR (2) BR9106217A (fr)
CA (2) CA2074950A1 (fr)
DE (2) DE4042557C2 (fr)
FI (2) FI923536A0 (fr)
MX (2) MX9102402A (fr)
TR (1) TR26039A (fr)
TW (1) TW198749B (fr)
WO (2) WO1992010752A1 (fr)
ZA (2) ZA919597B (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4121429C2 (de) * 1991-06-28 1996-09-12 Krieg Gunther Verfahren und Vorrichtung zur Untersuchung von Gasphasen in Getränkeflaschen
DE4126885A1 (de) * 1991-08-14 1993-02-18 Michael Rupp Verfahren und vorrichtung zum untersuchen von behaeltnissen auf fremdstoffe
DE4205722C2 (de) * 1992-02-25 1994-07-14 Krieg Gunther Verfahren und Vorrichtung zur Identifikation und Unterscheidung zwischen Schadstoffen und Inhaltsstoffen in Behältern
US5352611A (en) * 1992-06-01 1994-10-04 The Coca-Cola Company Method and system for sampling and determining the presence of compounds in containers
FI96903C (fi) * 1993-01-12 1996-09-10 Environics Oy Menetelmä kaasun vierasainepitoisuuden määrittämiseksi ja laitteisto sitä varten
DE4302657C1 (de) * 1993-01-30 1994-03-03 Holstein & Kappert Maschf Verfahren zur Bestimmung von Kontaminaten in Behältern
GB9316280D0 (en) * 1993-08-05 1993-09-22 Capteur Sensors & Analysers Gas sensors
DE4343058A1 (de) * 1993-12-19 1995-06-22 Robert Prof Dr Ing Massen Multisensorielle Kamera für die Qualitätssicherung
US6980381B2 (en) * 1998-09-21 2005-12-27 William F. Gray Apparatus and method for predicting failure of a disk drive
DE10146434B4 (de) * 2001-09-20 2004-08-19 Wma Airsense Analysentechnik Gmbh Vorrichtung zur Identifikation kontaminierter Behälter
US7222537B2 (en) * 2004-07-20 2007-05-29 Martin Lehmann Method of monitoring pressure of a gas species and apparatus to do so
CN100399015C (zh) * 2005-07-07 2008-07-02 中国科学院化学研究所 一种用单传感器检测气体的方法和装置
US8024133B2 (en) * 2006-11-29 2011-09-20 California Institute Of Technology System for detecting and estimating concentrations of gas or liquid analytes
JP5589351B2 (ja) * 2009-11-02 2014-09-17 パナソニック株式会社 流量計測装置
DE102011007665A1 (de) * 2011-04-19 2012-10-25 Siemens Aktiengesellschaft Detektion und Analyse von ölbasierten Kontaminanten in organischem Material
DE102012200976A1 (de) 2012-01-24 2013-07-25 Krones Ag Qualitätskontrolle von Behälterbeschichtungen
DE102012211215A1 (de) 2012-06-28 2014-04-10 Msa Auer Gmbh Verfahren und Vorrichtung zur Detektion der Konzentration mindestens einer gasförmigen Zielsubstanz und Verwendung einer Vorrichtung
CN102896095B (zh) * 2012-10-30 2014-07-30 济南力诺玻璃制品有限公司 安瓿瓶在线全自动检测设备
WO2014160086A2 (fr) 2013-03-14 2014-10-02 Board Of Regents Of The University Of Nebraska Procédés, systèmes et dispositifs associés à des dispositifs chirurgicaux robotiques, des effecteurs finaux et des unités de commande
US10435253B2 (en) * 2013-07-19 2019-10-08 Wilco Ag Method of in-line testing devices and testing apparatus
JP6140591B2 (ja) 2013-11-21 2017-05-31 東洋エンジニアリング株式会社 蒸留装置
CN105372438B (zh) * 2015-12-02 2017-04-05 甘肃省分析测试中心 食品检测装置及其检测方法
US10329022B2 (en) 2016-10-31 2019-06-25 Honeywell International Inc. Adjustable sensor or sensor network to selectively enhance identification of select chemical species
EP3544539A4 (fr) 2016-11-22 2020-08-05 Board of Regents of the University of Nebraska Dispositif de positionnement grossier amélioré et systèmes et procédés associés
WO2018112199A1 (fr) 2016-12-14 2018-06-21 Virtual Incision Corporation Dispositif de fixation libérable destiné à être accouplé à des dispositifs médicaux et systèmes et procédés associés
CN108872262A (zh) * 2018-05-08 2018-11-23 丹凤县荣毅电子有限公司 一种电子元件检测方法
EP3608667B8 (fr) * 2018-11-15 2022-05-04 Holcim Technology Ltd Procédé et dispositif pour analyser des échantillons d'un gaz dans un four à ciment rotatif
WO2020189785A1 (fr) * 2019-03-20 2020-09-24 京セラ株式会社 Système de détection de gaz
CN112697218B (zh) * 2020-12-05 2021-08-27 中国水利水电科学研究院 一种水库库容曲线重构方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327519A (en) * 1963-05-14 1967-06-27 Exxon Research Engineering Co Piezoelectric fluid analyzer
US3537297A (en) * 1963-12-09 1970-11-03 Phillips Petroleum Co Venting of undesired components in chromatographic analyzer
US3266292A (en) * 1964-06-08 1966-08-16 Nat Distillers Chem Corp Method for detecting volatile organic contaminants in reusable containers
US3321954A (en) * 1966-07-20 1967-05-30 Nat Distillers Chem Corp Contaminant detection apparatus
US3857771A (en) * 1967-02-27 1974-12-31 Beckman Instruments Inc Rate sensing batch analyzer
FR2353848A1 (fr) * 1975-02-18 1977-12-30 Raffinage Cie Francaise Procede de detection quantitative specifique des composes soufres et dispositifs pour la mise en oeuvre de ce procede
ZA783198B (en) * 1978-06-05 1979-09-26 Sphere Invest Improvements relating to sorting systems
DE2906864A1 (de) * 1979-02-22 1980-09-04 Draegerwerk Ag Verfahren zur bestimmung des alkoholgehaltes in der atemluft
DE2916178C2 (de) * 1979-04-21 1982-04-22 Dornier System Gmbh, 7990 Friedrichshafen Sonde zur Messung des Sauerstoffpartialdrucks in Gasen
US4312180A (en) * 1979-09-28 1982-01-26 Battelle Development Corporation Detecting particles
US4309898A (en) * 1980-06-19 1982-01-12 Phillips Petroleum Co. Signal-to-noise ratio in chromatographic analysis
JPS5766347A (en) * 1980-10-09 1982-04-22 Hitachi Ltd Detector for mixture gas
CA1199076A (fr) * 1981-07-06 1986-01-07 Takeshi Tanabe Appareil de cuisson a micro-ondes simplifiant le travail de l'utilisateur
JPS58155346A (ja) * 1982-03-10 1983-09-16 Fuigaro Giken Kk ガス検出方法
US4507558A (en) * 1983-02-22 1985-03-26 Honeywell Inc. Selective leak-detector for natural gas
US4542640A (en) * 1983-09-15 1985-09-24 Clifford Paul K Selective gas detection and measurement system
DE3405292A1 (de) * 1984-02-15 1985-09-05 Eppendorf Gerätebau Netheler + Hinz GmbH, 2000 Hamburg Verfahren zum durchfuehren von probenanalysen sowie rack zur durchfuehrung des verfahrens
US4830192A (en) * 1986-08-04 1989-05-16 The Coca-Cola Company Methods of discriminating between contaminated and uncontaminated containers
US4818348A (en) * 1987-05-26 1989-04-04 Transducer Research, Inc. Method and apparatus for identifying and quantifying simple and complex chemicals
US5092157A (en) * 1987-07-08 1992-03-03 Thermedics Inc. Vapor collector/desorber with metallic ribbon
US4880120A (en) * 1987-09-02 1989-11-14 The Coca-Cola Company Plastic container inspection process
US5116764A (en) * 1988-07-26 1992-05-26 Raymond Annino Dual-column, dual-detector gas detector and analyzer
US5082789A (en) * 1988-08-23 1992-01-21 Simon Fraser University Bismuth molybdate gas sensor
US5268302A (en) * 1990-05-29 1993-12-07 Thermedics Inc. Selective, high speed detection of vapors with analysis of multiple GC-separated portions
FI89210C (fi) * 1990-06-08 1993-08-25 Instrumentarium Oy Foerfarande foer identifiering av gaser
US5363091A (en) * 1991-08-07 1994-11-08 Ford Motor Company Catalyst monitoring using ego sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9210752A1 *

Also Published As

Publication number Publication date
CA2074939A1 (fr) 1992-06-07
AU8914491A (en) 1992-07-08
JPH05504410A (ja) 1993-07-08
AU8928291A (en) 1992-07-08
CN1085660A (zh) 1994-04-20
ZA919597B (en) 1992-08-26
DE4038993A1 (de) 1992-06-11
DE4038993C2 (de) 1995-07-06
CN1063061A (zh) 1992-07-29
EP0513276A1 (fr) 1992-11-19
MX9102403A (es) 1993-11-01
WO1992010752A1 (fr) 1992-06-25
FI923536A (fi) 1992-08-06
FI923535A0 (fi) 1992-08-06
WO1992010751A1 (fr) 1992-06-25
BR9106217A (pt) 1993-03-30
FI923536A0 (fi) 1992-08-06
ZA919596B (en) 1992-08-26
US5497651A (en) 1996-03-12
BR9106216A (pt) 1993-03-30
FI923535A (fi) 1992-08-06
DE4042557C2 (de) 1996-11-28
US5369975A (en) 1994-12-06
TW198749B (fr) 1993-01-21
TR26039A (tr) 1993-11-01
CA2074950A1 (fr) 1992-06-07
MX9102402A (es) 1992-06-01

Similar Documents

Publication Publication Date Title
EP0514532A1 (fr) Procede pour l'analyse d'un echantillon de gaz, dispositif d'analyse, utilisations et installation d'essai avec le dispositif mentionne
DE69516202T2 (de) Instrument zur Messung organischer Nichtmethangase in Gasproben
DE4200971C2 (de) Verfahren und Vorrichtung für die Schadstoffdetektion und - identifikation in Getränkeflaschen in Abfüllinien
DE69131290T2 (de) Ansaugverfahren für hämatologische analysevorrichtung
WO2008058659A1 (fr) Procédé d'inspection de bouteilles ou récipients analogues et poste de mesure pour un parcours d'inspection ou de contrôle de bouteilles ou récipients analogues
DE2459111A1 (de) Photometrisches analysenverfahren und -geraet fuer fluessigkeitsproben
DE69322122T2 (de) Verfahren und Vorrichtung zur Überwachung der Abgabe einer Flüssigkeit
JP2660460B2 (ja) イオン溶出液の放射能測定装置および方法
DE102016121780A1 (de) Messanordnung zur Überwachung eines Abfüllprozesses und/oder eines Reinigungsprozesses in einer Abfüllanlage
EP0647842A1 (fr) Procédé et dispositif pour la détection de fuite d'un récipient en particulier d'une bouteille en matière plastique
EP1338237B1 (fr) Méthode et appareil pour tester l'ouverture des canaux d'un endoscope
DE69722236T2 (de) Inspektion von wasser-behältern
DE10316332B4 (de) Verfahren und Vorrichtung zur Dichtheitsprüfung
EP3362788A1 (fr) Analyse de gaz en continu et par séparation
EP1240491B1 (fr) Procede d'exploitation d'un detecteur pelliculaire de fuites et detecteur pelliculaire de fuites correspondant pour mettre ledit procede en oeuvre
EP0403034B1 (fr) Procédé et dispositif pour l'analyse de la répartition de tailles de particules dans un écoulement fluide de production
EP0646781A2 (fr) Méthode et arrangement pour examiner l'étanchéité d'un système de débit de gaz d'un dispositif d'analyse de gaz
DE10132530A1 (de) Verfahren zur Überwachung der Funktionsfähigkeit einer Flüssigkeitsfördervorrichtung und Flüssigkeitsfördervorrichtung
DE10146434B4 (de) Vorrichtung zur Identifikation kontaminierter Behälter
DE19538125C2 (de) Gasmeßgerät
EP1873510A2 (fr) Procédé destiné à l'analyse d'un liquide issu d'un flux de liquide ou d'un réservoir et dispositif destiné à la réalisation du procédé
AT525776B1 (de) Verfahren zur Befüllung und/oder Reinigung der Messzelle eines Rotationsviskosimeters
EP0483613B1 (fr) Procédé et dispositif d'analyse qualitative et/ou quantitative des matériaux de base liquides
DE3786074T2 (de) Apparat zum Prüfen von Behälter.
EP4081774A1 (fr) Appareil et procédé pour examiner des récipients au sujet d'impuretés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19940810

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19960224