EP0508970A1 - Détecteur pour le rayonnement infrarouge - Google Patents
Détecteur pour le rayonnement infrarouge Download PDFInfo
- Publication number
- EP0508970A1 EP0508970A1 EP92850073A EP92850073A EP0508970A1 EP 0508970 A1 EP0508970 A1 EP 0508970A1 EP 92850073 A EP92850073 A EP 92850073A EP 92850073 A EP92850073 A EP 92850073A EP 0508970 A1 EP0508970 A1 EP 0508970A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grating
- detector
- spread
- gallium arsenide
- incident light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 11
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims abstract description 10
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000005253 cladding Methods 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims abstract description 4
- 238000010168 coupling process Methods 0.000 claims abstract description 4
- 238000005859 coupling reaction Methods 0.000 claims abstract description 4
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- DGJPPCSCQOIWCP-UHFFFAOYSA-N cadmium mercury Chemical compound [Cd].[Hg] DGJPPCSCQOIWCP-UHFFFAOYSA-N 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/09—Devices sensitive to infrared, visible or ultraviolet radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a method of coupling radiation in an infrared detector, and an arrangement herefor.
- IR-detectors which use quantum wells are comprised of a thin layer of, e.g., gallium arsenide (GaAs) surrounded by aluminium gallium arsenide (AlGaAs).
- GaAs gallium arsenide
- AlGaAs aluminium gallium arsenide
- the most common type of IR-detector comprises 50 such quantum wells, each having a thickness of about 5 nm.
- the most common detector is photoconductive. It is also possible, however, to manufacture photovoltaic detectors.
- Quantum well detectors are either manufactured in accordance with the MOVPE-technique (metal organic gasphase epitaxy) or in accordance with MBE-technique (molecular beam epitaxy).
- quantum well detectors that are based on so-called intersub band transitions in the conductor band are sensitive solely to IR-radiation whose electrical field vector has a component which is perpendicular to the quantum-well plane. This limits the degree of quantum efficiency and renders the majority of detector configurations sensitive to polarization. In particular, the detector is not sensitive, or responsive, to radiation which is incident perpendicular to the quantum-well layer.
- the present invention solves this problem and provides a technique where the detector has a high degree of quantum efficiency, irrespective of the angle of the incident radiation, and where the detector is not sensitive to the polarization direction of the radiation.
- the present invention relates to a method for coupling radiation in an infrared detector of the type which uses quantum wells that are comprised of thin layers of, e.g., gallium arsenide (GaAs) surrounded by aluminium gallium arsenide (AlGaAs), and is characterized in that a two-dimensional reflection grating, a so-called crossed grating, is formed in the top of the mesa of the detector, i.e. the quantum-well structure of the detector, on the side opposite to the surface through which incident light enters the detector, said grating causing the incident light to spread in different directions.
- GaAs gallium arsenide
- AlGaAs aluminium gallium arsenide
- the invention also relates to an arrangement of the kind defined in Claim 5 and having the characteristic features set forth therein.
- Figure 1 illustrates a detector in which the invention is applied.
- the detector is an infrared detector which functions to detect infrared radiation.
- the detector is of the kind which uses quantum wells, said wells comprising thin layers of, e.g., gallium arsenide (GaAs) surrounded by aluminium gallium arsenide (AlGaAs).
- the reference numeral 1 identifies a multiple of such quantum-well layers.
- the layer may comprise 50 thin layers of GaAs and AlGaAs which together have a thickness of 1.7 micrometers.
- a respective contact layer 2 and 3 is provided beneath and above the quantum-well layer.
- the detector is built-up on a substrate 4 of semi-insulating gallium arsenide (GaAs). Incident light is intended to impinge from beneath in Figure 1, as shown by the arrow 5.
- a two-dimensional reflection grating 6 a so-called crossed grating or doubly-periodic grating, on the top of the detector mesa 1 of the detector, i.e. on the quantum-well structure of the detector, on the side opposite to that surface 7 through which incident light 5 is intended to enter the detector.
- the reflection grating is comprised, for instance, of etched gallium arsenide with an overlying metal layer.
- the grating 6 is intended to spread the incident light in different directions.
- the grating is constructed so as to spread light in four directions, namely (1,0), (- 0,0) (0,1) and (0, -1). These directions are designated (1 0)-directions in the following. In order to achieve good absorption, it is optimum to lie close to the so-called cutoff of these directions, where the spread angle is close to 90° and the wavelength in vaccum is equal to N x d, where N is the refraction index and d is the grating constant.
- the spread radiation may either be TE (transverse electric) with the electric field vector lying parallel with the quantum well plane and the grating plane. There is no quantum-well absorption in this case.
- the field vector may be directed perpendicularly to this direction, i.e. TM (transverse magnetic), in which case quantum-well absorption will take place.
- TM transverse magnetic
- reflexes with the order (0 0) can be minimized since this does not give rise to absorption either.
- Figure 2 shows the grating from beneath and which indicates the direction of incident light with the arrow 5.
- Incident light or radiation may be non-polarized or polarized.
- the electric field can be divided into an x-component (Ex), which is indicated by a solid line 8 between two solid circles, and a y-component (Ey) which is indicated with a solid line 9 between two hollow squares.
- the magnitude and direction of the electric field are given respectively by the length and the direction of the solid lines.
- the incident radiation whose field vector is parallel with the grating plane, is converted by the influence of the grating so that a large component TM-radiation, where the field vector is perpendicular to the grating plane, is formed and thus give rise to absorption; see the beams 10, 11.
- the electrical fields originating from the x-direction of the incident radiation are shown as such, i.e. with a solid line between two solids circles, whereas the electric fields originating from the y-direction are shown with a solid line between two hollow squares.
- the grating couples the incident radiation effectively to the quantum wells through said reflection.
- the grating renders the detector insensitive to how the incident radiation is polarized.
- the crossed grating is configured with square or hexagonal symmetry. This renders the detector totally insensitive to the polarization of the incident light.
- the grating may consist of parallelepipedic bodies, as illustrated in Figure 1, measuring 0.9 x 2.1 x 2.1 micrometers.
- the grating may alternatively comprise circular bodies in the plane of the grating, or bodies of some other shape.
- a metal layer is provided above the grating for reflecting the incident light that falls onto the grating back onto the quantum-well layer 1.
- This layer will be a good conductor, for instance a gold, silver or aluminium layer.
- This layer may be an aluminium arsenide layer or, alternatively, an aluminium gallium arsenide layer.
- the layer 14 has a low refraction index, which gives total reflection.
- Figure 3 illustrates how incident light or radiation 5 is reflected onto the grating 6 and onto the cladding layer 14, causing the light to pass through the quantum wells a number of times, thereby greating increasing the degree of quantum efficiency.
- the grating and the cladding layer therewith define a waveguide.
- the cladding layer may have a thickness of 3 micrometers for instance.
- the mirror consists of the ambient atmosphere, where the refraction index of the atmosphere gives total reflection.
- the atmosphere can for example be air or any other suitable gas.
- control layer 2 forms the underside.
- a thin layer of gallium arsenide (AlGaAs) can be applied on the contact layer 2, which layer of AlGaAs then forms the underside of the structure.
- a degree of quantum efficiency as high as 80-90% is obtained with the described method and arrangement.
- the reflection grating 6 together with the cladding layer 14 also greatly reduces the occurrence of so-called cross-talk between adjacent detector elements in an array of such elements.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Fire-Detection Mechanisms (AREA)
- Radiation Pyrometers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9101034A SE468188B (sv) | 1991-04-08 | 1991-04-08 | Metod foer inkoppling av straalning i en infraroeddetektor, jaemte anordning |
SE9101034 | 1991-04-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0508970A1 true EP0508970A1 (fr) | 1992-10-14 |
EP0508970B1 EP0508970B1 (fr) | 1996-11-06 |
Family
ID=20382388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92850073A Expired - Lifetime EP0508970B1 (fr) | 1991-04-08 | 1992-04-02 | Détecteur pour le rayonnement infrarouge |
Country Status (6)
Country | Link |
---|---|
US (1) | US5229614A (fr) |
EP (1) | EP0508970B1 (fr) |
JP (1) | JP2889759B2 (fr) |
AT (1) | ATE145091T1 (fr) |
DE (1) | DE69214990T2 (fr) |
SE (1) | SE468188B (fr) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5485015A (en) * | 1994-08-25 | 1996-01-16 | The United States Of America As Represented By The Secretary Of The Army | Quantum grid infrared photodetector |
FR2729789A1 (fr) * | 1993-09-10 | 1996-07-26 | Thomson Csf | Detecteur a puits quantique et procede de realisation |
US5552603A (en) * | 1994-09-15 | 1996-09-03 | Martin Marietta Corporation | Bias and readout for multicolor quantum well detectors |
EP0866504A2 (fr) * | 1997-03-19 | 1998-09-23 | Lockheed Martin Vought Systems Corporation | Detecteur infra-rouge à couplage par pastille |
FR2761813A1 (fr) * | 1997-04-08 | 1998-10-09 | Thomson Csf | Detecteur d'ondes electromagnetiques multielements a diaphotie reduite |
FR2803949A1 (fr) * | 1994-03-15 | 2001-07-20 | Loral Vought Systems Corp | Detecteur a infrarouges a cavite optique resonante a diffraction photovoltaique a semi-conducteur |
WO2002031551A1 (fr) * | 2000-10-13 | 2002-04-18 | Highwave Optical Technologies Marseille | Filtres optiques, leur procede de fabrication et leur utilisation pour un systeme multiplexe |
FR2815417A1 (fr) * | 2000-10-13 | 2002-04-19 | Shakticom | Filtre optique, son procede de fabrication et son utilisation pour un systeme multiplex |
FR2816062A1 (fr) * | 2000-10-27 | 2002-05-03 | Shakticom | Filtre optique, son procede de fabrication par dopage ionique et son utilisation pour un systeme multiplex |
KR100349599B1 (ko) * | 2000-04-14 | 2002-08-23 | 삼성전자 주식회사 | 양자 효율이 향상된 양자점 적외선 탐지기 |
FR2855653A1 (fr) * | 2003-05-27 | 2004-12-03 | Thales Sa | Structure amorphe de couplage optique pour detecteur d'ondes electromagnetiques et detecteur associe |
US6909096B1 (en) | 1999-03-12 | 2005-06-21 | Saabtech Electronics Ab | Quantum well based two-dimensional detector for IR radiation and camera system with such a detector |
WO2011149960A3 (fr) * | 2010-05-24 | 2012-04-05 | University Of Florida Research Foundation Inc. | Procédé et appareil destinés à fournir une couche de blocage de charge sur un dispositif de conversion ascendante à infrarouge |
US10134815B2 (en) | 2011-06-30 | 2018-11-20 | Nanoholdings, Llc | Method and apparatus for detecting infrared radiation with gain |
US10700141B2 (en) | 2006-09-29 | 2020-06-30 | University Of Florida Research Foundation, Incorporated | Method and apparatus for infrared detection and display |
US10749058B2 (en) | 2015-06-11 | 2020-08-18 | University Of Florida Research Foundation, Incorporated | Monodisperse, IR-absorbing nanoparticles and related methods and devices |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5304805A (en) * | 1993-03-26 | 1994-04-19 | Massachusetts Institute Of Technology | Optical-heterodyne receiver for environmental monitoring |
US5539206A (en) * | 1995-04-20 | 1996-07-23 | Loral Vought Systems Corporation | Enhanced quantum well infrared photodetector |
FR2757564B1 (fr) * | 1996-12-20 | 1999-03-26 | Peugeot | Dispositif de commande d'une soupape de moteur de vehicule automobile |
US6054718A (en) * | 1998-03-31 | 2000-04-25 | Lockheed Martin Corporation | Quantum well infrared photocathode having negative electron affinity surface |
US6172379B1 (en) | 1998-07-28 | 2001-01-09 | Sagi-Nahor Ltd. | Method for optimizing QWIP grating depth |
FR2783356B1 (fr) | 1998-09-14 | 2005-02-25 | Fujitsu Ltd | Photodetecteur infrarouge et procede pour sa fabrication |
WO2001001494A1 (fr) * | 1999-06-25 | 2001-01-04 | California Institute Of Technology | Couplage de rayonnements multidirectionnels dans des photodetecteurs a infrarouge de puits quantique |
US7167615B1 (en) | 1999-11-05 | 2007-01-23 | Board Of Regents, The University Of Texas System | Resonant waveguide-grating filters and sensors and methods for making and using same |
US8111401B2 (en) | 1999-11-05 | 2012-02-07 | Robert Magnusson | Guided-mode resonance sensors employing angular, spectral, modal, and polarization diversity for high-precision sensing in compact formats |
EP1254483A4 (fr) * | 1999-12-24 | 2008-03-05 | Bae Systems Information | Detecteur optique plat multicolore multifocal |
US7291858B2 (en) * | 1999-12-24 | 2007-11-06 | Bae Systems Information And Electronic Systems Integration Inc. | QWIP with tunable spectral response |
US6875975B2 (en) | 1999-12-24 | 2005-04-05 | Bae Systems Information And Electronic Systems Integration Inc | Multi-color, multi-focal plane optical detector |
US20030113766A1 (en) * | 2000-10-30 | 2003-06-19 | Sru Biosystems, Llc | Amine activated colorimetric resonant biosensor |
US7023544B2 (en) | 2000-10-30 | 2006-04-04 | Sru Biosystems, Inc. | Method and instrument for detecting biomolecular interactions |
US7070987B2 (en) * | 2000-10-30 | 2006-07-04 | Sru Biosystems, Inc. | Guided mode resonant filter biosensor using a linear grating surface structure |
US7101660B2 (en) | 2000-10-30 | 2006-09-05 | Sru Biosystems, Inc. | Method for producing a colorimetric resonant reflection biosensor on rigid surfaces |
US7202076B2 (en) | 2000-10-30 | 2007-04-10 | Sru Biosystems, Inc. | Label-free high-throughput optical technique for detecting biomolecular interactions |
US7371562B2 (en) * | 2000-10-30 | 2008-05-13 | Sru Biosystems, Inc. | Guided mode resonant filter biosensor using a linear grating surface structure |
US7575939B2 (en) * | 2000-10-30 | 2009-08-18 | Sru Biosystems, Inc. | Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements |
US7153702B2 (en) * | 2000-10-30 | 2006-12-26 | Sru Biosystems, Inc. | Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor |
US7615339B2 (en) * | 2000-10-30 | 2009-11-10 | Sru Biosystems, Inc. | Method for producing a colorimetric resonant reflection biosensor on rigid surfaces |
US7175980B2 (en) * | 2000-10-30 | 2007-02-13 | Sru Biosystems, Inc. | Method of making a plastic colorimetric resonant biosensor device with liquid handling capabilities |
US7217574B2 (en) * | 2000-10-30 | 2007-05-15 | Sru Biosystems, Inc. | Method and apparatus for biosensor spectral shift detection |
US20030092075A1 (en) * | 2000-10-30 | 2003-05-15 | Sru Biosystems, Llc | Aldehyde chemical surface activation processes and test methods for colorimetric resonant sensors |
US7875434B2 (en) * | 2000-10-30 | 2011-01-25 | Sru Biosystems, Inc. | Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor |
US6951715B2 (en) * | 2000-10-30 | 2005-10-04 | Sru Biosystems, Inc. | Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements |
US7142296B2 (en) * | 2000-10-30 | 2006-11-28 | Sru Biosystems, Inc. | Method and apparatus for detecting biomolecular interactions |
US7264973B2 (en) * | 2000-10-30 | 2007-09-04 | Sru Biosystems, Inc. | Label-free methods for performing assays using a colorimetric resonant optical biosensor |
US7306827B2 (en) * | 2000-10-30 | 2007-12-11 | Sru Biosystems, Inc. | Method and machine for replicating holographic gratings on a substrate |
US7118710B2 (en) * | 2000-10-30 | 2006-10-10 | Sru Biosystems, Inc. | Label-free high-throughput optical technique for detecting biomolecular interactions |
US7300803B2 (en) * | 2000-10-30 | 2007-11-27 | Sru Biosystems, Inc. | Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor |
US7429492B2 (en) * | 2002-09-09 | 2008-09-30 | Sru Biosystems, Inc. | Multiwell plates with integrated biosensors and membranes |
US7927822B2 (en) * | 2002-09-09 | 2011-04-19 | Sru Biosystems, Inc. | Methods for screening cells and antibodies |
US7309614B1 (en) | 2002-12-04 | 2007-12-18 | Sru Biosystems, Inc. | Self-referencing biodetection method and patterned bioassays |
US7497992B2 (en) * | 2003-05-08 | 2009-03-03 | Sru Biosystems, Inc. | Detection of biochemical interactions on a biosensor using tunable filters and tunable lasers |
US8298780B2 (en) * | 2003-09-22 | 2012-10-30 | X-Body, Inc. | Methods of detection of changes in cells |
JP2007510928A (ja) * | 2003-11-06 | 2007-04-26 | エス アール ユー バイオシステムズ,インコーポレイテッド | 高密度アミン機能化表面 |
US7138631B2 (en) * | 2004-06-30 | 2006-11-21 | Lockheed Martin Corporation | Photodetector employing slab waveguide modes |
US7880255B2 (en) * | 2004-07-19 | 2011-02-01 | Micron Technology, Inc. | Pixel cell having a grated interface |
KR20090086235A (ko) * | 2006-10-31 | 2009-08-11 | 에스알유 바이오시스템즈, 인코포레이티드 | 작용기화된 표면 상에서 비특이적 단백질 결합을 차단하는 방법 |
CA2683082A1 (fr) * | 2007-04-19 | 2008-10-30 | Sru Biosystems, Inc. | Procede d'utilisation d'un biocapteur pour detecter les petites molecules qui se lient directement aux cibles immobilisees |
CN101802611A (zh) * | 2007-07-11 | 2010-08-11 | Sru生物系统公司 | 鉴别离子通道调节剂的方法 |
US9134307B2 (en) * | 2007-07-11 | 2015-09-15 | X-Body, Inc. | Method for determining ion channel modulating properties of a test reagent |
JP4621270B2 (ja) | 2007-07-13 | 2011-01-26 | キヤノン株式会社 | 光学フィルタ |
US8257936B2 (en) | 2008-04-09 | 2012-09-04 | X-Body Inc. | High resolution label free analysis of cellular properties |
US20100015721A1 (en) * | 2008-06-04 | 2010-01-21 | Sru Biosystems, Inc. | Detection of Promiscuous Small Submicrometer Aggregates |
US20100291575A1 (en) * | 2009-05-15 | 2010-11-18 | Sru Biosystems, Inc. | Detection of Changes in Cell Populations and Mixed Cell Populations |
US9679091B2 (en) * | 2009-08-18 | 2017-06-13 | The United States Of America As Represented By The Secretary Of The Army | Computer designed resonant photodetectors and method of making |
US20110237535A1 (en) * | 2010-03-26 | 2011-09-29 | Sru Biosystems, Inc. | Use of Induced Pluripotent Cells and other Cells for Screening Compound Libraries |
US9411106B2 (en) | 2014-09-30 | 2016-08-09 | International Business Machines Corporation | Polarization-independent grating coupler for silicon on insulator |
JP6552523B2 (ja) * | 2014-12-16 | 2019-07-31 | 技術研究組合光電子融合基盤技術研究所 | 受光素子 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2071414A (en) * | 1980-02-25 | 1981-09-16 | Elektronikcentralen | Solar cell with enhanced radiation collection |
EP0117061A2 (fr) * | 1983-01-18 | 1984-08-29 | Exxon Research And Engineering Company | Cellule solaire |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3444381A (en) * | 1967-05-22 | 1969-05-13 | Hughes Aircraft Co | Silicon photodiode having folded electrode to increase light path length in body of diode |
US3487223A (en) * | 1968-07-10 | 1969-12-30 | Us Air Force | Multiple internal reflection structure in a silicon detector which is obtained by sandblasting |
JPS5013499B1 (fr) * | 1970-07-27 | 1975-05-20 | ||
JPS5775266U (fr) * | 1980-10-24 | 1982-05-10 | ||
JPS62155269U (fr) * | 1986-03-26 | 1987-10-02 | ||
DE3714691A1 (de) * | 1987-05-02 | 1988-12-01 | Backe Wolfgang | Mehrwegeventil |
JPH01199069A (ja) * | 1988-01-30 | 1989-08-10 | Toto Ltd | 弁装置 |
US5026148A (en) * | 1989-12-26 | 1991-06-25 | Hughes Aircraft Company | High efficiency multiple quantum well structure and operating method |
US5075749A (en) * | 1989-12-29 | 1991-12-24 | At&T Bell Laboratories | Optical device including a grating |
-
1991
- 1991-04-08 SE SE9101034A patent/SE468188B/sv unknown
-
1992
- 1992-03-27 US US07/858,519 patent/US5229614A/en not_active Expired - Lifetime
- 1992-04-02 AT AT92850073T patent/ATE145091T1/de not_active IP Right Cessation
- 1992-04-02 DE DE69214990T patent/DE69214990T2/de not_active Expired - Lifetime
- 1992-04-02 EP EP92850073A patent/EP0508970B1/fr not_active Expired - Lifetime
- 1992-04-07 JP JP4085166A patent/JP2889759B2/ja not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2071414A (en) * | 1980-02-25 | 1981-09-16 | Elektronikcentralen | Solar cell with enhanced radiation collection |
EP0117061A2 (fr) * | 1983-01-18 | 1984-08-29 | Exxon Research And Engineering Company | Cellule solaire |
Non-Patent Citations (2)
Title |
---|
APPLIED PHYSICS LETTERS. vol. 23, no. 12, 19 September 1988, NEW YORK US pages 1027 - 1029; K.W.GOOSSEN ET AL.: 'GRATING ENHANCEMENT OF QUANTUM WELL DETECTOR RESPONSE' * |
TECHNICAL DIGEST OF THE 5TH INTERNATIONAL PHOTOVOLTAIC SCIENCE AND ENGINEERING CONFERENCE 26 November 1990, KYOTO, JP pages 587 - 590; H.KIESS ET AL.: 'LIGHT TRAPPING IN SOLAR CELLS USING SUBMICRON GRATINGS' * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2729789A1 (fr) * | 1993-09-10 | 1996-07-26 | Thomson Csf | Detecteur a puits quantique et procede de realisation |
GB2299890A (en) * | 1993-09-10 | 1996-10-16 | Thomson Csf | A quantum well detector and its method of production |
GB2299890B (en) * | 1993-09-10 | 1997-08-20 | Thomson Csf | A quantum well detector and its method of production |
DE4432031B4 (de) * | 1993-09-10 | 2007-01-04 | Thomson-Csf | Detektor mit Quantensenke und Verfahren zu seiner Herstellung |
FR2803949A1 (fr) * | 1994-03-15 | 2001-07-20 | Loral Vought Systems Corp | Detecteur a infrarouges a cavite optique resonante a diffraction photovoltaique a semi-conducteur |
US5485015A (en) * | 1994-08-25 | 1996-01-16 | The United States Of America As Represented By The Secretary Of The Army | Quantum grid infrared photodetector |
US5552603A (en) * | 1994-09-15 | 1996-09-03 | Martin Marietta Corporation | Bias and readout for multicolor quantum well detectors |
EP0866504A2 (fr) * | 1997-03-19 | 1998-09-23 | Lockheed Martin Vought Systems Corporation | Detecteur infra-rouge à couplage par pastille |
EP0866504A3 (fr) * | 1997-03-19 | 1999-06-23 | Lockheed Martin Vought Systems Corporation | Detecteur infra-rouge à couplage par pastille |
FR2761813A1 (fr) * | 1997-04-08 | 1998-10-09 | Thomson Csf | Detecteur d'ondes electromagnetiques multielements a diaphotie reduite |
WO1998045884A1 (fr) * | 1997-04-08 | 1998-10-15 | Thomson-Csf | Detecteur d'ondes electromagnetiques multielements a diaphotie reduite |
US6909096B1 (en) | 1999-03-12 | 2005-06-21 | Saabtech Electronics Ab | Quantum well based two-dimensional detector for IR radiation and camera system with such a detector |
KR100349599B1 (ko) * | 2000-04-14 | 2002-08-23 | 삼성전자 주식회사 | 양자 효율이 향상된 양자점 적외선 탐지기 |
FR2815417A1 (fr) * | 2000-10-13 | 2002-04-19 | Shakticom | Filtre optique, son procede de fabrication et son utilisation pour un systeme multiplex |
WO2002031551A1 (fr) * | 2000-10-13 | 2002-04-18 | Highwave Optical Technologies Marseille | Filtres optiques, leur procede de fabrication et leur utilisation pour un systeme multiplexe |
FR2816062A1 (fr) * | 2000-10-27 | 2002-05-03 | Shakticom | Filtre optique, son procede de fabrication par dopage ionique et son utilisation pour un systeme multiplex |
FR2855653A1 (fr) * | 2003-05-27 | 2004-12-03 | Thales Sa | Structure amorphe de couplage optique pour detecteur d'ondes electromagnetiques et detecteur associe |
WO2004107392A3 (fr) * | 2003-05-27 | 2005-01-13 | Thales Sa | Structure amorphe de couplage optique pour detecteur d'ondes electromagnetiques et detecteur associe |
WO2004107392A2 (fr) * | 2003-05-27 | 2004-12-09 | Thales | Structure amorphe de couplage optique pour detecteur d'ondes electromagnetiques et detecteur associe |
US7687760B2 (en) | 2003-05-27 | 2010-03-30 | Thales | Amorphous optical coupling structure for an electromagnetic wave detector and associated detector |
US10700141B2 (en) | 2006-09-29 | 2020-06-30 | University Of Florida Research Foundation, Incorporated | Method and apparatus for infrared detection and display |
WO2011149960A3 (fr) * | 2010-05-24 | 2012-04-05 | University Of Florida Research Foundation Inc. | Procédé et appareil destinés à fournir une couche de blocage de charge sur un dispositif de conversion ascendante à infrarouge |
US8716701B2 (en) | 2010-05-24 | 2014-05-06 | Nanoholdings, Llc | Method and apparatus for providing a charge blocking layer on an infrared up-conversion device |
US9997571B2 (en) | 2010-05-24 | 2018-06-12 | University Of Florida Research Foundation, Inc. | Method and apparatus for providing a charge blocking layer on an infrared up-conversion device |
US10134815B2 (en) | 2011-06-30 | 2018-11-20 | Nanoholdings, Llc | Method and apparatus for detecting infrared radiation with gain |
US10749058B2 (en) | 2015-06-11 | 2020-08-18 | University Of Florida Research Foundation, Incorporated | Monodisperse, IR-absorbing nanoparticles and related methods and devices |
Also Published As
Publication number | Publication date |
---|---|
SE468188B (sv) | 1992-11-16 |
ATE145091T1 (de) | 1996-11-15 |
SE9101034L (sv) | 1992-10-09 |
DE69214990D1 (de) | 1996-12-12 |
JP2889759B2 (ja) | 1999-05-10 |
SE9101034D0 (sv) | 1991-04-08 |
EP0508970B1 (fr) | 1996-11-06 |
US5229614A (en) | 1993-07-20 |
DE69214990T2 (de) | 1997-05-28 |
JPH05118915A (ja) | 1993-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0508970A1 (fr) | Détecteur pour le rayonnement infrarouge | |
Chen et al. | Corrugated quantum well infrared photodetectors for normal incident light coupling | |
US5485015A (en) | Quantum grid infrared photodetector | |
US6423980B1 (en) | Multi-directional radiation coupling in quantum-well infrared photodetectors | |
US6111254A (en) | Infrared radiation detector | |
JPH11504763A (ja) | 拡張量子井戸赤外線ホトディテクタ | |
JP5250165B2 (ja) | 端面視光検出器 | |
JPH03179792A (ja) | 半導体装置の試験方法 | |
US6410917B1 (en) | Polarization-sensitive corrugated quantum well infrared photodetector array | |
CA2351430C (fr) | Couplage de rayonnement insensibleux longueurs d'onde pour capteur a puits quantique fonde sur l'absorption inter-sous-bande | |
US5677544A (en) | Quantum well detector and process for the manufacture thereof | |
Tidrow et al. | Grating coupled multicolor quantum well infrared photodetectors | |
US5228777A (en) | Quantum-well electronic bolometer and application to a radiation detector | |
US6521967B1 (en) | Three color quantum well infrared photodetector focal plane array | |
NL9500502A (fr) | ||
US6201242B1 (en) | Bandgap radiation detector | |
US5026148A (en) | High efficiency multiple quantum well structure and operating method | |
US7745815B2 (en) | Polarization-sensitive quantum well infrared photodetector focal plane array | |
US5056889A (en) | Optical device including a grating | |
US7138631B2 (en) | Photodetector employing slab waveguide modes | |
Yu et al. | A study of the coupling efficiency versus grating periodicity in a normal incident GaAs/AlGaAs multiquantum well infrared detector | |
Trommer | Monolithic InGaAs photodiode array illuminated through an integrated waveguide | |
US6271526B1 (en) | Efficient radiation coupling to quantum-well radiation-sensing array via evanescent waves | |
WO2000052763A1 (fr) | Detecteur sensible a la polarisation | |
Wang et al. | A numerical analysis of the double periodic reflection metal grating for multiquantum well infrared photodetectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE |
|
17P | Request for examination filed |
Effective date: 19930324 |
|
17Q | First examination report despatched |
Effective date: 19940620 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19961106 Ref country code: LI Effective date: 19961106 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19961106 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19961106 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19961106 Ref country code: DK Effective date: 19961106 Ref country code: CH Effective date: 19961106 Ref country code: BE Effective date: 19961106 Ref country code: AT Effective date: 19961106 |
|
REF | Corresponds to: |
Ref document number: 145091 Country of ref document: AT Date of ref document: 19961115 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 69214990 Country of ref document: DE Date of ref document: 19961212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19970206 Ref country code: PT Effective date: 19970206 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110428 Year of fee payment: 20 Ref country code: FR Payment date: 20110512 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110428 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69214990 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69214990 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20120401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120403 |