EP0498296A2 - Kokille zum Stranggiessen von Metallen, insbesondere von Stahl - Google Patents

Kokille zum Stranggiessen von Metallen, insbesondere von Stahl Download PDF

Info

Publication number
EP0498296A2
EP0498296A2 EP92101506A EP92101506A EP0498296A2 EP 0498296 A2 EP0498296 A2 EP 0498296A2 EP 92101506 A EP92101506 A EP 92101506A EP 92101506 A EP92101506 A EP 92101506A EP 0498296 A2 EP0498296 A2 EP 0498296A2
Authority
EP
European Patent Office
Prior art keywords
strand
mold
section
cross
mold cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92101506A
Other languages
English (en)
French (fr)
Other versions
EP0498296A3 (en
EP0498296B1 (de
EP0498296B2 (de
Inventor
Franciszek Kawa
Adrian Stilli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Concast Standard AG
Original Assignee
Concast Standard AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25684364&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0498296(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Concast Standard AG filed Critical Concast Standard AG
Publication of EP0498296A2 publication Critical patent/EP0498296A2/de
Publication of EP0498296A3 publication Critical patent/EP0498296A3/de
Publication of EP0498296B1 publication Critical patent/EP0498296B1/de
Application granted granted Critical
Publication of EP0498296B2 publication Critical patent/EP0498296B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths

Definitions

  • the invention relates to a mold for the continuous casting of metals according to the preamble of claim 1.
  • the invention has for its object to overcome the disadvantages mentioned.
  • deformation of the strand cross section within the mold is intended to achieve cooling of the strand crust that can be measured over the entire circumference, in order to improve the strand quality on the one hand and to increase the casting speed on the other hand.
  • differences in casting speed during a running casting should also be made possible without the disadvantages mentioned, such as strand break and breakthrough.
  • the mold according to the invention it is possible, in the case of billets and small pre-block cross sections, to force cooling that is uniform in all circumferential sections and that can be measured in terms of its intensity within predetermined limits. This can influence the crystallization of the strand crust and improve the strand quality. Skewed edges, surface and structural defects are avoidable.
  • the uniformity of the cooling along the strand circumference can also be improved in the mold according to the invention, even at different casting speeds. The risk of strand breaks or breakthroughs can be significantly reduced at high casting speeds.
  • the bulges of the mold cavity in each circumferential section each represent arched vaults in the mold according to the invention, which have a higher dimensional stability compared to classic molds, in particular in the area of the bath surface that is exposed to high heat. With tube and other molds, this higher dimensional stability improves the dimensional stability of the mold cavity during the service life of the mold on the one hand and the strand quality on the other.
  • the bulge is usually reduced from the bath level area along the mold cavity over a partial length or over the entire length of the mold.
  • a residual bulge can remain in each peripheral section.
  • the mold can also be round or a preliminary profile, e.g. in the form of a double-T beam.
  • the difference between the arc length at the bath level and at the mold exit or the chord length at the mold exit is determined and compared with the shrinkage of the strand crust transverse to the direction of the strand.
  • the difference mentioned can be chosen by the degree of bulging so that it is essentially in agreement with the shrinkage mentioned.
  • the light dimension between opposite circumferential sections of the mold cavity on the pouring side measured in the region of the largest bulge, is approximately 5-15%, preferably at least 5% or 8%, larger than the light dimension between opposite circumferential sections can be selected on the strand exit side.
  • the amount of bulging along the mold can decrease degressively or possibly progressively in the casting direction and can approach zero.
  • the size of the bulges in the strand running direction of the following cross sections can advantageously decrease continuously.
  • the change in the mass of the bulge in the strand running direction can also be specified as a degree of taper.
  • the shape and size of the bulge are generally the same in all sections.
  • the conicity of the bulge changes in size along the circumferential section.
  • a taper between 0 and 1% / m and at the center of the peripheral section between 10 and 35% / m can be provided at the two ends of each peripheral section.
  • Another possible variation is the choice of the length or partial length of the mold cavity with bulged side walls. It is fundamentally possible for the amount of bulging to be reduced over the entire length of the mold cavity. However, only partial lengths are conceivable.
  • An advantageous embodiment provides for a partial length of at least 50% of the mold length. With today's molds of 800 mm length, the partial length is at least 400 mm.
  • the taper in the corners or in the corner areas is greater by a factor of 2 than on the side walls.
  • this fact can lead to jams and strand breaks.
  • the conically arranged walls of the molds known in the prior art the The strand cross-sectional shape is deformed as it passes through the partial length of the mold cavity and the cooling capacity is controlled in the process.
  • the design of the taper can be freely selected regardless of the size and degree of taper of the bulge.
  • the corners of the mold cavity are rounded in polygonal strand cross sections. It has proven particularly advantageous if the corners of the mold cavity have fillets with a radius of 3 to 8% of the side length of the cross section.
  • the bulged mold walls can have different geometric shapes. According to one embodiment, it is proposed to limit the bulges by means of arcs, the radii of which increase to infinity in the direction of the strand. To simplify the manufacture of mold tubes or mold walls, it may also be advantageous to limit the bulges by means of curved and / or flat surfaces.
  • molds with bulges that shrink in the direction of the strand can be accomplished by hot or cold working of copper walls. According to one embodiment, it is particularly advantageous if at least a partial length of the mold cavity is produced by explosion deformation.
  • a high-precision mold with a straight or curved strand axis can be produced by pressing in a mandrel with bulges and subsequent explosion deformation.
  • FIG. 1 and 2 show a mold 3 for the continuous casting of polygonal strand cross sections, in the present example of square strand cross sections.
  • An arrow 4 points to a pouring side and an arrow 5 a strand exit side of the mold 3.
  • the cross sections of a mold cavity 6 have different geometrical shapes on the pouring and strand exit side.
  • the cross-section of the mold cavity 6 on the pouring side 4 between the corners 8 - 8 ′′ ′′ is provided with cross-sectional enlargements in the form of bulges 9.
  • An arc height 10 which represents the extent of the bulge, decreases continuously in the strand running direction 11 over a partial length 12 of the mold cavity 6.
  • the mold cavity cross sections in the planes 14 and 15 delimit a mold part 13 with a square cross section with fillets 16, as is known in the prior art.
  • a circumferential line 17 shows the mold cavity cross section in the plane 14 and a circumferential line 18 shows the mold cavity cross section in the plane 15.
  • the cross section of the mold cavity 6 is straight on all sides between the corners 8 on the mold exit side.
  • An arrow 2 denotes a peripheral section of the peripheral lines of the mold cavity 6.
  • 4 peripheral sections with similar cross-sectional enlargements 7 are provided.
  • a hexagonal, rectangular etc. cross section could also serve as the basic shape.
  • a light dimension 20 between opposite sides of the mold cavity 6 on the pouring side 4 in the area of the largest bulge is 5 to 15% larger than a light dimension 21 between the opposite sides on the strand exit side 5.
  • the light dimension 20 can also be at least 5% or at least 8% larger than the light dimension 22 in the plane 14 at the end of the partial length 12.
  • the arch height 10 of the bulge 9 decreases continuously in the direction of the strand 11 with the following cross sections.
  • the Conicity of the maximum arc height 10 along a line 24 can be according to the formula are calculated, where Bo is the upper width in mm, Bu is the lower width in mm, L is the decisive length in m and T is the taper (or taper) in% / m. Conicities of 10 - 35% / m can be selected using this formula.
  • the partial length 12 is 400 mm or approximately 50% of the mold length, which measures approximately 800 mm.
  • height curves 30-33 show a corner of a bulged mold cavity 35.
  • the height curve 30 represents the uppermost edge of the mold cavity 35 of the mold 34.
  • the wall thickness of a mold tube is indicated by 36.
  • 33 shows the height curve at the mold exit. Between the curves 30 and 33, the taper can be read out at two intermediate heights. Curves 31 and 32 show the decreasing arc heights of the bulges, which cause the strand crust to deform during casting.
  • the taper of the mold cavity 35 along a diagonal cut along the line 39 is 0-1% / m, preferably 0.1-0.5% / m. A deformation of the strand crust along line 39 is generally not provided.
  • FIG. 4 shows similar height curves 40-43 as in FIG. 3.
  • the main difference lies in the design of the fillet 48 along the diagonal line 49.
  • the fillet 48 has a negative cone in the direction of the strand. In the corner area in the strand running direction there is therefore an expansion of the mold cavity.
  • chosen arc height of the bulge which has to be deformed back, it may be of interest to provide a negative cone at the corners 48 along the diagonal line 49 in order to eliminate any jamming of the strand in the mold.
  • Due to the geometrical design of the corner area the cooling in the edge area of the strand can also be controlled.
  • a negative cone along the diagonal line 49 may also be desirable to accommodate tendon extensions when deforming strong bulges that are not compensated for by the shrinkage.
  • Fig. 5 the bulges are limited by straight surface parts. Elevation curves 50 - 53 represent a steady decrease in the bulges. In order to ensure that there is no abutting edge in the middle of the bulged sides, a rounding 54 is appropriate.
  • the straight surface portion runs tangentially to a fillet 58. In this example, no taper is provided along the groove 58 in the direction of the strand. In a section along the diagonal 59, the fillet 58 runs essentially parallel to the longitudinal central axis of the mold.
  • Circumferential lines 61, 71 of the mold cavity cross section are each divided into three peripheral sections 62, 72.
  • the number of peripheral sections 62, 72 can be chosen freely, with essentially round molds, as shown in the figures, generally being divided into 2-6 peripheral sections 62, 72.
  • Each peripheral section 62, 72 has a cross-sectional enlargement in the form of a bulge 63, 73. In these examples, the cross-sectional enlargements are represented by bulges delimited by an arc. Arrows 65, 65 ', 65' 'and 75, 75' show the size of the bulge 63, 73 on the one hand by the arrow length.
  • This degree of bulging decreases in the direction of the arrow on the partial length of the mold cavity in such a way that the strand cross-sectional shape deforms as it passes through the partial length.
  • the shape and the size of the bulge 63, 73 is the same in all peripheral sections 62, 72. Conicities of the bulges 63, 73 measured in the direction of the strand are different in size along the circumferential sections 62, 72.
  • the taper is zero to 1% / m and in the middle 67, 77 of the circumferential sections a taper between 10-35% / m is generally provided .
  • the peripheral sections of the successive partial lengths can be offset from one another, preferably offset by half a peripheral section.
  • the method for producing such molds with an arcuate or straight mold cavity is, according to one embodiment, characterized by the following method steps.
  • An extruded tube profile made of a copper alloy is bent onto a casting radius of an arc continuous caster by means of a bent mandrel according to methods known today. This step is omitted for straight molds.
  • An expanding mandrel is then inserted or pressed into the copper pipe.
  • the mold is expanded over its entire length or over a partial length with movable expansion parts that correspond to the intended bulges.
  • the mold tube is hardened by dispersion hardening or by strain hardening, for example by shot peening.
  • a high-precision mold cavity can be achieved with tubular molds if the mold is additionally calibrated over an entire or part of its length by explosion deformation on a mandrel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Bei Kokillen zum Stranggiessen von polygonalen Strangquerschnitten, insbesondere mit vier- oder sechseckigem Querschnitt, kann der Formhohlraum (6) auf der Eingiessseite (4) und auf der Strangaustrittsseite (5) unterschiedliche geometrische Formen aufweisen. Durch eine gezielte Verformung des Strangquerschnittes innerhalb der Kokille soll eine verbesserte Kühlung der Strangkruste erreicht werden, um einerseits die Strangqualität zu verbessern und anderseits die Giessgeschwindigkeit zu erhöhen. Zu diesem Zweck wird vorgeschlagen, in jedem Umfangsabschnitt des Formhohlraumes (6) eine Querschnittsvergrösserung (7) in der Form einer Ausbauchung (9) vorzusehen, wobei sich das Mass (10) der Ausbauchung (9) in Stranglaufrichtung (11) mindestens entlang einer Teillänge (12) des Formhohlraumes (6) derart verkleinert, dass sich die Strangquerschnittsform beim Durchlauf durch die Teillänge (12) des Formholhraumes (6) verformt. <IMAGE>

Description

  • Die Erfindung betrifft eine Kokille zum Stranggiessen von Metallen gemäss Oberbegriff von Anspruch 1.
  • Seit den Anfängen des Stranggiessens mit Durchlaufkokillen hat sich die Fachwelt mit dem Problem der Bildung von Luftspalten zwischen Strangkruste und Kokillenwand unterhalb des Badspiegels befasst. Diese Spaltbildung vermindert den Wärmeübergang zwischen Kokille und Strangkruste ganz wesentlich und verursacht eine ungleichmässige Kühlung der Strangkruste, die zu Strangfehlern, wie Rhomboidität, Risse, Gefügefehler etc., führt. Um über die ganze Kokillenlänge einen möglichst allseitig guten Kontakt der Strangkruste zur Kokillenwand und damit die bestmöglichen Bedingungen für die Wärmeabfuhr zu schaffen, sind viele Vorschläge, wie Schreitbalken (Walking Beams), Kühlmitteleinpressen in den Luftspalt, Kokillenhohlraum mit unterschiedlichen Konizitäten etc., vorgeschlagen worden.
  • Aus der US-PS 4'207'941, die den Oberbegriff bildet, ist eine Kokille zum Stranggiessen von Stahlsträngen mit polygonalen, insbesondere mit quadratischen Querschnitten, bekannt. Der Querschnitt des beidseitig offenen Formhohlraumes ist auf der Eingiessseite ein Quadrat mit Eckhohlkehlen und auf der Strangaustrittsseite ein unregelmässiges Zwölfeck. In den Eckbereichen wird zur Eckhohlkehle hin der Giesskonus in Stranglaufrichtung stetig vergrössert, und er ist im Bereich der Hohlkehle auf einer Teillänge der Kokille etwa doppelt so gross wie im Mittelbereich der Kokillenwand. Beim Giessen mit solchen Kokillen können Verklemmungen des Stranges innerhalb der Kokille auftreten, die zu Strangabrissen und Durchbrüchen führen. Auch wird anstelle eines Quadrates ein Zwölfeck gegossen. Insbesondere ist es schwierig, solche Kokillen für unterschiedliche Giessgeschwindigkeiten während eines laufenden Gusses zu dimensionieren, wie sie bei langen Sequenzgüssen mit vielen Pfannenwechseln unvermeidbar sind.
  • Der Erfindung liegt die Aufgabe zugrunde, die genannten Nachteile zu überwinden. Insbesondere soll durch Verformung des Strangquerschnittes innerhalb der Kokille eine über den ganzen Umfang bemessbare Kühlung der Strangkruste erreicht werden, um einerseits die Strangqualität zu verbessern und anderseits die Giessgeschwindigkeit zu erhöhen. Es sollen aber auch Giessgeschwindigkeitsunterschiede während eines laufenden Gusses ohne die genannten Nachteile, wie Strangabriss und Durchbruch, ermöglicht werden.
  • Gemäss der Erfindung wird diese Aufgabe durch die Gesamtheit der Merkmale von Anspruch 1 gelöst.
  • Mit der erfindungsgemässen Kokille ist es möglich, bei Knüppeln und kleinen Vorblockquerschnitten eine in allen Umfangsabschnitten gleichmässige und in ihrer Intensität in vorgegebenen Grenzen bemessbare Kühlung aufzuzwingen. Dadurch kann die Kristallisation der Strangkruste beeinflusst und die Strangqualität verbessert werden. Spiesskantigkeit, Oberflächen- und Gefügefehler sind vermeidbar. Durch die gezielte Verformung des Querschnittes kann im weiteren bei der erfindungsgemässen Kokille die Gleichmässigkeit der Kühlung entlang des Strangumfanges, auch bei unterschiedlichen Giessgeschwindigkeiten, verbessert werden. Die Gefahr für Strangabrisse oder Durchbrüche kann bei hohen Giessgeschwindigkeiten wesentlich reduziert werden.
  • Die Ausbauchungen des Formhohlraumes in jedem Umfangsabschnitt stellen bei der erfindungsgemässen Kokille jeweils Bogengewölbe dar, die gegenüber klassischen Kokillen eine höhere Formstabilität, insbesondere im hoch wärmebelasteten Badspiegelbereich, aufweisen. Diese höhere Formstabilität verbessert bei Rohr- und anderen Kokillen einerseits die Masshaltigkeit des Formhohlraumes während der Standzeit der Kokille und anderseits die Strangqualität.
  • Die Ausbauchung wird in der Regel vom Badspiegelbereich entlang des Formhohlraumes auf einer Teillänge oder auf der ganzen Länge der Kokille vermindert. Am Kokillenausgang kann beispielsweise noch eine Restausbauchung in jedem Umfangsabschnitt verbleiben. Gemäss einer weiteren Ausführungsform wird zusätzlich vorgeschlagen, den Querschnitt des Formhohlraumes auf der Kokillenaustrittsseite allseitig zwischen Ecken geradlinig vorzusehen. Am Kokillenausgang kann die Kokille auch rund sein oder ein Vorprofil, z.B. die Form eines Doppel-T-Trägers, aufweisen.
  • Bei der Dimensionierung der Ausbauchung ist zu beachten, dass auch bei kurzen Verweilzeiten der Strangkruste in der Kokille, d.h. bei hohen Giessgeschwindigkeiten, keine Verklemmung des Stranges in den Grenzbereichen von zwei zusammenstossenden Umfangsabschnitten, z.B. in den Ecken, stattfinden kann. Zu diesem Zweck wird die Differenz zwischen der Bogenlänge auf der Badspiegelhöhe und am Kokillenausgang bzw. der Sehnenlänge am Kokillenausgang bestimmt und mit der Schwindung der Strangkruste quer zur Stranglaufrichtung verglichen. Die genannte Differenz kann durch das Mass der Ausbauchung so gewählt werden, dass sie mit der genannten Schwindung im wesentlichen in Uebereinstimmung ist. Gemäss einem Ausführungsbeispiel kann das Lichtmass zwischen gegenüberliegenden Umfangsabschnitten des Formhohlraumes auf der Eingiessseite, im Bereich der grössten Ausbauchung gemessen, etwa 5 - 15 %, vorzugweise mindestens 5 % bzw. 8 %, grösser als das Lichtmass zwischen gegenüberliegenden Umfangsabschnitten auf der Strangaustrittsseite gewählt werden.
  • Das Mass der Ausbauchung entlang der Kokille kann sich in Giessrichtung degressiv oder eventuell progressiv verkürzen und auf Null zusteuern. Nach einer weiteren Ausführungsform kann das Mass der Ausbauchungen in Stranglaufrichtung sich folgender Querschnitte mit Vorteil stetig abnehmen. Die Veränderung der Masse der Ausbauchung in Stranglaufrichtung kann gemäss einem weiteren Ausführungsbeispiel auch als Konizitätsgrad festgelegt werden. Die Form und das Mass der Ausbauchung sind in der Regel in allen Abschnitten gleich. Die Konizitäten der Ausbauchung verändern sich entlang dem Umfangsabschnitt in ihrer Grösse. Gemäss einem Ausführungsbeispiel kann an den beiden Enden jedes Umfangsabschnittes eine Konizität zwischen 0 und 1 %/m und in der Mitte des Umfangsabschnittes eine solche zwischen 10 und 35 %/m vorgesehen werden.
  • Eine weitere Variationsmöglichkeit ist die Wahl der Länge bzw. Teillänge des Formhohlraumes mit ausgebauchten Seitenwänden. Es ist grundsätzlich möglich, dass sich das Mass der Ausbauchung über die gesamte Formhohlraumlänge reduziert. Es sind aber auch nur Teillängen denkbar. Ein vorteilhaftes Ausführungsbeispiel sieht eine Teillänge von mindestens 50 % der Kokillenlänge vor. Bei heute üblichen Kokillen von 800 mm Länge beträgt die Teillänge dann mindestens 400 mm.
  • Bei rechteckigen konischen Kokillen gemäss Stand der Technik ist die Konizität in den Ecken bzw. in den Eckbereichen um den Faktor Wurzel 2 grösser als an den Seitenwänden. Diese Tatsache kann bei solchen Kokillen, deren Konizitätsgrad das übliche Mass von 0,9 - 1,2 %/m überschreitet, zu Verklemmungen und Strangabrissen führen. Anstelle der konisch angeordneten Wände der im Stand der Technik bekannten Kokillen wird gemäss der Erfindung die Strangquerschnittsform beim Durchlauf durch die Teillänge des Kokillenhohlraumes verformt und dabei die Kühlleistung gesteuert. Im Grenzbereich von zwei zusammenstossenden Umfangsabschnitten bzw. in den Ecken des Formhohlraumes ist die Gestaltung der Konizität unabhängig vom Mass und vom Konizitätsgrad der Ausbauchung frei wählbar. Dies erlaubt erstmals Kokillen zu bauen, deren Konizität in den Ecken bzw. Eckbereichen unabhängig von der Konizität und der Form der ausgebauchten Seitenflächen gewählt werden kann. Es ist beispielsweise möglich, die Konizität in den Ecken je nach dem Mass der Rückverformung der Ausbauchung, der Schrumpfung der Strangkruste etc. positiv, neutral oder negativ zu gestalten.
  • In einem Ausführungsbeispiel wird vorgeschlagen, die über die Diagonale gemessene Konizität auf der Teillänge mit Ausbauchungen in einer Grössenordnung zwischen 0 - 1 %/m, bzw. zwischen 0 - 0,5 %/m, vorzusehen.
  • Aus verschiedenen bekannten Gründen werden bei polygonalen Strangquerschnitten die Ecken des Formhohlraumes abgerundet. Es hat sich als besonders vorteilhaft erwiesen, wenn die Ecken des Formhohlraumes Hohlkehlen mit einem Radius von 3 - 8 % der Seitenlänge des Querschnittes aufweisen.
  • Die ausgebauchten Kokillenwände können verschiedene geometrische Formen aufweisen. Nach einem Ausführungsbeispiel wird vorgeschlagen, die Ausbauchungen durch Kreisbogen zu begrenzen, deren Radien in Stranglaufrichtung bis unendlich zunehmen. Zur Vereinfachung der Herstellung von Kokillenrohren bzw. Kokillenwänden kann es auch vorteilhaft sein, die Ausbauchungen durch kurvenförmige und/oder ebene Flächen zu begrenzen.
  • Unabhängig von der geometrischen Form der Ausbauchungen wird in einem Ausführungsbeispiel vorgeschlagen, die Ausbauchungen tangential an die Radien der Hohlkehlen anzuschliessen.
  • Die Herstellung von Kokillen mit Ausbauchungen, die sich in Stranglaufrichtung verkleinern, kann durch Warm- oder Kaltverformung von Kupferwänden bewerkstelligt werden. Gemäss einem Ausführungsbeispiel ist es besonders vorteilhaft, wenn mindestens eine Teillänge des Formhohlraumes durch Explosionsverformung hergestellt wird. Bei Rohrkokillen kann durch Einpressen eines Dornes mit Ausbauchungen und anschliessender Explosionsverformung eine hochpräzise Kokille mit gerader oder gebogener Strangachse erzeugt werden.
  • Im nachfolgenden werden anhand von Figuren Ausführungsbeispiele der Erfindung erläutert.
  • Es zeigen:
  • Fig. 1:
    einen Längsschnitt durch eine Rohrkokille nach der Linie I-I von Fig. 2,
    Fig. 2:
    eine Draufsicht auf die Kokille gemäss Fig. 1,
    Fig. 3:
    eine Draufsicht auf ein Beispiel einer Ecke eines ausgebauchten Formhohlraumes mit vier Höhenkurven,
    Fig. 4:
    eine Draufsicht auf ein weiteres Beispiel einer Ecke eines ausgebauchten Formhohlraumes mit vier Höhenkurven,
    Fig. 5:
    eine Draufsicht auf ein weiteres Beispiel eines halben Formhohlraumes mit vier Höhenkurven,
    Fig. 6:
    eine Draufsicht auf eine runde Kokille und
    Fig. 7:
    eine Draufsicht auf eine Kokille, deren Formhohlraum durch Bogenlinien begrenzt ist.
  • In Fig. 1 und 2 ist eine Kokille 3 zum Stranggiessen von polygonalen Strangquerschnitten, im vorliegenden Beispiel von quadratischen Strangquerschnitten, dargestellt. Ein Pfeil 4 zeigt auf eine Eingiessseite und ein Pfeil 5 auf eine Strangaustrittsseite der Kokille 3. Die Querschnitte eines Formhohlraumes 6 weisen auf der Eingiess- und Strangaustrittsseite unterschiedliche geometrische Formen auf. Wie am besten in Fig. 2 erkennbar, ist der Querschnitt des Formhohlraumes 6 auf der Eingiessseite 4 zwischen den Ecken 8 - 8''' mit Querschnittsvergrösserungen in der Form von Ausbauchungen 9 versehen. Eine Bogenhöhe 10, die das Mass der Ausbauchung darstellt, nimmt in Stranglaufrichtung 11 auf einer Teillänge 12 des Formhohlraumes 6 stetig ab. Die Formhohlraumquerschnitte in den Ebenen 14 und 15 begrenzen einen Kokillenteil 13 mit quadratischem Querschnitt mit Hohlkehlen 16, wie im Stand der Technik bekannt.
  • Eine Umfangslinie 17 zeigt den Formhohlraumquerschnitt in der Ebene 14 und eine Umfangslinie 18 den Formhohlraumquerschnitt in der Ebene 15. Der Querschnitt des Formhohlraumes 6 ist auf der Kokillenaustrittsseite allseitig zwischen den Ecken 8 geradlinig. Mit einem Pfeil 2 ist ein Umfangsabschnitt der Umfangslinien des Formhohlraumes 6 bezeichnet. Bei dieser Kokille sind 4 Umfangsabschnitte mit gleichartigen Querschnittsvergrösserungen 7 vorgesehen. Anstelle der quadratischen Grundform des Formhohlraumes 6 könnte auch ein sechseckiger, rechteckiger etc. Querschnitt als Grundform dienen.
  • Ein Lichtmass 20 zwischen gegenüberliegenden Seiten des Formhohlraumes 6 auf der Eingiessseite 4 im Bereich der grössten Ausbauchung ist gegenüber einem Lichtmass 21 zwischen den gegenüberliegenden Seiten auf der Strangaustrittsseite 5 um 5 - 15 % grösser. Das Lichtmass 20 kann, anders ausgedrückt, auch mindestens 5 % bzw. mindestens 8 % grösser als das Lichtmass 22 in der Ebene 14 am Ende der Teillänge 12 sein.
  • Die Bogenhöhe 10 der Ausbauchung 9 nimmt in Stranglaufrichtung 11 bei sich folgenden Querschnitten stetig ab. Die Konizität der maximalen Bogenhöhe 10 entlang einer Linie 24 kann nach der Formel
    Figure imgb0001

    berechnet werden, wobei Bo die Breite oben in mm, Bu die Breite unten in mm, L die massgebende Länge in m und T die Konizität (oder Taper) in %/m bezeichnet. Nach dieser Formel gerechnet können Konizitäten von 10 - 35 %/m gewählt werden.
  • Die Teillänge 12 ist in diesem Beispiel 400 mm oder etwa 50 % der Kokillenlänge, die etwa 800 mm misst.
  • In Fig. 3 zeigen Höhenkurven 30 - 33 eine Ecke eines ausgebauchten Formhohlraumes 35. Die Höhenkurve 30 stellt die oberste Kante des Formhohlraumes 35 der Kokille 34 dar. Mit 36 ist die Wandstärke eines Kokillenrohres angedeutet. 33 zeigt die Höhenkurve am Kokillenausgang. Zwischen den Kurven 30 und 33 kann die Konizität auf zwei Zwischenhöhen herausgelesen werden. Kurven 31 und 32 zeigen die abnehmenden Bogenhöhen der Ausbauchungen, die während des Giessens eine Verformung der Strangkruste verursachen. Im Bereich der Hohlkehle 38 ist die Konizität des Formhohlraumes 35 entlang einem Diagonalschnitt nach der Linie 39 0 - 1 %/m, vorzugsweise 0,1 - 0,5 %/m. Eine Verformung der Strangkruste entlang der Linie 39 ist in der Regel nicht vorgesehen.
  • In Fig. 4 sind ähnliche Höhenkurven 40 - 43 wie in Fig. 3 dargestellt. Der wesentliche Unterschied liegt in der Gestaltung der Hohlkehle 48 entlang der Diagonallinie 49. Die Hohlkehle 48 weist in Stranglaufrichtung einen negativen Konus auf. Im Eckbereich ist in Stranglaufrichtung somit eine Formhohlraumerweiterung vorgesehen. Je nach Format des Stranges, gewählter Bogenhöhe der Ausbauchung, die zurückverformt werden muss, kann es von Interesse sein, einen negativen Konus an den Ecken 48 entlang der Diagonallinie 49 vorzusehen, um jegliches Verklemmen des Stranges in der Kokille auszuschalten. Durch die geometrische Ausbildung des Eckbereiches kann zusätzlich die Kühlung im Kantenbereich des Stranges gesteuert werden. Ein negativer Konus entlang der Diagonallinie 49 kann auch erwünscht sein, um Sehnenverlängerungen beim Zurückverformen von starken Ausbauchungen aufzufangen, die durch die Schwindung nicht kompensiert werden.
  • In Fig. 5 sind die Ausbauchungen durch gerade Flächenteile begrenzt. Höhenkurven 50 - 53 stellen eine stetige Abnahme der Ausbauchungen dar. Damit in der Mitte der ausgebauchten Seiten keine Stosskante entsteht, ist eine Abrundung 54 angebracht. Der gerade Flächenteil läuft tangential auf eine Hohlkehle 58 zu. In diesem Beispiel ist entlang der Hohlkehle 58 in Stranglaufrichtung keine Konizität vorgesehen. In einem Schnitt entlang der Diagonale 59 verläuft die Hohlkehle 58 im wesentlichen parallel zur Längsmittelachse der Kokille.
  • Zur Bestimmung der Konizität der Hohlkehlen 38, 48, 58 in den Fig. 3 - 5 sind Berechnungen und/oder Giessversuche notwendig. Auf der Teillänge der Kokille verlängert sich bei abnehmender Bogenhöhe der Ausbauchung einerseits die jedem Kreisbogen zugehörige Sehne. Anderseits kann die Schwindung der Strangkruste quer zur Stranglaufrichtung bei einer bestimmten Giessgeschwindigkeit berechnet und mit der Sehnenverlängerung verglichen werden. Aus der Differenz beider Werte kann die Konizität im Eckbereich festgelegt werden. Es ist dabei zu beachten, dass bei hohen Giessgeschwindigkeiten, d.h. bei kurzer Verweilzeit der Strangkruste in der Kokille, der Wert für die Schwindung kleiner ist als bei niedrigen Giessgeschwindigkeiten.
  • In Fig. 6 und 7 sind Kokillen dargestellt, deren Formhohlräume 60 bzw. 70 durch kurven- und kreisförmige Flächen begrenzt sind. Umfangslinien 61, 71 des Formhohlraumquerschnittes sind in je drei Umfangsabschnitte 62, 72 unterteilt. Die Anzahl der Umfangsabschnitte 62, 72 kann frei gewählt werden, wobei im wesentlichen runde Kokillen, wie in den Figuren dargestellt, in der Regel in 2 - 6 Umfangsabschnitte 62, 72 unterteilt sind. Jeder Umfangsabschnitt 62, 72 weist eine Querschnittsvergrösserung in der Form einer Ausbauchung 63, 73 auf. In diesen Beispielen sind die Querschnittsvergrösserungen durch bogenförmig begrenzte Ausbauchungen dargestellt. Durch Pfeile 65, 65', 65'' und 75, 75' ist einerseits durch die Pfeillänge das Mass der Ausbauchung 63, 73 dargestellt. Dieses Mass der Ausbauchung verkleinert sich in Pfeilrichtung auf der Teillänge des Kokillenhohlraumes derart, dass sich die Strangquerschnittsform beim Durchlauf durch die Teillänge verformt. Die Form und das Mass der Ausbauchung 63, 73 ist in allen Umfangsabschnitten 62, 72 gleich. In Stranglaufrichtung gemessene Konizitäten der Ausbauchungen 63, 73 sind entlang der Umfangsabschnitte 62, 72 in ihrer Grösse unterschiedlich. An den beiden Enden 66, 66', 76, 76' jedes Umfangsabschnittes 62, 72 ist die Konizität Null bis 1 %/m und in der Mitte 67, 77 der Umfangsabschnitte ist in der Regel eine Konizität zwischen 10 - 35 %/m vorgesehen.
  • Bei im wesentlichen runden Formhohlraumquerschnitten ist es auch möglich, den Strang in zwei Teillängen, die unmittelbar einander folgen oder eine Zwischenzone zwischen den Teillängen aufweist, zu verformen. Bei solchen Kokillen können die Umfangsabschnitte der einander sich folgenden Teillängen gegeneinander versetzt, vorzugsweise um einen halben Umfangsabschnitt versetzt, angeordnet werden.
  • Um lange Standzeiten solcher Kokillen zu erreichen, oder um die Strangoberfläche zu verbessern, können alle im Stand der Technik bekannten Massnahmen zur Reibungsverminderung, wie Schmierung, Oberflächenbehandlung, Ueberzüge, Materialwahl der Kokille etc., angewendet werden.
  • Alle Figuren zeigen zu einer besseren Uebersicht gerade Rohrkokillen. Die Erfindung ist aber auch auf Bogenkokillen sowie auf Block-, Plattenkokillen etc. anwendbar.
  • Das Verfahren zur Herstellung solcher Kokillen mit bogenförmigem oder geradem Formhohlraum zeichnet sich, gemäss einem Ausführungsbeispiel, durch folgende Verfahrensschritte aus. Ein stranggepresstes Rohrprofil aus einer Kupferlegierung wird mittels einem gebogenen Dorn gemäss heute bekannten Verfahren auf einen Giessradius einer Bogenstranggiessanlage gebogen. Bei geraden Kokillen fällt dieser Arbeitsgang weg. Anschliessend wird ein Spreizdorn in das Kupferrohr eingebracht oder eingepresst. Mit beweglichen Spreizteilen, die den vorgesehenen Ausbauchungen entsprechen, wird die Kokille auf ihrer ganzen Länge oder auf einer Teillänge aufgeweitet. Bei Anwendung einer aushärtbaren Kupferlegierung wird durch Dispersionshärten oder durch Kaltverfestigung, beispielsweise durch Kugelstrahlen, das Kokillenrohr gehärtet. Ein hochpräziser Formhohlraum kann bei Rohrkokillen erreicht werden, wenn die Kokille zusätzlich auf der ganzen oder auf einer Teillänge durch Explosionsverformung auf einen Dorn kalibriert wird.

Claims (15)

  1. Kokille zum Stranggiessen von Metallen, insbesondere von Stahl, wobei die Kokille (3) einen beidseitig offenen Formhohlraum (6, 35, 60, 70) aufweist, dadurch gekennzeichnet, dass die Umfangslinie (61, 71) des Formhohlraumquerschnittes in Umfangsabschnitte (62, 72) unterteilt ist und jeder Umfangsabschnitt (62, 72) eine Querschnittsvergrösserung (7) in der Form einer Ausbauchung (9, 63, 73) aufweist und dass sich das Mass (10) der Ausbauchung (9, 63, 73) in Stranglaufrichtung (11) mindestens entlang einer Teillänge (12) des Formhohlraumes (6, 35, 60, 70) derart verkleinert, dass sich die Strangquerschnittsform beim Durchlauf durch die Teillänge (12) des Formhohlraumes (6, 35, 60, 70) verformt.
  2. Kokille nach Anspruch 1, dadurch gekennzeichnet, dass die Form und die Masse der Ausbauchung (9, 63, 73) in allen Umfangsabschnitten (62, 63) gleich und in Stranglaufrichtung (11) gemessene Konizitäten der Ausbauchung (9, 63, 73) entlang dem Umfangsabschnitt (62, 63) in ihrer Grösse unterschiedlich sind, vorzugsweise an den beiden Enden (66, 66', 76, 76') jedes Umfangsabschnittes (62, 72) eine Konizität zwischen 0 und 1 %/m und in der Mitte (67, 77) des Umfangsabschnittes (62, 72) eine solche zwischen 10 - 35 %/m aufweisen.
  3. Kokille nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Formhohlraumquerschnitt an der Strangaustrittsseite polygonal, vorzugsweise vier- oder sechseckig ist.
  4. Kokille nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Formhohlraumquerschnitt auf der Strangaustrittsseite bogenförmige Begrenzungsflächen aufweist, vorzugsweise im wesentlichen rund ist.
  5. Kokille nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Formhohlraumquerschnitt auf der Strangaustrittsseite ein Vorprofil, vorzugsweise die Form eines Doppel-T-Trägers, aufweist.
  6. Kokille nach Anspruch 4, dadurch gekennzeichnet, dass eine im wesentlichen runde Kokille in 2 - 6 Umfangsabschnitte (62, 72) unterteilt ist und jeder Abschnitt (62, 72) eine Querschnittsvergrösserung in der Form einer im wesentlichen kreisbogenförmigen Ausbauchung (63, 73) aufweist.
  7. Kokille nach Anspruch 6, dadurch gekennzeichnet, dass die Umfangsabschnitte (62, 72) einer ersten und einer zweiten Teillänge (12) des Formhohlraumes (60, 70) gegeneinander versetzt, vorzugsweise um einen halben Umfangsabschnitt (62, 72) versetzt, angeordnet sind.
  8. Kokille nach Anspruch 3, dadurch gekennzeichnet, dass das Lichtmass (20) zwischen gegenüberliegenden Umfangsabschnitten auf der Eingiessseite (4), im Bereich der grössten Ausbauchung (9) gemessen, etwa 5 - 15 %, vorzugsweise mindestens 5 % bzw. 8 %, grösser ist, als das Lichtmass (21) zwischen den gleichen Umfangsabschnitten auf der Strangaustrittsseite (5).
  9. Kokille nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass die Teillänge (12) mindestens 50 % der Kokillenlänge beträgt.
  10. Kokille nach Anspruch 3, dadurch gekennzeichnet, dass bei einem viereckigen Querschnitt die über einen Diagonalschnitt gemessene Konizität 0 - 1 %/m, vorzugsweise 0,1 - 0,5 %/m, beträgt.
  11. Kokille nach Anspruch 10, dadurch gekennzeichnet, dass die Ecken (8 - 8''') des Formhohlraumes (6, 35) Hohlkehlen (16, 38, 48, 58) mit einem Radius von 3 - 8 % der Seitenlänge des Querschnittes aufweisen.
  12. Kokille nach einem der Ansprüche 3 oder 5, dadurch gekennzeichnet, dass die Ausbauchungen (9) durch Kurven und/oder gerade Linien begrenzt sind.
  13. Verfahren zur Herstellung der Kokille nach einem der Ansprüche 1 - 12, dadurch gekennzeichnet, dass ein stranggepresstes Rohrprofil aus einer härtbaren Kupferlegierung
    - mittels einem gebogenen Dorn auf einen Giessradius einer Bogenstranggiessanlage gebogen,
    - mittels einem Spreizdorn die Querschnittsvergrösserung (7) in der Form einer Ausbauchung (9, 63, 73) aufgeweitet und
    - durch Dispersionshärten oder Kaltverfestigung durch Kugelstrahlen gehärtet wird.
  14. Verfahren zur Herstellung der Kokille nach einem der Ansprüche 1 - 13, dadurch gekennzeichnet, dass mindestens eine Teillänge (12) des Formhohlraumes (6, 35, 60, 70) durch Explosionsverformung kalibriert wird.
  15. Verfahren zur Herstellung der Kokille nach einem der Ansprüche 1 - 14, dadurch gekennzeichnet, dass die Konizität entlang der Teillänge (12) im Grenzbereich von zwei zusammenstossenden Umfangsabschnitten (62, 72) aus der geometrischen Berechnung der Strangumfangslänge und der Schwindungsberechnung der Strangkruste quer zur Stranglängsachse festgelegt wird.
EP92101506A 1991-02-06 1992-01-30 Kokille zum Stranggiessen von Metallen, insbesondere von Stahl Expired - Lifetime EP0498296B2 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH367/91 1991-02-06
CH36791 1991-02-06
CH36791 1991-02-06
CH326391 1991-11-08
CH326391 1991-11-08
CH3263/91 1991-11-08

Publications (4)

Publication Number Publication Date
EP0498296A2 true EP0498296A2 (de) 1992-08-12
EP0498296A3 EP0498296A3 (en) 1992-09-02
EP0498296B1 EP0498296B1 (de) 1994-05-18
EP0498296B2 EP0498296B2 (de) 2000-12-06

Family

ID=25684364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92101506A Expired - Lifetime EP0498296B2 (de) 1991-02-06 1992-01-30 Kokille zum Stranggiessen von Metallen, insbesondere von Stahl

Country Status (13)

Country Link
US (1) US5360053A (de)
EP (1) EP0498296B2 (de)
JP (1) JPH0767600B2 (de)
KR (1) KR970005365B1 (de)
CN (1) CN1032629C (de)
AT (1) ATE105750T1 (de)
BR (1) BR9200393A (de)
CA (1) CA2060604C (de)
DE (1) DE59200159D1 (de)
ES (1) ES2056670T5 (de)
FI (1) FI97702C (de)
MX (1) MX9200481A (de)
TR (1) TR27065A (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020443A1 (de) * 1994-01-28 1995-08-03 Mannesmann Ag Stranggiesskokille zum führen von strängen
EP0685280A1 (de) * 1994-05-30 1995-12-06 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Verfahren zum kontinuierlichen Giessen von Stahl mit hohem Kohlenstoffgehalt
EP0685279A1 (de) * 1994-05-30 1995-12-06 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Verfahren zum kontinuierlichen Giessen von peritektischem Stahl
TR28425A (tr) * 1992-03-05 1996-06-14 Concast Standard Ag Metal cubuk, özellikle pik kütük ve ilk döküm kütügü kesikli celik cubuk dökmeye iliskin yöntem.
EP0730923A1 (de) * 1995-03-08 1996-09-11 KM Europa Metal Aktiengesellschaft Kokille zum Stranggiessen von Metallen
WO1996033034A1 (de) * 1995-04-18 1996-10-24 Voest-Alpine Industrieanlagenbau Gmbh Stranggiesskokille
WO1996035532A1 (en) * 1995-05-09 1996-11-14 Institutet För Metallforskning Mould
EP0931608A1 (de) * 1997-12-24 1999-07-28 EUROPA METALLI S.p.A. Stranggiesskokille
EP1033190A1 (de) * 1999-03-03 2000-09-06 SMS Demag AG Giessprofil für Stranggiessprodukte aus Stahl in Form von Brammen
WO2004043628A1 (de) * 2002-11-13 2004-05-27 Sms Demag Aktiengesellschaft Stranggiesskokille zum giessen von flüssigen metallen, insbesondere von stahlwerkstoffen, bei hohen giessgeschwindigkeiten zu polygonalen knüppel-, vorblock-, vorprofil-giesssträngen
DE19606291B4 (de) * 1996-02-21 2005-02-10 Km Europa Metal Ag Kokillenrohr
DE19781990B4 (de) * 1996-09-03 2009-01-02 Ag Industries Inc. Verbesserte Kokillenwandfläche für den Strangguss und Fertigungsverfahren
WO2009015782A2 (de) * 2007-07-27 2009-02-05 Concast Ag Verfahren zur erzeugung von stahl-langprodukten durch stranggiessen und walzen
US7631684B2 (en) 2004-12-29 2009-12-15 Concast Ag Continuous casting plant
WO2011023483A1 (en) * 2009-08-04 2011-03-03 Siemens Vai Metals Technologies S.R.L. Mould for continuous casting of long or flat products, cooling jacket designed to cooperate with such a mould and assembly comprising such a mould and such a cooling jacket
RU2456120C1 (ru) * 2011-02-25 2012-07-20 Владимир Павлович Серёдкин Способ и кокиль для отливки гильзы кристаллизатора
ITUB20155525A1 (it) * 2015-11-12 2017-05-12 Milorad Pavlicevic Cristallizzatore, lingottiera associata a detto cristallizzatore e relativo metodo di realizzazione

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH685432A5 (de) * 1992-06-11 1995-07-14 Concast Standard Ag Kokille zum Stranggiessen von Metall, insbesondere von Stahl in Knüppel- und Vorblockquerschnitte.
DE59506676D1 (de) * 1994-07-25 1999-09-30 Concast Standard Ag Straggiesskokille für ein Doppel-T-Vorprofil
DE19639299C2 (de) * 1996-09-25 2001-02-22 Sms Demag Ag Vorrichtung zur Herstellung eines Vielkant- oder Profil-Formats in einer Stranggießanlage
JP3197230B2 (ja) * 1997-04-08 2001-08-13 三菱重工業株式会社 ビレット連続鋳造機及び鋳造方法
ES2152132B1 (es) * 1997-07-31 2001-07-01 Sidenor Investigacion Y Desarr "lingotera perfeccionada y lingote obtenido con la misma".
GB9719318D0 (en) * 1997-09-12 1997-11-12 Kvaerner Clecim Cont Casting Improvements in and relating to casting
CH693130A5 (de) * 1998-05-18 2003-03-14 Concast Standard Ag Kokille zum Stranggiessen von im wesentlichen polygonalen Strängen.
JP4164163B2 (ja) * 1998-07-31 2008-10-08 株式会社神戸製鋼所 金属の連続鋳造用鋳型
DE19859040A1 (de) * 1998-12-21 2000-06-29 Km Europa Metal Ag Kokillenrohr und Verfahren zum Rekalibrieren eines Kokillenrohrs
CA2395058C (en) 1999-12-29 2008-08-26 Concast Standard Ag Method and device for working cavity walls in continuous casting moulds
WO2002064286A2 (de) * 2001-02-09 2002-08-22 Egon Evertz K.G. (Gmbh & Co) Stranggiesskokille
DE10218957B4 (de) * 2002-04-27 2004-09-30 Sms Demag Ag Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl
US20060191661A1 (en) * 2003-10-01 2006-08-31 Zajber Adolf G Continuous casting mold for casting molten metals, particularly steel materials, at high casting rates to form polygonal billet, bloom, and preliminary section castings and the like
PT1547705E (pt) * 2003-12-27 2008-06-06 Concast Ag Processo para o vazamento contínuo de lingotes em forma de barras e blocos e cavidade de molde de uma lingoteira destinada ao vazamento contínuo
US7493936B2 (en) * 2005-11-30 2009-02-24 Kobe Steel, Ltd. Continuous casting method
SG173514A1 (en) 2009-02-09 2011-09-29 Toho Titanium Co Ltd Titanium slab for hot rolling produced by electron-beam melting furnace, process for production thereof, and process for rolling titanium slam for hot rolling
BRPI0924937B1 (pt) * 2009-03-19 2017-07-18 Nippon Steel & Sumitomo Metal Corporation Method of continuous casting, laterally narrow molding plate, and mold for continuous casting
KR101360564B1 (ko) * 2011-12-27 2014-02-24 주식회사 포스코 연속주조 주형
CN103184490B (zh) * 2011-12-27 2015-06-24 上海宝钢设备检修有限公司 结晶器铜板仿形电镀的方法
US8365808B1 (en) 2012-05-17 2013-02-05 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
CN104520030B (zh) 2013-02-04 2018-03-30 美国阿尔美有限公司 用于直接冷激铸造的方法和装置
US9936541B2 (en) 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace
JP6427945B2 (ja) * 2014-05-09 2018-11-28 新日鐵住金株式会社 ブルームの連続鋳造方法
CN111889636B (zh) * 2020-07-29 2021-05-18 大连理工大学 灯泡型连铸结晶器芯棒

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2616863B1 (de) * 1976-04-15 1977-01-27 Roechling Burbach Gmbh Stahl Stranggiesskokille
DE2814600A1 (de) * 1977-04-06 1978-10-19 Concast Ag Verfahren und vorrichtung zum stahlstranggiessen
DE3109438A1 (de) * 1981-03-12 1982-09-30 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover "verfahren zur herstellung von rohrfoermigen, geraden oder gekruemmten stranggiesskokillen mit parallelen oder konischen innenkonturen aus aushaertbaren kupferlegierungen"
DE3427756A1 (de) * 1984-07-24 1985-03-28 Mannesmann AG, 4000 Düsseldorf Stranggiesskokille fuer die herstellung von straengen aus stahl
AT379093B (de) * 1984-02-16 1985-11-11 Voest Alpine Ag Durchlaufkokille fuer eine stranggiessanlage
DE3907351A1 (de) * 1989-03-08 1990-09-13 Schloemann Siemag Ag Kokille mit eingiesstrichter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027027A (de) * 1973-07-11 1975-03-20
US3910342A (en) * 1973-11-12 1975-10-07 Rossi Irving Molds for continuous casting
JPS51112730A (en) * 1975-03-31 1976-10-05 Nippon Steel Corp Mould for continious casting
US4207941A (en) * 1975-06-16 1980-06-17 Shrum Lorne R Method of continuous casting of metal in a tapered mold and mold per se
US4694880A (en) * 1982-09-16 1987-09-22 Gladwin Kirk M Method of continuously casting metal slabs
DE3400220A1 (de) * 1984-01-05 1985-07-18 SMS Schloemann-Siemag AG, 4000 Düsseldorf Kokille zum stranggiessen von stahlband
CH664915A5 (de) * 1984-10-26 1988-04-15 Concast Service Union Ag Durchlaufkokille zum stranggiessen von stahlstraengen mit polygonalem querschnitt.
US4716955A (en) * 1986-06-11 1988-01-05 Sms Concast Inc. Continuous casting method
DE3627991A1 (de) * 1986-08-18 1988-02-25 Mannesmann Ag Verfahren zum stranggiessen von brammen und einrichtung zur durchfuehrung des verfahrens
IT1218613B (it) * 1987-04-27 1990-04-19 Danieli Off Mecc Procedimento per bramme sottili e lingottiera adottante tale procedimento
DE3723857A1 (de) * 1987-07-18 1989-01-26 Schloemann Siemag Ag Kokille zum vertikalen stranggiessen von stahlband
JPS6475145A (en) * 1987-09-14 1989-03-20 Kawasaki Steel Co Mold for round billet continuous casting
JPS6475146A (en) * 1987-09-14 1989-03-20 Kawasaki Steel Co Mold for round billet continuous casting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2616863B1 (de) * 1976-04-15 1977-01-27 Roechling Burbach Gmbh Stahl Stranggiesskokille
DE2814600A1 (de) * 1977-04-06 1978-10-19 Concast Ag Verfahren und vorrichtung zum stahlstranggiessen
DE3109438A1 (de) * 1981-03-12 1982-09-30 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover "verfahren zur herstellung von rohrfoermigen, geraden oder gekruemmten stranggiesskokillen mit parallelen oder konischen innenkonturen aus aushaertbaren kupferlegierungen"
AT379093B (de) * 1984-02-16 1985-11-11 Voest Alpine Ag Durchlaufkokille fuer eine stranggiessanlage
DE3427756A1 (de) * 1984-07-24 1985-03-28 Mannesmann AG, 4000 Düsseldorf Stranggiesskokille fuer die herstellung von straengen aus stahl
DE3907351A1 (de) * 1989-03-08 1990-09-13 Schloemann Siemag Ag Kokille mit eingiesstrichter

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR28425A (tr) * 1992-03-05 1996-06-14 Concast Standard Ag Metal cubuk, özellikle pik kütük ve ilk döküm kütügü kesikli celik cubuk dökmeye iliskin yöntem.
WO1995020443A1 (de) * 1994-01-28 1995-08-03 Mannesmann Ag Stranggiesskokille zum führen von strängen
EP0685280A1 (de) * 1994-05-30 1995-12-06 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Verfahren zum kontinuierlichen Giessen von Stahl mit hohem Kohlenstoffgehalt
EP0685279A1 (de) * 1994-05-30 1995-12-06 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Verfahren zum kontinuierlichen Giessen von peritektischem Stahl
EP0730923A1 (de) * 1995-03-08 1996-09-11 KM Europa Metal Aktiengesellschaft Kokille zum Stranggiessen von Metallen
DE19508169C5 (de) * 1995-03-08 2009-11-12 Kme Germany Ag & Co. Kg Kokille zum Stranggießen von Metallen
CN1081498C (zh) * 1995-04-18 2002-03-27 奥地利钢铁联合企业阿尔帕工业设备制造公司 连续铸锭结晶器
WO1996033034A1 (de) * 1995-04-18 1996-10-24 Voest-Alpine Industrieanlagenbau Gmbh Stranggiesskokille
AT404235B (de) * 1995-04-18 1998-09-25 Voest Alpine Ind Anlagen Stranggiesskokille
WO1996035532A1 (en) * 1995-05-09 1996-11-14 Institutet För Metallforskning Mould
DE19606291B4 (de) * 1996-02-21 2005-02-10 Km Europa Metal Ag Kokillenrohr
DE19606291C5 (de) * 1996-02-21 2010-01-21 Kme Germany Ag & Co. Kg Kokillenrohr
DE19781990B4 (de) * 1996-09-03 2009-01-02 Ag Industries Inc. Verbesserte Kokillenwandfläche für den Strangguss und Fertigungsverfahren
EP0931608A1 (de) * 1997-12-24 1999-07-28 EUROPA METALLI S.p.A. Stranggiesskokille
EP1033190A1 (de) * 1999-03-03 2000-09-06 SMS Demag AG Giessprofil für Stranggiessprodukte aus Stahl in Form von Brammen
WO2004043628A1 (de) * 2002-11-13 2004-05-27 Sms Demag Aktiengesellschaft Stranggiesskokille zum giessen von flüssigen metallen, insbesondere von stahlwerkstoffen, bei hohen giessgeschwindigkeiten zu polygonalen knüppel-, vorblock-, vorprofil-giesssträngen
US7631684B2 (en) 2004-12-29 2009-12-15 Concast Ag Continuous casting plant
WO2009015782A2 (de) * 2007-07-27 2009-02-05 Concast Ag Verfahren zur erzeugung von stahl-langprodukten durch stranggiessen und walzen
WO2009015782A3 (de) * 2007-07-27 2009-05-28 Concast Ag Verfahren zur erzeugung von stahl-langprodukten durch stranggiessen und walzen
EP2025432A1 (de) * 2007-07-27 2009-02-18 Concast Ag Verfahren zur Erzeugung von Stahl-Langprodukten durch Stranggiessen und Walzen
RU2484921C2 (ru) * 2007-07-27 2013-06-20 Смс Конкаст Аг Способ получения стального длинномерного проката путем непрерывной разливки и прокатки
WO2011023483A1 (en) * 2009-08-04 2011-03-03 Siemens Vai Metals Technologies S.R.L. Mould for continuous casting of long or flat products, cooling jacket designed to cooperate with such a mould and assembly comprising such a mould and such a cooling jacket
RU2456120C1 (ru) * 2011-02-25 2012-07-20 Владимир Павлович Серёдкин Способ и кокиль для отливки гильзы кристаллизатора
ITUB20155525A1 (it) * 2015-11-12 2017-05-12 Milorad Pavlicevic Cristallizzatore, lingottiera associata a detto cristallizzatore e relativo metodo di realizzazione

Also Published As

Publication number Publication date
KR920016173A (ko) 1992-09-24
FI97702C (fi) 1997-02-10
MX9200481A (es) 1992-11-01
TR27065A (tr) 1994-10-12
FI920487A (fi) 1992-08-07
CN1032629C (zh) 1996-08-28
BR9200393A (pt) 1992-10-13
DE59200159D1 (de) 1994-06-23
JPH0767600B2 (ja) 1995-07-26
EP0498296A3 (en) 1992-09-02
EP0498296B1 (de) 1994-05-18
CA2060604C (en) 1999-02-09
EP0498296B2 (de) 2000-12-06
CN1064034A (zh) 1992-09-02
ATE105750T1 (de) 1994-06-15
FI97702B (fi) 1996-10-31
JPH04319044A (ja) 1992-11-10
US5360053A (en) 1994-11-01
ES2056670T5 (es) 2001-02-01
KR970005365B1 (ko) 1997-04-15
ES2056670T3 (es) 1994-10-01
FI920487A0 (fi) 1992-02-05
CA2060604A1 (en) 1992-08-07

Similar Documents

Publication Publication Date Title
EP0498296A2 (de) Kokille zum Stranggiessen von Metallen, insbesondere von Stahl
DE3709188C2 (de)
EP0551311B1 (de) Flüssigkeitsgekühlte kokille für das stranggiessen von strängen aus stahl im brammenformat
EP0730923B1 (de) Kokille zum Stranggiessen von Metallen
WO2006072311A1 (de) Stahlstranggiessanlage für knüppel- und vorblockformate
EP1547705B1 (de) Verfahren zum Stranggiessen von Knüppel- und Vorblocksträngen und Formhohlraum einer Stranggiesskokille
EP0615802A2 (de) Walzbarren-Stranggussanlage
EP0627968B1 (de) Verfahren zum stranggiessen von metal, insbesondere von stahl in knüppel- und vorblockquerschnitte
EP0694355B1 (de) Straggiesskokille für ein Doppel-T-Vorprofil
DE3126387C2 (de)
DE3204339C2 (de) Stranggießkokille zum Gießen von Trägerrohlingen
EP3308878B1 (de) Kokille zum stranggiessen von metallen
CH685432A5 (de) Kokille zum Stranggiessen von Metall, insbesondere von Stahl in Knüppel- und Vorblockquerschnitte.
EP0920936B1 (de) Kokille zum Stranggiessen
EP2483015A1 (de) Stranggiesskokille
EP1441871B1 (de) Verfahren und giessmaschine zur produktion von gusssträngen im knüppel- oder blockformat
EP1002599B1 (de) Kokille zum Stranggiessen von Metall
DE4435218C2 (de) Kokille zum Stranggießen von Dünnbrammen oder Stahlbändern
CH689223A5 (de) Stranggiesskokille fuer ein Doppel-T-Vorprofil.
DE3206987C2 (de) Gießform zum Herstellen von Hohlgußstücken
EP1466682A1 (de) Stranggiessvorrichtung mit einer Stranggiesskokille zum Giessen von flüssigen Metallen, insbesondere von Stahlwerkstoffen
EP0102967A1 (de) Metallischer kernzug
WO2002064286A2 (de) Stranggiesskokille
DE1905024C3 (de) Preßkopf für Schneckenpressen zum Strangpressen von keramischem Rohmaterial und Verfahren zu seiner Herstellung
DE2510673A1 (de) Form zum kontinuierlichen giessen von stahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

RHK1 Main classification (correction)

Ipc: B22D 11/04

17P Request for examination filed

Effective date: 19930113

17Q First examination report despatched

Effective date: 19930322

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 105750

Country of ref document: AT

Date of ref document: 19940615

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940518

REF Corresponds to:

Ref document number: 59200159

Country of ref document: DE

Date of ref document: 19940623

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2056670

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 92101506.1

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VOEST-ALPINE INDUSTRIEANLAGENBAU GMBH

Effective date: 19950214

26 Opposition filed

Opponent name: EGON EVERTZ KG

Effective date: 19950220

Opponent name: MANNESMANN AG

Effective date: 19950217

Opponent name: VOEST-ALPINE INDUSTRIEANLAGENBAU GMBH

Effective date: 19950214

NLR1 Nl: opposition has been filed with the epo

Opponent name: VOEST-ALPINE INDUSTRIEANLAGENBAU GMBH

NLR1 Nl: opposition has been filed with the epo

Opponent name: EGON EVERTZ KG

Opponent name: MANNESMAN AG

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONCAST STANDARD AG

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

27A Patent maintained in amended form

Effective date: 20001206

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 20001229

ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050130

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

Ref country code: CH

Ref legal event code: PFA

Owner name: CONCAST AG

Free format text: CONCAST STANDARD AG#TOEDISTRASSE 7#8027 ZUERICH (CH) -TRANSFER TO- CONCAST AG#TOEDISTRASSE 9#8027 ZUERICH (CH)

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20101214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110202

Year of fee payment: 20

Ref country code: AT

Payment date: 20110113

Year of fee payment: 20

Ref country code: CH

Payment date: 20110127

Year of fee payment: 20

Ref country code: DE

Payment date: 20110121

Year of fee payment: 20

Ref country code: SE

Payment date: 20110113

Year of fee payment: 20

Ref country code: IT

Payment date: 20110129

Year of fee payment: 20

Ref country code: NL

Payment date: 20110117

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110104

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110125

Year of fee payment: 20

Ref country code: GB

Payment date: 20110120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59200159

Country of ref document: DE

BE20 Be: patent expired

Owner name: *CONCAST STANDARD A.G.

Effective date: 20120130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59200159

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120129

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 105750

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120131