EP0513238A1 - Bogenspritzen von rasch abgekühlten aluminiumlegierungen. - Google Patents
Bogenspritzen von rasch abgekühlten aluminiumlegierungen.Info
- Publication number
- EP0513238A1 EP0513238A1 EP91905287A EP91905287A EP0513238A1 EP 0513238 A1 EP0513238 A1 EP 0513238A1 EP 91905287 A EP91905287 A EP 91905287A EP 91905287 A EP91905287 A EP 91905287A EP 0513238 A1 EP0513238 A1 EP 0513238A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rapidly solidified
- alloy
- wire
- coating
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 43
- 239000000956 alloy Substances 0.000 title claims abstract description 43
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 41
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 238000005507 spraying Methods 0.000 title claims description 20
- 238000000576 coating method Methods 0.000 claims abstract description 47
- 239000011248 coating agent Substances 0.000 claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 230000007797 corrosion Effects 0.000 claims abstract description 5
- 238000005260 corrosion Methods 0.000 claims abstract description 5
- 230000003647 oxidation Effects 0.000 claims abstract description 4
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 33
- 239000000843 powder Substances 0.000 claims description 12
- 239000007921 spray Substances 0.000 claims description 11
- 229910000838 Al alloy Inorganic materials 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 230000007547 defect Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000000704 physical effect Effects 0.000 abstract description 5
- 230000014759 maintenance of location Effects 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 229910052720 vanadium Inorganic materials 0.000 description 17
- 229910052742 iron Inorganic materials 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 13
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- CYUOWZRAOZFACA-UHFFFAOYSA-N aluminum iron Chemical compound [Al].[Fe] CYUOWZRAOZFACA-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum-iron-vanadium-silicon Chemical compound 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000010284 wire arc spraying Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/002—Making metallic powder or suspensions thereof amorphous or microcrystalline
- B22F9/008—Rapid solidification processing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/131—Wire arc spraying
Definitions
- This invention relates to a process for improving the properties of materials, and more particularly to a process for producing a metallic coating from a rapidly solidified metal.
- Spray metallizing consists of heating a metal to a molten or semi-molten condition by passing it through a high temperature heat source, and depositing it in a finely divided form on a substrate.
- the molten or semi-molten particles flatten out on impacting the substrate and adhere to its surface.
- Subsequently deposited particles also flatten out, and adhere to those previously deposited, thus the structure of sprayed deposits is lamellar.
- the sprayed metal deposits resemble the derivative wire or powder chemically, but their physical properties, especially their microstructure, are quite different from those of the original wrought metal. Cohesion is achieved through mechanical and metallurgical bonding.
- certain materials can be fused to form a dense and uniform coating that is metallurgically bonded to the substrate.
- Fused coatings usually are required for protecting the substrate material during service at high temperatures, in abrasive and corrosive environments, or for developing a surface of uniformly high hardness.
- sprayed aluminum coatings on steel require heating to above 482 ⁇ C to etallurgically bond the coating to the steel.
- the material may be subsequently heated at 732°C to 1093 ⁇ C to provide a dense, uniform coating metallurgically bonded to the base metal.
- the present invention provides an economical and efficient process for arc spraying aluminum base alloys in which no subsequent thermal treatment is required.
- properties as high temperature strength and stability, corrosion and oxidation resistance and compatibility with the substrate, of an aluminum spray metallized coating, are improved in accordance with the invention by arc spraying a rapidly solidified, high temperature aluminum alloy onto a designated substrate.
- This procedure referred to hereinafter as arc spraying, results in the formation of a high temperature spray metallized coating.
- Subsequent thermal treatments, such as heating the coating to above the solidus of the alloy, heretofore required to adhere the coating to the substrate are virtually eliminated.
- Deposition and retention of a rapidly solidified alloy onto a substrate are effected in a single process step.
- the coated substrate exhibits improved * 5 ambient and elevated temperature mechanical an physical properties due to the microstructure of the *- rapidly solidified coating.
- the invention provides a process for producing a rapidly solidified aluminum 10 base alloy coating, comprising the steps of:
- Wire having a diameter suitable for arc 15 spraying may be fabricated directly by a friction actuated process or by conventional wire drawing techniques, and sprayed onto a substrate using arc spraying techniques to form a nearly fully dense spray metallized coating. Moreover, the attractive 20 properties of the rapidly solidified wire are retained. This process may be repeated such that the subsequent spraying is done on top of the sprayed coating.
- the sprayed metal coatings may then be finished by typical metal finishing operations such 25 as machining, grinding, burnishing and polishing provided that the precautions usually followed for sprayed metallized coatings are followed. Also components having the spray metallized coatings can withstand moderate forming operations such as 30 drawing, spinning, brake and roll forming, and embossing.
- the arc sprayed coatings are suitable for use * in components requiring corrosion, oxidation and elevated temperature protection for use as aerospace 35 components such as turbine blades, turbine vanes and fasteners; automotive components such as exhaust pipes, intake valves and cylinder barrels; and industrial components such as heat exchangers, fasteners for chemical piping and boilers, reactor tubes, and heat treating equipment.
- aerospace 35 components such as turbine blades, turbine vanes and fasteners
- automotive components such as exhaust pipes, intake valves and cylinder barrels
- industrial components such as heat exchangers, fasteners for chemical piping and boilers, reactor tubes, and heat treating equipment.
- Applications such as molds appointed for subsequent casting may arise that specifically utilize the higher temperature capability, i.e. hardness, of the rapidly solidified coating.
- the arc sprayed layers can be used for repairing coatings as well as engineering shapes made directly from the rapidly solidified materials.
- the coating can be applied to a substrate to repair a surface defect thereof.
- the arc sprayed layers can also be used to make the preforms for various composite materials wherein the substrate consists of continuous or woven fibers, bundles, whiskers or particulate made from a hard or semi-hard material such as refractory carbides, oxides or nitrides.
- the rapidly solidified alloys may be combined with a reinforcing phase to form a composite a described in U.S. Patent Application Serial No. 242,989, filed September 12, 1988, which application is incorporated herein by reference thereto, prior to being formed into a wire.
- Fig. 1 is a scanning electron photomicrograph of the surface of a wire arc sprayed coating composed of rapidly solidified aluminum based iron, vanadium and silicon containing alloy uniformly deposited on planar flow cast aluminum based iron, vanadium and silicon containing ribbon fabricated by the present invention
- Fig. * 2 is an optical light photomicrograph of a cross section of a wire arc sprayed coating composed of rapidly solidified aluminum based iron, vanadium and silicon containing alloy deposited onto planar flow cast aluminum based iron, vanadium and silicon containing ribbon fabricated by the present invention
- Fig. 3 is a transmission electron photomicrograph of a wire arc sprayed coating composed of rapidly solidified aluminum based iron, vanadium and silicon containing alloy fabricated by the present invention.
- the aluminum base, rapidly solidified alloy appointed for use in the process of the present invention has a composition consisting essentially of the formula Al bal Fe a Si b X c wherein X is at least one element selected from the group consisting of Mn, V, Cr, Mo, W, Nb, Ta, "a" ranges from 1.5-8.5 at %, "b” ranges from 0.25-5.5 at %, "c” ranges from 0.05-4.25 at % and the balance is aluminum plus incidental impurities, with the proviso that the ratio [Fe+X]:Si ranges from about 2.0:1 to 5.0:1.
- the alloy include aluminum-iron-vanadium-silicon compositions wherein the iron ranges from about
- vanadium ranges from about 0.25-4.25 at %
- silicon ranges from about 0.5-5.5 at %.
- Another aluminum base, rapidly solidified alloy suitable for use in the process of the invention has a composition consisting essentially of the formula Al bal Fe a Si b X c wherein X is at least one element selected from the group consisting of Mn, V, Cr, Mo, W, Nb, Ta, "a" ranges from 1.5-7.5 at %, “b” ranges from 0.75-9.5 at %, “c” ranges from 0.25-4.5 at % and the balance is aluminum plus incidental impurities, with the proviso that the ratio [Fe+X]:Si ranges from about 2.01:1 to 1.0:1.
- Still another aluminum base, rapidly solidified alloy suitable for use in the process of the invention has a composition consisting essentially of the formula Al bal Fe a Si b X c wherein X is at least one element selected from the group consisting of Mn, V, Cr, Mo, W, Nb, Ta, Ce, Ni, Zr, Hf, Ti, Sc, "a” ranges from 1.5-8.5 at %, H b H ranges from 0.25-7.0 at %, and "c” ranges from 0.05 to 4.25 at %, the balance being aluminum plus incidental impurities.
- Still another aluminum base, rapidly solidified alloy that is suitable for use in the process of the invention has a composition range consisting essentially of about 2-15 at % from the group consisting of zirconium, hafnium, titanium, vanadium, niobium, tantalum, erbium, about 0-5 at % calcium, about 0-5 at % germanium, about 0-2 at % boron, the balance being aluminum plus incidental impurities.
- a low density aluminum-lithium base, rapidly solidified alloy suitable for use in the present process has a composition consisting essentially of the formula Al bal Zr a Li b Mg c T d , wherein T is at least one element selected from the group consisting of Cu, Si, Sc, Ti, B, Hf, Cr, Mn, Fe, Co and Ni, "a” ranges from 0.05-0.75 at %, "b” ranges from 9.0-17.75 at %, “c” ranges from 0.45-8.5 at % and “d” ranges from about 0.05-13 at %, the balance being aluminum plus incidental impurities.
- the powder can be composed of rapidly solidified alloy combined with the particles of a re nforcing material present in an amount ranging from about 0.1 to 50 percent by volume, the powder having been ball milled to enfold metal matrix material around each of the particles.
- the metal alloy quenching techniques used to fabricate these alloys generally comprise the step of cooling a melt of the desired composition at a rate of at least about 10 5o C/sec.
- a particular composition is selected, powders or granules of the requisite elements in the desired portions are melted and homogenized, and the molten alloy is rapidly quenched on a chill surface, such as a rapidly moving metal surface, an impinging gas or liquid.
- the aluminum alloy When processed by these rapid solidification methods the aluminum alloy is manifest as a ribbon, powder or splat of substantially uniform microstructure and chemical composition.
- the substantially uniformly structured ribbon, powder or splat may then be pulverized to a particulate for further processing.
- the rapidly solidified aluminum alloy particulate has properties that make it amenable to direct friction actuated extrusion into wire, as well as numerous powder metallurgy techniques used to fabricate such powders, including vacuum hot degassing and compacting the rapidly solidified powder into near fully dense billets at temperatures where the majority of the adsorbed gases are driven from the powder surfaces and that decomposition of any dispersed phases does not occur.
- the billets may thereafter be compacted to full density in a blind died extrusion press, forged, or directly extruded into various shapes including profiled extrusions and wire.
- the substrate may be water or gas cooled, or may be heated directly or indirectly during the processing. The optimum substrate temperature is dependent on the rapidly solidified alloy and the dispersed phases which must be formed during solidification.
- the rapidly solidified alloy in the form of a wire is arc sprayed to form a coating.
- the arc spraying step comprises the steps of (i) striking an arc between two strands of said wire to melt the tips thereof; and (ii) atomizing said melt in said arc by impinging a high pressure inert gas thereagainst.
- Arc spraying involves initially striking an arc between two strands of a conductive metal wire and essentially atomizing any molten metal which forms in the arc by impinging a high pressure inert gas onto the molten wire tips. Since arc spraying is a consumable process, wire is continually fed and the arc and metal source are maintained.
- the rapidly solidified alloy must be provided as a wire that can range in size from 0.05 cm to 0.25 cm in diameter and more preferably from about 0.1 cm to 0.18 cm in diameter, the optimum wire diameter depending on the alloy composition, the voltage across the wires and the feed sizes physically allowed by the arc spraying apparatus.
- the wire suitable in diameter for arc spraying may be fabricated directly by a friction actuated process or by conventional wire drawing techniques.
- Arc spraying may be performed for varying lengths of time depending on the thickness of the sprayed preform required.
- the attractive microstructure and mechanical and physical properties of the rapidly solidified wire are retained. This process may be repeated such that subsequent spraying is done on top of the sprayed coating, and multi-layered coatings may be fabricated.
- the sprayed coatings require no diffusion treatment as the arc sprayed material retains the attractive microstructure and mechanical and physical properties of the rapidly solidified wire.
- alloy A a rapidly solidified alloy having a diameter of 0.16 cm and the composition aluminum balance, 4.06 at % iron, 0.70 at % vanadium, 1.51 at % silicon
- FIG. 1 is a scanning electron photomicrograph of the surface of wire arc sprayed coating composed of rapidly solidified aluminum based iron, vanadium and silicon containing alloy matrix deposited on planar flow cast aluminum based iron, vanadium and silicon containing ribbon. Individual areas or splats corresponding to solidified droplets of sprayed molten alloy were observed. The coating was uniform and contiguous.
- Fig. 2 is a light photomicrograph of a cross section of a wire arc sprayed preform composed of rapidly solidified aluminum based iron, vanadium and silicon containing alloy matrix deposited on planar flow cast aluminum based iron, vanadium and silicon containing ribbon.
- TEM Transmission electron microscopy
- Polished TEM foils were examined in a Philips EM 400T electron microscope.
- a transmission electron photomicrograph of a wire arc sprayed coating composed of rapidly solidified aluminum based iron, vanadium and silicon containing alloy fabricated by the present invention is shown in Fig. 3.
- the microstructure of the deposited layer was observed to be composed of fine 50-100 nm diameter Al 13 (Fe,V) 3 Si dispersoids uniformly distributed in an aluminum solid solution matrix. This microstructure is very similar to that typically observed in the planar flow cast, rapidly solidified alloy A ribbon as well as in components consolidated from rapidly solidified powder particles using powder metallurgical techniques.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
- Mobile Radio Communication Systems (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46707290A | 1990-01-18 | 1990-01-18 | |
US467072 | 1990-01-18 | ||
PCT/US1991/000301 WO1991010760A2 (en) | 1990-01-18 | 1991-01-15 | Arc spraying of rapidly solidified aluminum base alloys |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0513238A1 true EP0513238A1 (de) | 1992-11-19 |
EP0513238B1 EP0513238B1 (de) | 1994-06-08 |
Family
ID=23854237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91905287A Expired - Lifetime EP0513238B1 (de) | 1990-01-18 | 1991-01-15 | Bogenspritzen von rasch abgekühlten aluminiumlegierungen |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0513238B1 (de) |
JP (1) | JPH05502911A (de) |
DE (1) | DE69102422T2 (de) |
WO (1) | WO1991010760A2 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG189753A1 (en) * | 2008-04-30 | 2013-05-31 | Ulvac Inc | Method for the production of water-reactive al film and constituent member for film-forming chamber |
DE102012200378A1 (de) * | 2012-01-12 | 2013-07-18 | Federal-Mogul Burscheid Gmbh | Kolbenring |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1497398A (en) * | 1975-04-15 | 1978-01-12 | British Steel Corp | Arc-sprayed protective coatings |
GB2015035A (en) * | 1978-02-17 | 1979-09-05 | Bicc Ltd | Fabrication of Metallic Materials |
US4232056A (en) * | 1979-04-16 | 1980-11-04 | Union Carbide Corporation | Thermospray method for production of aluminum porous boiling surfaces |
NO850403L (no) * | 1985-02-01 | 1986-08-04 | Ingard Kvernes | Aluminiumbasert artikkel med beskyttelsesbelegg og fremgangsmaate til fremstilling derav. |
FR2654334A1 (fr) * | 1989-11-10 | 1991-05-17 | Ecole Nat Sup Creation Ind | Dispositif pour un lit medical multifonctionnel. |
-
1991
- 1991-01-15 DE DE69102422T patent/DE69102422T2/de not_active Expired - Fee Related
- 1991-01-15 WO PCT/US1991/000301 patent/WO1991010760A2/en active IP Right Grant
- 1991-01-15 JP JP3505040A patent/JPH05502911A/ja active Pending
- 1991-01-15 EP EP91905287A patent/EP0513238B1/de not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9110760A3 * |
Also Published As
Publication number | Publication date |
---|---|
DE69102422T2 (de) | 1994-10-27 |
DE69102422D1 (de) | 1994-07-14 |
JPH05502911A (ja) | 1993-05-20 |
WO1991010760A2 (en) | 1991-07-25 |
WO1991010760A3 (en) | 1991-09-05 |
EP0513238B1 (de) | 1994-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5030517A (en) | Plasma spraying of rapidly solidified aluminum base alloys | |
US7479299B2 (en) | Methods of forming high strength coatings | |
Deuis et al. | Metal-matrix composite coatings by PTA surfacing | |
TWI726875B (zh) | 新粉末組合物及其用途 | |
US4710235A (en) | Process for preparation of liquid phase bonded amorphous materials | |
WO1993001322A1 (en) | Arc sprayed continuously reinforced aluminum base composites | |
JPH0688175A (ja) | 耐摩耗性及び耐食性を有する非晶質合金ベース金属仕上げ物及びその製造方法 | |
CN114450426B (zh) | 合金、合金粉末、合金构件和复合构件 | |
CN108048784A (zh) | 一种等离子热喷涂制备氮化物增强高熵合金涂层的方法 | |
EP1320460B1 (de) | Artikel mit einem komposit aus unstabilisierten zirkoniumoxidpartikeln in einer metallischen matrix sowie dessen herstellung | |
JPS62112745A (ja) | 高い耐磨耗性および耐蝕性を有する合金、ならびにこの合金を基礎とする溶射用粉末 | |
JP2024508801A (ja) | 高温用途のためのAl-Mn-Zr系合金 | |
US6805971B2 (en) | Method of making coatings comprising an intermetallic compound and coatings made therewith | |
US4323186A (en) | Manufacture of high performance alloy in elongated form | |
JPS5942070B2 (ja) | テツ コウ オヨビ ソノセイヒン ノ ヒヨウメンヒメヒンフホウホウ | |
EP0513238B1 (de) | Bogenspritzen von rasch abgekühlten aluminiumlegierungen | |
US5229165A (en) | Plasma sprayed continuously reinforced aluminum base composites | |
JP2009191327A (ja) | アルミニウム合金基材の強化方法 | |
Shanmugasundaram et al. | WITHDRAWN: Investigating the Effect of WC on the Hardness and Wear Behavior of Surface Modified AA 6063 | |
JP2024505349A (ja) | 高い熱伝導率を有する粉状材料 | |
Dowling et al. | Laser surface cladding of metal parts | |
US5141145A (en) | Arc sprayed continuously reinforced aluminum base composites | |
JP7523461B2 (ja) | エンジンシリンダボアのコーティングのための溶射用鉄系合金 | |
JPH05285690A (ja) | 溶接用複合材およびその製造方法 | |
KR100533649B1 (ko) | 용사용/용접용 금속 선재 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920619 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19930413 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69102422 Country of ref document: DE Date of ref document: 19940714 |
|
ET | Fr: translation filed | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALLIEDSIGNAL INC. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950115 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19951003 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |