EP0501194B1 - Method of predetermining the time of maintenance of alarm detectors - Google Patents

Method of predetermining the time of maintenance of alarm detectors Download PDF

Info

Publication number
EP0501194B1
EP0501194B1 EP92101904A EP92101904A EP0501194B1 EP 0501194 B1 EP0501194 B1 EP 0501194B1 EP 92101904 A EP92101904 A EP 92101904A EP 92101904 A EP92101904 A EP 92101904A EP 0501194 B1 EP0501194 B1 EP 0501194B1
Authority
EP
European Patent Office
Prior art keywords
time
threshold
detector
functional
maintenance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92101904A
Other languages
German (de)
French (fr)
Other versions
EP0501194A1 (en
Inventor
Otto Walter Dipl.-Ing. Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0501194A1 publication Critical patent/EP0501194A1/en
Application granted granted Critical
Publication of EP0501194B1 publication Critical patent/EP0501194B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits

Definitions

  • the invention relates to a maintenance method according to the preamble of claim 1.
  • Hazard detectors preferably smoke detectors
  • the susceptibility to false alarms does not increase sharply due to an increase in sensitivity, and that the expected scope of protection can no longer be guaranteed by reducing the sensitivity, such changes in sensitivity must be recognized in good time.
  • danger detection systems with limit detectors are also known, in which it can be determined during normal operation of the danger detection system whether the detector sensitivity has changed. For example, detector signals are changed by special tactile routines such that these detectors must trigger an alarm at one time and not trigger an alarm in the other. It is also possible to issue a warning by introducing additional monitoring thresholds if they are exceeded or not reached. Due to these measures, changes in sensitivity can be recognized and false alarms are reduced. However, significant changes in responsiveness are admittedly allowed up to this point. This measure is mainly based on economic considerations, because if the warning were given too early, the operating time of the detectors would be significantly shortened, which would result in higher costs for the detector replacement.
  • a prediction device for a maintenance and inspection time is known from the patent abstract of the Japanese patent publication JP 215 35 00. It can only be inferred from the abstract that the maintenance and inspection time can be derived with a permissible deviation by predicting how the work has been carried out from that time based on current results of a work in the past and a work model and by estimating the maintenance. and inspection time for the future. For this purpose, output data from a detection means are processed with several calculation devices. A precise way of working is not to be found in the abstract.
  • the object of the invention is for hazard detection systems with rest value tracking and sliding alarm calculation threshold to specify a procedure which allows the expected service life of the detector to be predetermined with regard to its functionality, taking current and past data into account.
  • the expected detector life is extrapolated for each detector from its change in idle value over a specific, past time and from its predetermined functional threshold, which could be clearly identical, for example, to a threshold already present in the system (maintenance or fault threshold), rather, its probable duration of service is determined.
  • the period of functional reliability is therefore predetermined, in general with constant environmental influences. This enables the maintenance technician to determine, for example, regular maintenance by entering the time interval until the next maintenance appointment, all detectors that are likely to reach the functional threshold by then, and then to replace them at the same time.
  • the method according to the invention has the advantage that only soiled detectors can be replaced without causing additional maintenance costs and travel times.
  • the detector life is calculated by multiplying the difference between an actual point in time and a reference point in the past by a quotient, which is the difference between the function threshold and the detector idle value at the actual point in time and from the difference between the detector idle value at the actual time and the reference rest value.
  • the functional threshold is formed by an upper or lower threshold value, above which the detector is no longer functional, as will be described later. This can be an upper or lower maintenance threshold or fault threshold.
  • those detectors are therefore advantageously determined and displayed from the calculated expected functional duration of the individual detectors which reach or exceed the respectively predefined functional threshold by a certain later point in time, for example the period until the next maintenance.
  • the time until the next maintenance appointment is derived.
  • the detector measured value MW is recorded over the time t, which can be months or years depending on the operating conditions.
  • the detector measured value MW changes due to the contamination of the limit detector, whereby the sensitivity increases.
  • the detector measured value MW increases from the initial measured value MWa over a certain period of time and then exceeds an upper monitoring threshold ÜSo, which is intended to indicate that the detector is no longer functional above this threshold.
  • ÜSo upper monitoring threshold
  • it reaches the alarm threshold AS and thus emits a false alarm F-AL due to the increase in sensitivity.
  • the detector measured value MW changes from an initial measured value MWa below and at a time tK reaches a lower monitoring threshold USu, which generally does not lead to a message.
  • This threshold should also indicate that the detector no longer functions properly below the threshold. If such a limit detector can not report that its sensitivity has exceeded a lower monitoring threshold ÜSu, then the detector remains in the system until the next exchange cycle, and an occurring danger can no longer be indicated, because the alarm threshold AS is also present Hazard event no longer reached and an alarm is therefore no longer displayed.
  • the dirty detector could only be replaced in good time if these monitoring thresholds lead to a message.
  • the detector idle value RW is tracked and the alarm calculation threshold ABS is also carried out in a "sliding" manner, the detector sensitivity remains constant over the entire working range.
  • Fig. 4 the influence of pollution with decreasing detector idle value is very similar to that in Fig. 3 shown with increasing detector idle value. If the detector idle value RW exceeds its working range AB due to the soiling, the maintenance threshold WSu is exceeded first, which is displayed, and later the fault threshold Stu is exceeded, which is also displayed. At least at this point, the detector must be replaced.
  • the rest value RW over time t shows the rest value RW over time t.
  • the working area AB of the pulse detector is limited by the upper and lower interference threshold STo and STu and identifies the interference area SB.
  • the sliding alarm calculation threshold ABS is shown for the changing detector idle value RW.
  • the change in the rest value in the past tV is determined from a specific reference time tb to a specific actual time tx.
  • An actual idle value RWx results at the actual time tx, which can be, for example, the maintenance time.
  • the function duration tF up to the function threshold FS can then be calculated by extrapolation according to the given equation. If the change in idle value increases, this is the upper function threshold SFo, as shown in FIG. 5, if the idle value change falls, this is the lower function threshold SFu.
  • those detectors of the hazard alarm system are determined and displayed which reach or exceed the functional threshold within a certain period of time, which can be, for example, the interval between two maintenance intervals,

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Emergency Alarm Devices (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

A method for predetermining the probable period of time to a no longer permissible change in sensitivity, i.e. the operating life of alarm detectors. In an alarm detector system with quiescent value correction, the probable operating life (tF) of the detector is determined from its change in quiescent value (RWx - RWb) over a certain past period (tV=tx-tb) and its predetermined operating threshold (FS), which can also be a maintenance or disturbance threshold (WS or ST), by extrapolation: tF = (tx-tb) x FS-RWx DIVIDED RWx-RWb , where tx = particular actual time tb = reference time RWx = quiescent value at actual time RWb = quiescent value at reference time. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Wartungsverfahren gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a maintenance method according to the preamble of claim 1.

Gefahrenmelder, vorzugsweise Rauchmelder, verändern im Laufe ihrer Betriebszeit durch Umgebungseinflüsse, vor allem durch Verschmutzung ihre Empfindlichkeit. Um sicherzustellen, daß weder durch Empfindlichkeitserhöhung die Falschalarmanfälligkeit stark zunimmt noch durch Empfindlichkeitsreduzierung der zu erwartende Schutzumfang nicht mehr gewährleistet ist, müssen derartige Empfindlichkeitsveränderungen rechtzeitig erkannt werden.Hazard detectors, preferably smoke detectors, change their sensitivity over the course of their operating time due to environmental influences, especially pollution. In order to ensure that the susceptibility to false alarms does not increase sharply due to an increase in sensitivity, and that the expected scope of protection can no longer be guaranteed by reducing the sensitivity, such changes in sensitivity must be recognized in good time.

Es ist allgemein üblich, derartige Gefahrenmelder in bestimmten, aus der Erfahrung gewonnenen Zeitintervallen, die von den Einsatzbedingungen abhängig sind, generell auszutauschen und soweit möglich zu reinigen und weiter zu verwenden. Dabei wird in der Regel nicht geprüft, wieweit sich die Melderempfindlichkeit tatsächlich verändert hat. Bei diesem aufwendigen Verfahren werden eine große Anzahl von Meldern ausgetauscht, welche noch voll funktionsfähig sind und noch für lange Zeit in der Gefahrenmeldeanlage hätten verbleiben können, was unnötig hohe Kosten verursacht.It is generally customary to generally replace such hazard detectors at certain time intervals based on experience, which depend on the operating conditions, and to clean and continue to use them as far as possible. It is usually not checked to what extent the detector sensitivity has actually changed. In this complex process, a large number of detectors are exchanged, which are still fully functional and could have remained in the alarm system for a long time, which causes unnecessarily high costs.

Dieses generelle Austauschverfahren war und ist für Grenzwertmelder gerechtfertigt, deren Verschmutzungsgrad in der Meldeanlage nicht erkennbar ist und bei denen die Verschmutzung die Melderempfindlichkeit erheblich beeinflußt.This general exchange procedure was and is justified for limit value detectors, the degree of contamination of which is not recognizable in the signaling system and for which the contamination significantly affects the sensitivity of the detector.

Es sind jedoch auch Gefahrenmeldesysteme mit Grenzwertmeldern bekannt, bei denen während des normalen Betriebes der Gefahrenmeldeanlage festgestellt werden kann, ob sich die Melderempfindlichkeit verändert hat. Beispielsweise werden durch spezielle Tastroutinen Meldersignale derart verändert, daß diese Melder einmal Alarm auslösen müssen und im anderen Fall keinen Alarm auslösen dürfen. Darüber hinaus ist es möglich, durch Einführung zusätzlicher Überwachungsschwellen bei deren Über- oder Unterschreitung eine Warnung abzugeben. Aufgrund dieser Maßnahmen werden Empfindlichkeitsänderungen erkennbar und Falschalarme reduziert. Es werden jedoch in nachteiliger Weise bis zu diesem Zeitpunkt erhebliche Veränderungen der Ansprechempfindlichkeit zugelassen. Dieser Maßnahme liegen hauptsächlich wirtschaftliche Überlegungen zugrunde, denn bei einer zu frühzeitigen Warnung würde die Funktionsdauer der Melder entscheidend verkürzt, was höhere Kosten für den Melderaustausch zur Folge hätte.However, danger detection systems with limit detectors are also known, in which it can be determined during normal operation of the danger detection system whether the detector sensitivity has changed. For example, detector signals are changed by special tactile routines such that these detectors must trigger an alarm at one time and not trigger an alarm in the other. It is also possible to issue a warning by introducing additional monitoring thresholds if they are exceeded or not reached. Due to these measures, changes in sensitivity can be recognized and false alarms are reduced. However, significant changes in responsiveness are admittedly allowed up to this point. This measure is mainly based on economic considerations, because if the warning were given too early, the operating time of the detectors would be significantly shortened, which would result in higher costs for the detector replacement.

Bei Gefahrenmeldesystemen, in denen analoge Meldermeßwerte zur Zentrale übertragen und dort weiterverarbeitet werden. z.B. beim bekannten Pulsmeldesystem, wird heute betriebsmäßig überwacht, ob der aus den aktuellen Meldermeßwerten abgeleitete Ruhewert noch im zulässigen Arbeitsbereich liegt. Verläßt der Melderruhewert, beispielsweise aufgrund von Verschmutzung, seinen Arbeitsbereich, so wird zuerst eine Wartungsschwelle, später eine Störungsschwelle überschritten, was in der Zentrale für den betreffenden Melder angezeigt werden kann. beim Pulsmeldesystem wird durch die Ruhewertnachführung und die gleitende Alarmberechnungsschwelle die Melderempfindlichkeit über einen sehr langen Zeitraum konstant gehalten (EP-B1-0 70 449). Bei diesem Meldesystem wäre ein Austausch ausschließlich von verschmutzten Meldern, also von solchen, die nach Überschreiten einer der genannten Schwellen selbsttätig angezeigt werden, möglich. Ein derartig gezielter Austausch wird jedoch im allgemeinen nicht vorgenommen.In hazard detection systems in which analog detector measurement values are transmitted to the control center and processed there. For example, in the known pulse detection system, operational monitoring is carried out today to determine whether the idle value derived from the current detector measurement values is still within the permissible working range. If the detector idle value leaves its working area, for example due to contamination, a maintenance threshold is exceeded first, and then a fault threshold is exceeded, which can be displayed in the control center for the detector in question. With the pulse detection system, the resting sensitivity and the sliding alarm calculation threshold keep the detector sensitivity constant over a very long period of time (EP-B1-0 70 449). With this signaling system, it would be possible to exchange only dirty detectors, i.e. those that are automatically displayed after one of the above-mentioned thresholds is exceeded. Such a thing however, there is generally no targeted exchange.

Die Zeitdauer für das Durchlaufen des Arbeitsbereichs des Melders, d.h. seine Funktionsdauer, ist jedoch stark davon abhängig, unter welchen Umgebungsbedingungen der Melder eingesetzt ist. Werden tatsächlich die wegen Überschreitung der Wartungsschwelle angezeigten Melder ausgetauscht, so hat dieses Verfahren den Nachteil, daß kurze Zeit nach dem Austausch der angezeigten, verschmutzten Melder ein oder mehrere andere Melder in den Wartungs- bzw. Störungsbereich kommen und somit zusätzliche Wartungs- und Wegkosten anfallen können. Aus diesem Grund wird auch bei Gefahrenmeldeanlagen, die nach dem Prinzip der Pulsmeldetechnik arbeiten, weiterhin das von der Grenzwertmeldetechnik hier eingeführte regelmäßige Austauschverfahren, wenn auch mit verlängerten Zeitabständen, beibehalten.The length of time it takes to go through the detector's work area, i.e. its service life, however, depends heavily on the environmental conditions under which the detector is used. If the detectors displayed due to the maintenance threshold being exceeded are actually replaced, this method has the disadvantage that a short time after the exchange of the displayed, soiled detectors, one or more other detectors come into the maintenance or fault area and thus additional maintenance and travel costs are incurred can. For this reason, even in the case of hazard detection systems that work according to the principle of pulse detection technology, the regular exchange procedure introduced here by the limit value detection technology continues, albeit with extended intervals.

Aus dem Patent Abstract der japanischen Patentveröffentlichung JP 215 35 00 ist eine Vorhersagevorrichtung für eine Instandhaltungs- und Inspektionszeit bekannt. Aus dem Abstract ist nur entnehmbar, daß die Instandhaltungs- und Inspektionszeit mit einer zulässigen Abweichung hergeleitet werden kann durch die Vorhersage, wie die Arbeitsweise von dieser Zeit an durchgeführt wurde aufgrund aktueller Ergebnisse einer Arbeitsweise in der Vergangenheit und eines Arbeitsmodells und durch Schätzung der Instandhaltung- und Inspektionszeit für die Zukunft. Dazu werden Ausgangsdaten eines Detektionsmittels mit mehreren Kalkulationseinrichtungen bearbeitet. Eine genaue Arbeitsweise ist dem Abstract nicht zu entnehmen.A prediction device for a maintenance and inspection time is known from the patent abstract of the Japanese patent publication JP 215 35 00. It can only be inferred from the abstract that the maintenance and inspection time can be derived with a permissible deviation by predicting how the work has been carried out from that time based on current results of a work in the past and a work model and by estimating the maintenance. and inspection time for the future. For this purpose, output data from a detection means are processed with several calculation devices. A precise way of working is not to be found in the abstract.

Aufgabe der Erfindung ist es, für Gefahrenmeldeanlagen mit Ruhewertnachführung und gleitender Alarmberechnungsschwelle ein Verfahren anzugeben, welches erlaubt, die voraussichtliche Melderlebensdauer im Hinblick auf seine Funktionstüchtigkeit vorauszubestimmen unter Berücksichtigung von aktuellen und vergangenen Daten.The object of the invention is for hazard detection systems with rest value tracking and sliding alarm calculation threshold to specify a procedure which allows the expected service life of the detector to be predetermined with regard to its functionality, taking current and past data into account.

Diese Aufgabe wird bei dem eingangs beschriebenen Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This object is achieved in the method described at the outset with the characterizing features of claim 1.

Mit dem erfindungsgemäßen Verfahren wird für jeden Melder aus seiner Ruhewertänderung über eine bestimmte, vergangene Zeit hinweg und aus seiner vorgegebenen Funktionsschwelle, die beispielsweise deutlich mit einer bereits im System vorhandenen Schwelle (Wartungs- oder Störungsschwelle) identisch sein könnte, durch Extrapolation die voraussichtliche Melderlebensdauer, besser gesagt, seine wahrscheinliche Funktionsdauer, ermittelt. Es wird also, im allgemeinen bei gleichbleibenden Umgebungseinflussen, die Zeitdauer der Funktionstüchtigkeit vorausbestimmt. Dadurch kann der Wartungstechniker bei einer beispielsweise turnusmäßigen Wartung durch Eingabe des zeitlichen Abstands bis zum nächsten Wartungstermin alle Melder ermitteln, die voraussichtlich bis dahin die Funktionsschwelle erreichen werden, und dann diese gleichzeitig auch austauschen. Das erfindungsgemäße Verfahren hat den Vorteil, daß nur noch verschmutzte Melder getauscht werden, ohne dadurch zusätzliche Wartungskosten und Wegezeiten zu verursachen. Da aus den jetzigen Reinigungsverfahren bekannt ist, daß von den derzeit turnusmäßig ausgetauschten Meldern nur ein sehr geringer Teil tatsächlich verschmutzt ist, lassen sich mit dem erfindungsgemäßen Verfahren erhebliche Kosten einsparen, wen aufgrund dieses Verfahrens in Zukunft deutlich weniger Melder getauscht und gegebenenfalls gereinigt werden müssen, als bisher. Eine große Anzahl von sauberen und voll funktionsfähigen Meldern kann somit wesentlich länger in der Gefahrenmeldeanlage verbleiben.With the method according to the invention, the expected detector life is extrapolated for each detector from its change in idle value over a specific, past time and from its predetermined functional threshold, which could be clearly identical, for example, to a threshold already present in the system (maintenance or fault threshold), rather, its probable duration of service is determined. The period of functional reliability is therefore predetermined, in general with constant environmental influences. This enables the maintenance technician to determine, for example, regular maintenance by entering the time interval until the next maintenance appointment, all detectors that are likely to reach the functional threshold by then, and then to replace them at the same time. The method according to the invention has the advantage that only soiled detectors can be replaced without causing additional maintenance costs and travel times. Since it is known from the current cleaning methods that only a very small part of the detectors currently exchanged at regular intervals is actually contaminated, considerable savings can be made with the method according to the invention if, due to this method, significantly fewer detectors have to be exchanged and possibly cleaned in the future, as before. A large number of clean and fully functional detectors can therefore remain in the alarm system for a significantly longer time.

Dabei wird erfindungsgemäß die Melderlebensdauer, besser Funktionsdauer, errechnet, indem die Differenz von einem Ist-zeitpunkt und einem Bezugszeitpunkt in der Vergangenheit mit einem Quotienten multipliziert wird, welcher aus der Differenz von der Funktionsschwelle und dem Melderruhewert zum Istzeitpunkt und aus der Differenz von dem Melderruhewert zum Istzeitpunkt und dem Bezugs-Ruhewert gebildet ist. Die Funktionsschwelle wird von einem oberen oder unteren Schwellwert gebildet, ab dem der Melder nicht mehr funktionstüchtig ist, wie später noch beschrieben wird. Dies kann eine obere oder untere Wartungsschwelle oder Störungsschwelle sein.According to the invention, the detector life, or better the function, is calculated by multiplying the difference between an actual point in time and a reference point in the past by a quotient, which is the difference between the function threshold and the detector idle value at the actual point in time and from the difference between the detector idle value at the actual time and the reference rest value. The functional threshold is formed by an upper or lower threshold value, above which the detector is no longer functional, as will be described later. This can be an upper or lower maintenance threshold or fault threshold.

Bei dem erfindungsgemäßen Verfahren werden also in vorteilhafter Weise aus der berechneten voraussichtlichen Funktionsdauer der einzelnen Melder diejenigen Melder ermittelt und angezeigt, welche bis zu einem bestimmten späteren Zeitpunkt, z.B. die Zeitspanne bis zur nächsten Wartung, die jeweils vorgegebene Funktionsschwelle erreichen oder überschreiten. Es wird in Abhängigkeit von der ermittelten Funktionsdauer der einzelnen Melder die Zeit bis zum nächsten Wartungstermin hergeleitet.In the method according to the invention, those detectors are therefore advantageously determined and displayed from the calculated expected functional duration of the individual detectors which reach or exceed the respectively predefined functional threshold by a certain later point in time, for example the period until the next maintenance. Depending on the determined duration of operation of the individual detectors, the time until the next maintenance appointment is derived.

Anhand von Diagramm-Zeichnungen wird das erfindungsgemäße Verfahren im folgenden kurz erläutert. Dabei zeigen

  • Fig.1 und 2 den Einfluß der Verschmutzung auf einen bekannten Grenzwertmelder mit größerwerdender Empfindlichkeit in Fig. 1 und mit kleiner werdender Empfindlichkeit in Fig. 2,
  • Fig. 3 und 4 den Einfluß der Verschmutzung auf einen bekannten Pulsmelder mit konstant bleibender Empfindlichkeit, jedoch mit größer werdendem Melderruhewert in Fig. 3 und mit kleiner werdendem Melderruhewert in Fig.4 und
  • Fig. 5 ein Diagramm zur Vorausbestimmung der voraussichtlichen Funktionsdauer.
The method according to the invention is briefly explained below using diagram drawings. Show
  • 1 and 2 the influence of pollution on a known limit detector with increasing sensitivity in Fig. 1 and with decreasing sensitivity in Fig. 2,
  • 3 and 4 the influence of contamination on a known pulse detector with constant sensitivity, but with increasing detector idle value in Fig. 3 and with decreasing detector idle value in Fig. 4 and
  • Fig. 5 is a diagram for predicting the expected service life.

In den Fig. 1 und 2 ist jeweils der Meldermeßwert MW über der Zeit t, die je nach Einsatzbedingungen Monate oder Jahre betragen kann, aufgezeichnet. In Fig.1 ändert sich der Meldermeßwert MW aufgrund der Verschmutzung des Grenzwertmelders, wobei die Empfindlichkeit größer wird. Vom Ausgangsmeßwert MWa steigt über einen bestimmten Zeitraum hinweg der Meldermeßwert MW an und überschreitet dann eine obere Uberwachungsschwelle ÜSo, die andeuten soll, daß oberhalb dieser Schwelle der Melder nicht mehr funktionstüchtig ist. Zu einem wesentlich späteren Zeitpunkt tAL erreicht er die Alarmschwelle AS und gibt somit aufgrund der Empfindlichkeitsvergrößerung einen Fehlalarm F-AL ab.1 and 2, the detector measured value MW is recorded over the time t, which can be months or years depending on the operating conditions. In Fig.1 the detector measured value MW changes due to the contamination of the limit detector, whereby the sensitivity increases. The detector measured value MW increases from the initial measured value MWa over a certain period of time and then exceeds an upper monitoring threshold ÜSo, which is intended to indicate that the detector is no longer functional above this threshold. At a much later time tAL, it reaches the alarm threshold AS and thus emits a false alarm F-AL due to the increase in sensitivity.

In der Fig.2 ist der Einfluß der Verschmutzung auf den Grenzwertmelder mit Meldermeßwert MW und kleiner werdender Empfindlichkeit dargestellt. Aufgrund der Verschmutzung ändert sich der Meldermeßwert MW von einem Ausgangsmeßwert MWa nach unten und erreicht zu einem Zeitpunkt tK eine untere Uberwachungsschwelle USu, was in der Regel zu keiner Meldung führt. Auch diese Schwelle soll andeuten, daß unterhalb der Schwelle der Melder nicht mehr richtig funktioniert. Kann ein solcher Grenzwertmelder keine Meldung darüber abgeben, daß seine Empfindlichkeit eine untere Uberwachungsschwelle ÜSu überschritten hat, so verbleibt in nachteiliger Weise der Melder bis zum nächsten Tauschzyklus in der Anlage und eine eintretende Gefahr kann nicht mehr angezeigt werden, weil die Alarmschwelle AS auch bei vorhandenem Gefahrenereignis nicht mehr erreicht und ein Alarm somit nicht mehr angezeigt wird. Nur wenn diese Überwachungsschwellen zu einer Meldung führen, könnte der verschmutzte Melder rechtzeitig getauscht werden.2 shows the influence of contamination on the limit detector with detector measured value MW and decreasing sensitivity. Due to the contamination, the detector measured value MW changes from an initial measured value MWa below and at a time tK reaches a lower monitoring threshold USu, which generally does not lead to a message. This threshold should also indicate that the detector no longer functions properly below the threshold. If such a limit detector can not report that its sensitivity has exceeded a lower monitoring threshold ÜSu, then the detector remains in the system until the next exchange cycle, and an occurring danger can no longer be indicated, because the alarm threshold AS is also present Hazard event no longer reached and an alarm is therefore no longer displayed. The dirty detector could only be replaced in good time if these monitoring thresholds lead to a message.

In den Figuren 3 und 4 wird der Einfluß der Verschmutzung auf einen Pulsmelder, bei dem die Melderempfindlichkeit bekanntermaßen konstant bleibt, betrachtet. Über der Zeit t (Monate oder Jahre) ist der Melderruhewert RW ausgehend von einem Anfangswert RWa aufgetragen. Der eigentliche Arbeitsbereich AB des Melders ist durch eine obere und untere Wartungsschwelle WSo und WSu begrenzt. Ferner ist ein Störungsbereich SB vorgegeben, der einmal von einer oberen Störungsschwelle STo und einer unteren Störungsschwelle STu begrenzt wird. Dazwischen liegt jeweils ein Wartungsbereich WB. Diese Schwellen sind wie bekannt in der Gefahrenmeldeanlage in der Zentrale für jeden Melder vorgegeben.In Figures 3 and 4, the influence of contamination on a pulse detector, in which the detector sensitivity is known to remain constant, is considered. The detector idle value RW is plotted over time t (months or years), starting from an initial value RWa. The actual working area AB of the detector is limited by an upper and lower maintenance threshold WSo and WSu. Furthermore, a fault range SB is specified, which is limited by an upper fault threshold STo and a lower fault threshold STu. In between there is a maintenance area WB. As is known, these thresholds are specified in the alarm system in the control center for each detector.

Da bei der bekannten Pulsmeldetechnik der Melderruhewert RW nachgeführt wird und entsprechend "gleitend" auch die Alarmberechnungsschwelle ABS mitgeführt wird, bleibt die Melderempfindlichkeit über den gesamten Arbeitsbereich konstant.Since in the known pulse signaling technology the detector idle value RW is tracked and the alarm calculation threshold ABS is also carried out in a "sliding" manner, the detector sensitivity remains constant over the entire working range.

In Fig. 4 ist der Einfluß der Verschmutzung mit kleiner werdendem Melderruhewert in ganz ähnlicher Weise wie in Fig.3 bei größer werdendem Melderruhewert dargestellt. Überschreitet der Melderruhewert RW aufgrund der Verschmutzung seinen Arbeitsbereich AB, so wird zuerst die Wartungsschwelle WSu überschritten, was angezeigt wird, und später die Störungsschwelle Stu überschritten, die ebenfalls angezeigt wird. Zumindest zu diesem Zeitpunkt muß der Melder ausgetauscht werden.In Fig. 4 the influence of pollution with decreasing detector idle value is very similar to that in Fig. 3 shown with increasing detector idle value. If the detector idle value RW exceeds its working range AB due to the soiling, the maintenance threshold WSu is exceeded first, which is displayed, and later the fault threshold Stu is exceeded, which is also displayed. At least at this point, the detector must be replaced.

Bei dem erfindungsgemäßen Verfahren wird die voraussichtliche Funktionsdauer errechnet nach folgender Beziehung: tF = (tx - tb) · FS - RWx RWx - RWb

Figure imgb0001
In the method according to the invention, the expected service life is calculated according to the following relationship: tF = (tx - tb) FS - RWx RWx - RWb
Figure imgb0001

In Fig. 5 ist der Ruhewert RW über der Zeit t aufgetragen. Der Arbeitsbereich AB des Pulsmelders ist von der oberen und unteren Störungsschwelle STo und STu begrenzt und kennzeichnet den Störungsbereich SB. Zum sich verändernden Melderruhewert RW ist die gleitende Alarmberechnungsschwelle ABS eingezeichnet. Die Ruhewertsveränderung in der Vergangenheit tV wird ab einem bestimmten Bezugszeitpunkt tb bis zu einem bestimmten Ist-Zeitpunkt tx ermittelt. Zum Ist-Zeitpunkt tx, der beispielsweise der Wartungszeitpunkt sein kann, ergibt sich ein Ist-Ruhewert RWx. Durch Extrapolation kann dann nach der angegebenen Gleichung die Funktionsdauer tF bis zur Funktionsschwelle FS errrechnet werden. Bei ansteigender Ruhewertveränderung ist dies die obere Funktionsschwelle SFo, wie in Fig. 5 gezeigt, bei fallender Ruhewertveränderung ist dies die untere Funktionsschwelle SFu. Aufgrund dieser berechneten voraussichtlichen Funktionsdauer jedes Melders werden diejenigen Melder der Gefahrenmeldeanlage ermittelt und angezeigt, welche bis zu einer bestimmten Zeitspanne, die beispielsweise der Abstand zwischen zwei Wartungsintervallen sein kann, oder innerhalb dieser Zeit die Funktionsschwelle erreichen bzw. überschreiten.5 shows the rest value RW over time t. The working area AB of the pulse detector is limited by the upper and lower interference threshold STo and STu and identifies the interference area SB. The sliding alarm calculation threshold ABS is shown for the changing detector idle value RW. The change in the rest value in the past tV is determined from a specific reference time tb to a specific actual time tx. An actual idle value RWx results at the actual time tx, which can be, for example, the maintenance time. The function duration tF up to the function threshold FS can then be calculated by extrapolation according to the given equation. If the change in idle value increases, this is the upper function threshold SFo, as shown in FIG. 5, if the idle value change falls, this is the lower function threshold SFu. On the basis of this calculated expected duration of function of each detector, those detectors of the hazard alarm system are determined and displayed which reach or exceed the functional threshold within a certain period of time, which can be, for example, the interval between two maintenance intervals, or within this time.

In Fig. 5 ist die Ruhewertänderung für annähernd linearen Verlauf dargestellt. Verläuft die Änderung des Ruhewerts aufgrund der Verschmutzung nicht linear, so kann das erfindungsgemäße Verfahren ebenso angewandt werden. Es muß dann dieser Verlauf durch eine passende mathematische Funktion für die Ruhewertänderung angenähert werden. Aus dem Schnittpunkt dieser Kurve mit der Funktionsschwelle ergibt sich dann wieder die wahrscheinliche Funktionsdauer des Melders.5 shows the change in the rest value for an approximately linear course. If the change in the rest value is not linear due to the pollution, the method according to the invention can also be used. This course must then be approximated by a suitable mathematical function for the change in the rest value. From the intersection of this curve with the function threshold, the probable duration of the function of the detector is again determined.

Claims (2)

  1. Maintenance method, the maintenance time for a hazard detection system being predicted taking into account current and previous data, which system operates with quiescent value tracking, the functional duration of hazard detectors, that is the probable time duration until a no longer admissible sensitivity change for each detector, being calculated, characterized in that the probable functional duration (tF) is determined by extrapolation from its quiescent value change (Rwx - Rwb) over a specific past time period (tV) and from its predetermined functional threshold (FS), the functional duration (tF) being calculated from the difference between the current time (tx) and the reference time (tb) multiplied by the quotient of the difference between the functional threshold (FS) and the detector quiescent value at the current time (Rwx) and the difference between the detector quiescent value at the current time (Rwx) and the reference quiescent value (Rwb), an upper functional threshold (FSo) being laid down in the case of a rising quiescent value change and a lower functional threshold (FSu) being laid down in the case of a falling quiescent value change, and the functional threshold (FS) being able to be defined by the operating range (AB) and a maintenance threshold or a fault threshold (ST) of the detector.
  2. Method according to Claim 1, characterized in that, from the calculated anticipated functional duration of the individual detectors, those detectors of the hazard detection system which at a specific later time, for example the time interval until the next maintenance, will reach or exceed the predetermined functional threshold, are determined and indicated.
EP92101904A 1991-02-26 1992-02-05 Method of predetermining the time of maintenance of alarm detectors Expired - Lifetime EP0501194B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4106025 1991-02-26
DE4106025 1991-02-26

Publications (2)

Publication Number Publication Date
EP0501194A1 EP0501194A1 (en) 1992-09-02
EP0501194B1 true EP0501194B1 (en) 1997-07-30

Family

ID=6425926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92101904A Expired - Lifetime EP0501194B1 (en) 1991-02-26 1992-02-05 Method of predetermining the time of maintenance of alarm detectors

Country Status (4)

Country Link
EP (1) EP0501194B1 (en)
AT (1) ATE156286T1 (en)
DE (1) DE59208736D1 (en)
ES (1) ES2106097T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2387969A1 (en) * 2000-08-30 2002-03-07 General Electric Company Computerized method and system for determining degradation of dc link capacitors
FR2829271B1 (en) * 2001-08-28 2005-12-02 J C Decaux TELESURVEILLANCE SYSTEM FOR LUMINOUS DISPLAY DEVICE
WO2005031268A2 (en) * 2003-09-18 2005-04-07 Siemens Aktiengesellschaft Measuring device for detecting a threshold value
GB2537940B (en) 2015-05-01 2018-02-14 Thorn Security Fire detector drift compensation
DE102017200544A1 (en) 2017-01-13 2018-07-19 Siemens Schweiz Ag Determination of a lead time for the replacement of an optical smoke detector depending on its contamination

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA785255B (en) * 1978-09-15 1979-12-27 Anglo Amer Corp South Africa Alarm system
DE3127324A1 (en) * 1981-07-10 1983-01-27 Siemens AG, 1000 Berlin und 8000 München METHOD AND ARRANGEMENT FOR INCREASING THE SENSITIVITY AND EMERGENCY SAFETY IN A DANGER, IN PARTICULAR FIRE DETECTING SYSTEM
CH669859A5 (en) * 1986-06-03 1989-04-14 Cerberus Ag
US4881060A (en) * 1988-11-16 1989-11-14 Honeywell Inc. Fire alarm system
DE3900456A1 (en) * 1989-01-10 1990-07-12 Heiland Bernd Service indicator module

Also Published As

Publication number Publication date
ATE156286T1 (en) 1997-08-15
DE59208736D1 (en) 1997-09-04
ES2106097T3 (en) 1997-11-01
EP0501194A1 (en) 1992-09-02

Similar Documents

Publication Publication Date Title
DE2153605C2 (en) Remote monitoring system for a PCM transmission system
DE2857262C2 (en) Procedure for the detection of gases
DE3611816C2 (en)
EP0070449A1 (en) Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
DE2341087B2 (en) Automatic fire alarm system
EP0067339A2 (en) Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
EP0007579A1 (en) Circuit arrangement for monitoring the state of signalling systems, especially traffic light signalling systems
EP0121048A1 (en) Circuit arrangement for the interference level control of detectors, arranged in a danger detection device
EP0501194B1 (en) Method of predetermining the time of maintenance of alarm detectors
DE3120986A1 (en) METHOD AND ARRANGEMENT FOR REVISION IN A DANGER, IN PARTICULAR FIRE DETECTING SYSTEM
CH652519A5 (en) FIRE ALARM DEVICE AND METHOD FOR THEIR OPERATION.
EP0465622B1 (en) Welding monitoring device
DE3128811A1 (en) Multiplexed alarm signalling system
CH660927A5 (en) MONITORING SYSTEM.
DE3829825C2 (en)
DE102011101172A1 (en) Method for multi-address recognition in actuator sensor interface network, involves releasing switching or warning signal during overlapping of response signals, arranging recognition logic in slaves for recognizing multi-addressing
EP0654771B1 (en) Method for preventing false alarms in a fire detecting system and device for performing this method
EP2169645A1 (en) Test of reporting lines on a danger reporting assembly
EP1325354B1 (en) Method for shortening the statistical measuring times in the domain of radioactivity measurements
AT393916B (en) METHOD FOR MONITORING THE INSULATION RESISTANCE OF A SHEET OF ASSEMBLIES OF AN ELECTRICAL SYSTEM WITH A COMMON EARTH-FREE POWER SUPPLY, IN PARTICULAR A TELECOMMUNICATION OR SIGNALING DEVICE
DE3225081A1 (en) METHOD AND DEVICE FOR AUTOMATICALLY INQUIRING THE DETECTOR MEASUREMENT VALUE AND DETECTOR DETECTION IN A DANGER DETECTING SYSTEM
DE3225032C2 (en) Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system
DE3225106A1 (en) METHOD AND DEVICE FOR AUTOMATICALLY INQUIRING THE DETECTOR MEASUREMENT VALUE AND DETECTOR DETECTION IN A DANGER DETECTING SYSTEM
EP0121102B1 (en) Arrangement for switching individual indicators over to the monitoring operation in a danger alarm system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19930204

17Q First examination report despatched

Effective date: 19951129

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 156286

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59208736

Country of ref document: DE

Date of ref document: 19970904

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2106097

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010117

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010208

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010215

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010511

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020205

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050205