EP0491981B1 - Automatische Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff - Google Patents

Automatische Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff Download PDF

Info

Publication number
EP0491981B1
EP0491981B1 EP90125390A EP90125390A EP0491981B1 EP 0491981 B1 EP0491981 B1 EP 0491981B1 EP 90125390 A EP90125390 A EP 90125390A EP 90125390 A EP90125390 A EP 90125390A EP 0491981 B1 EP0491981 B1 EP 0491981B1
Authority
EP
European Patent Office
Prior art keywords
unit
plant according
liquid
concentrate
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90125390A
Other languages
English (en)
French (fr)
Other versions
EP0491981A1 (de
Inventor
Hans-Dietrich Dr. Polaschegg
Bernd Dr.-Ing. Steinbach
Claus Dipl.-Ing. Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fresenius SE and Co KGaA
Original Assignee
Fresenius SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius SE and Co KGaA filed Critical Fresenius SE and Co KGaA
Priority to EP90125390A priority Critical patent/EP0491981B1/de
Priority to ES90125390T priority patent/ES2070990T3/es
Priority to DE59008490T priority patent/DE59008490D1/de
Publication of EP0491981A1 publication Critical patent/EP0491981A1/de
Application granted granted Critical
Publication of EP0491981B1 publication Critical patent/EP0491981B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/1657Apparatus for preparing dialysates with centralised supply of dialysate or constituent thereof for more than one dialysis unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/1666Apparatus for preparing dialysates by dissolving solids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/1668Details of containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/1672Apparatus for preparing dialysates using membrane filters, e.g. for sterilising the dialysate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced

Definitions

  • the concentrate manufacturing plant of the company Druck-Technik-Walther GmbH in Ubstadt-Weiher also works in a similar way, which differs fundamentally from the plant 1 according to the invention in terms of the process control, which is evident, for example, from the fact that two pumps are required to operate the plant. It does not have a gas supply unit or there is no connection option for a gas. In this system too, the solids to be dissolved must be added directly to the mixing container, the opening of which, depending on the version, is also very high.
  • Another disadvantage compared to the system 1 according to the invention is that, provided that it is used for the production of bicarbonate concentrate, it has no filtration unit.
  • OS-DE 3443911 A1 also works according to this method. Again, the solids to be dissolved must be added through an opening in the top of the container and the concentrate must be conveyed out of the container by an additional pump. This system also does not have a filtration unit, as is required, for example, for the production of bicarbonate concentrate. A gas recirculation and the possibility of adding gas or a fumigation unit is also not implemented.
  • the invention relates to a computer-controlled system for producing concentrates by mixing liquid with soluble solid, according to the preamble of claim 1.
  • the special advantages of the system according to the invention include the high degree of automation, the integrated and fully automatic system test, the consumption-optimized gassing, the simple handling and its cost-effective production method, in which concentrates can be produced with high quality. If dialysis concentrates are involved, such as a bicarbonate concentrate, its pH value can be optimally adjusted to prevent carbonate precipitation in the dialysis machine. In addition, it is possible to effectively prevent contamination with bacteria or pyrogens or to reduce them to the maximum permissible level.
  • the dimensions of the system can be kept small, so that it is particularly suitable as a small system in the field of dialysis technology.
  • the system movable for which purpose it can be arranged in a correspondingly designed frame, which can be made movable, for example, by the provision of wheels.
  • the system can be safely set up using adjustable supports in the frame.
  • system 1 it is possible to prepare a bicabbonate concentrate for the dialysis area by volumetric addition of suitably prepared water to bicarbonate powder, complete dissolution of the solid to be dissolved being achieved.
  • concentration of the solution is controlled, for example, by means of a conductivity measurement and the pH is adjusted by introducing CO2 bubbles into the solution.
  • the end product is filtered before being filled into bottles or canisters or before being distributed via pipes to the dialysis machines in order to eliminate any bacteria and pyrogens that may be present.
  • a PS 600 membrane filter can be used, as is also used in the dialysis fluid filter from Fresenius AG.
  • FIG. 1 shows an embodiment of a system 1 according to the invention for the production of concentrates by mixing liquid with soluble solid.
  • a system can be designed, in particular, for the production of dialysis concentrates as a small system, which can be mounted in a frame made, for example, of stainless steel, which is not shown in FIG. 1, however.
  • the frame can be provided with wheels, the system supports having to be designed to be adjustable for this.
  • a system constructed in this way has dimensions which, in practical operation, allow the entire unit to be moved through doors of conventional dimensions. Accordingly, dimensions of approximately 1.98 mx 0.83 m are not exceeded if the cover is lifted off.
  • the plant shown in FIG . 1 has in detail a mixing container unit 2 which has an upper cylindrical section 16 and a funnel-shaped base 14 .
  • the opening angle of the funnel-shaped bottom 14 is preferably less than 80 °.
  • the mixing container unit 2 also has a funnel-shaped cover 12 which is equipped with two channels 13a and 13b lying opposite one another and on the inside of the container, as well as with a main feed nozzle 18 and four connecting nozzles 17a , 17b , 17c and 17d .
  • the opening angle of the funnel-shaped cover 12 is preferably more than 100 °.
  • the mixing container unit 2 is provided with an overflow detector 48 , which can be designed, for example, as an optical sensor.
  • the liquid preferably RO water
  • a liquid reservoir (not shown in detail) via the liquid inlet 9 , consisting of a preferably electrically actuated metering element 10
  • Flow measuring unit 11 and a schematically illustrated delivery line 20 and the connecting piece 17 a in the cover 12 in the mixing container unit 2 .
  • the mixing container unit 2 also has an outlet connection 19 which is connected to the interior of the container at the lowest point of the funnel-shaped base 14 .
  • the system according to the invention has a main liquid circuit 8 , which is further divided into sub-segments 8a , 8b , 8c, 8d , 8e , 8f , 8g , 8h and 8i .
  • a pressure measuring device 47 is attached for checking the fill level.
  • a preferably electrically operated shut-off device 3 is arranged between the two sub-segments 8a and 8b .
  • a circulating pump 4 is arranged between the subsegment 8b and 8c of the main liquid circuit 8 , which is connected to the reservoir 5 via the subsegment 8c .
  • a drain line 23a branches off from the segment 8c . It leads via a preferably electrically operated shut-off device 24 and the drain line 23b into a drain, not shown in detail.
  • a gassing unit 15 is attached in the bottom part of the reservoir 5 , which is connected via the line 29 , consisting of the partial segments 29a and 29b , to a preferably electrically operable venting member 25, which is connected to a gas bottle 28 via a preferably electrically actuated metering member 26 is what preferably carbon dioxide (CO2) can be introduced into the liquid circuit, and on the other hand has a connection to the environment via line 27, via which ventilation can be carried out.
  • a line 30 is also connected to the line segment 29b and leads into the environment via a safety device 31 .
  • the storage container 5 also has an opening 33 , the closure insert 34 has the shape of a cone.
  • the closure insert 34 in the opening 33 of the storage container 5 is provided with a locking pawl 36 .
  • the storage container 5 has, in addition to an inlet 8c , two outlets 8d and 8i , between which a conductivity and temperature measuring device 35 is arranged, and which are connected to the line segment 8e of the main liquid circuit 8 .
  • a preferably electrically actuated switching element 39 is arranged in the main liquid circuit 8 between the sub-segments 8g and 8h .
  • a branch line 38 which has a filtration unit 6 , branches off from the segment 8g .
  • a pressure measuring device 49 is arranged at the intersection 8f of the main liquid circuit 8 .
  • the filtration unit 6 preferably consists of a capillary filter with exclusion capacity for bacteria and endotoxins. Furthermore, it is provided with a discharge device 40 which, depending on the number of filter elements present, comprises one or more connections and a preferably electrically actuable valve 41 for the possibility of removing the concentrate produced.
  • a receiving device 43 for the filling unit 60 is arranged on the connecting piece 17d in the cover 12 of the mixing container unit 2 , which is connected to the outlet switching element 41 via the bypass line 42 . Furthermore, the receiving device 43 is provided with a detector, which is not described in more detail.
  • a line 44 which is preferably flexible and in which a flow measuring unit 45 is attached, leads from the outlet switching element 41 to the filling unit 60 .
  • a return line 37 runs from the filtration unit 6 to the preferably electrically actuated switching element 39 .
  • the sub-segment 8h of the main liquid circuit 8 leads from the switching element 39 via the main feed connector 18 in the cover 12 of the mixing container unit 2 into the interior of the mixing container unit 2 and is provided at the end with a spray head 7 , the function of which will be explained later.
  • the system 1 has a gas circuit 50 .
  • the gas pump 51 is connected to the cover 12 of the mixing container unit 2 via the line 52 and the connecting piece 17b .
  • the gas pump 51 is connected to the line 29 via the line 53 .
  • a mechanical / optical sensor 63 is arranged in the housing 64 in the filling unit 60 , which is shown in more detail in FIG . 3 and is used for canister and canister fill level detection.
  • a conductivity detector consisting of the outer electrode 62 and an inner electrode, not shown, is arranged in the filler neck 65 .
  • a magnet 61 is attached to the filler neck.
  • All sensors such as the flow measuring units 11 and 45 , the pressure measuring devices 47 and 49 , the overflow detector 48 , the detector unit 46 and the detector in the receiving device 43 are connected to the electronic control, regulating, measuring and computing unit 100 via control lines. Furthermore, all organs, such as the shut-off elements 3 and 24 , the switching element 39 , the outlet switching element 41 , the metering elements 10 and 26 , and the ventilation element 25 are also connected to the electronic control, regulating, measuring and computing unit 100 . Furthermore, the control, regulating, measuring and computing unit 100 operates the circulation pump 4 via a converter unit 101 and the gas pump 51 via a switching unit 102 .
  • An input unit 103 is connected to the control, regulating, measuring and computing unit 100 , via which the system 1 is operated.
  • the input unit 103 which is not described in detail here, has an optical output component, preferably a display, and a mechanical input component, preferably a keyboard. Different operating states of the system 1 can be set in this way or information, such as the quality parameters, can be queried. Furthermore, the system 1 has an output component 104 , preferably a printer, which is also connected to the control, regulating, measuring and computing unit 100 and via which a detailed Manufacturing documentation can be issued.
  • an acoustic signal unit 106 preferably a loudspeaker, an optical signal unit 105 , preferably a light unit corresponding to a traffic light, and a data reading unit 107 , which can be a bar code reader, for example, are connected to the control, regulating, measuring and computing unit 100 .
  • the reservoir 5 is first filled with the desired amount of soluble solid, such as bicarbonate powder, via the opening 33 after the locking insert 34 has been unlocked by the locking pawl 36 and the reservoir 5 has been opened by the operator.
  • the amount of the solid to be entered for example the number of bags used, is entered manually into the control, regulating, measuring and computing unit 100 via the input unit 103 .
  • the flexible input configuration for the amount of soluble solid allows any amount of solid to be processed up to a system-specific, specific upper amount of preferably 50 kg of sodium bicarbonate powder.
  • the unit used such as kilograms, moles or sacks, can be freely selected.
  • the storage container 5 is closed again by the operator after the loading of solid material and the locking insert 34 is then automatically locked again by the locking pawl 36 .
  • the functionality of the system is tested by means of a pressure test, in particular checking whether the cover 34 is tightly closed.
  • Gas is pumped into the reservoir 5 by means of the gas pump 51 , as a result of which a pressure is built up between the shut-off element 3 and the switching element 39 , including the compartment 6a of the filtration unit 6 . If the membrane 6c in the filtration unit 6 is tight, the test pressure is reached, which is preferably not less than 1 bar. Both the tightness and the condition of the filtration unit 6 are assessed via the pressure drop to be observed. If the pressure drop in the fixed period of one minute is preferably less than 0.1 bar, the system is sufficiently tight.
  • a time switch device contained in 100 can be used to select whether the mixing and dissolving process should be started immediately or at a time to be set freely.
  • the dissolution process begins in such a way that the mixing container unit 2 is subsequently charged with preferably RO water via the liquid inlet 9 , the final volume of which is below the theoretically required amount of liquid in order to achieve an over-concentration of the concentrate to be produced during the subsequent dissolution phase.
  • the inflowing volume flow of liquid is permanently recorded via the flow measuring unit 11 and checked by means of the pressure measuring device 47 .
  • the solids are dissolved in that after the liquid has been added by means of the circulation pump 4, the liquid is sucked out of the mixing container unit 2 , through the storage container 5 loaded with soluble solid, the main liquid circuit 8 together with the switching element 39 , and pumped back into the mixing container unit 2 .
  • the escaping gas is pumped out via the gas circuit 50 by means of the gas pump 51 above the liquid level in the mixing container unit 2 and this is piped to the concentrate via lines 53 and 29 and the gassing unit 15 fed again by bubbling.
  • CO2 can also be supplied to the system by means of the gas bottle 28 via line 29 .
  • the missing, liquid quantity is calculated by the control, regulating, measuring and computing unit 100 and metered in stepwise via the liquid inlet 9 by means of the flow measuring device 11 .
  • the quality of the solution is continuously monitored with the conductivity and temperature measuring device 35 of the control, regulation, measuring and computer unit 100, as well as the volume of liquid on the pressure measuring unit 47 in the mixing tank unit. 2
  • the conductivity measurement is advantageously temperature compensated.
  • a filling unit 60 is used to fill the concentrate into bottles or canisters. If not filled, this is located in the receiving device 43 designed for this. It is now removed from this rest position and inserted into the opening of the canister, the opening radius of which should preferably be 34 mm. By inserting the filling unit 60 into the canister opening, the filling of the canister is started via the mechanical / optical sensor 63 . If the fill level in the canister reaches its setpoint, this is registered in the filling unit 60 via the conductivity detector and the filling process is stopped immediately. The filling unit 60 is now inserted into the opening of the next canister to be filled and the process is repeated.
  • the sensors in the filling unit 60 and in the receiving device 43 only allow operation of the system 1 if the filling unit is either in the intended receiving unit 43 or during the filling phase in the bottle or canister opening.
  • the plant 1 advantageously has no dead water zones.
  • the system 1 according to the invention must be disinfected at regular intervals. In a system for the dialysis area, for example after filling at intervals of one to several days. Before the disinfection begins, any concentrate which is still present is removed fully automatically from the system 1 according to the invention. To disinfect the system 1 according to the invention, it is filled with, for example, 100 l of RO water and a disinfectant supplied. Such a disinfectant can be, for example, peracetic acid, the concentration of the rinsing solution being 0.2%.
  • the disinfectant is added in such a way that the reservoir 5 is flooded after the system has been filled and then, by introducing a defined gas volume into the reservoir 5 , by means of the gas pump 51 via the gassing unit 15 , a fluid volume which is also defined thereby the storage container 5 is displaced.
  • the shut-off device 3 is then immediately closed and the closure insert 34 is unlocked by opening the safety catch 36 .
  • the storage container 5 is now opened by the operator and the appropriate amount of disinfectant is added to it. Subsequently, the storage container 5 is closed and locked again.
  • the disinfectant solution is preferably circulated for 30 minutes, with the actuators changing positions.
  • This circulation also takes place through the pump 4 , the spray head 7 also being able to be charged with disinfectant solution in the corresponding switch positions, which makes it possible to wet all the inside walls of the container with disinfectant solution, since the spray head 7 is arranged in the upper region of the mixing container unit 2 .
  • the use of such a spray head 7 enables the amount of liquid required for disinfection to be minimized. After disinfection, system 1 is rinsed fully automatically several times. Testing with test strips can ensure that there are no more disinfectant residues in the system.
  • Disinfection can alternatively be carried out by hot water, preferably at more than 70 ° C.
  • a heating device according to the prior art, which is not described in more detail, is installed.
  • the system 1 according to the invention can also only be rinsed.
  • the rinsing process is activated via the input unit 103 .
  • the system 1 according to the invention is also filled with preferably 100 l of RO water and this is then circulated for a few minutes by means of the pump 4 , with the actuators changing positions. Any concentrate still present, which can be determined by means of the pressure measuring device 47 , is previously removed fully automatically from the system 1 according to the invention by opening the shut-off element 24 and pumping off the liquid by means of the circulation pump 4 .
  • the system 1 according to the invention is advantageously extremely easy to use. First of all, the system 1 must be connected to an energy supply and it must be ensured that the liquid inlet and, if desired, the corresponding gas bottle 28 are connected. Then the system 1 can be switched on by means of a switch-on element, for example a mains switch located on the control, regulating, measuring and computing unit 100 . The system is then immediately ready for operation and the current status can be seen via the output component. Since the system 1 has a battery-buffered storage unit in which all system parameters are stored, the system can inform the operator of various requests or necessary measures. For example, after a long standstill, the request for disinfection may appear, which cannot be avoided for safety reasons. Various processes, such as flushing, can be carried out by the operator at any time and regardless of the current state of the system 1 .
  • a switch-on element for example a mains switch located on the control, regulating, measuring and computing unit 100 .
  • the system is then immediately ready for operation and the current status can
  • the system 1 according to the invention can also be used as a central supply system for supplying a number of dialysis machines with one concentrate, for example bicarbonate concentrate, in dialysis stations.
  • the system 1 according to the invention is connected via the line 44 , in which the flow measuring unit 45 is arranged, directly to a supply ring line system or a supply branch line system, which is not shown in more detail in FIG .
  • Another advantageous possibility of connection to a central supply system can be realized in such a way that the filling unit 60 is connected to the supply line by means of a counterpart (not shown in more detail).
  • a supply ring line system If, for example, a supply ring line system is connected, its return can be attached to the connecting piece 17c , which advantageously leads the recirculated concentrate into the mixing container unit 2 and thus has to pass through the filtration unit 6 again before it is pumped again into the supply ring line by means of the circulation pump 4 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)

Description

    Stand der Technik bei Konzentratherstellanlagen:
  • Aus der OS-DE 3844174 A1 ist bereits eine ähnliche Anlage bekannt, bei welcher der aufzulösende Feststoff mit der erforderlichen Flüssigkeitsmenge in einen gemeinsamen Behälter gegeben und mittels einer Pumpe zur Auflösung gebracht wird. Gegenüber der vorliegenden Erfindung liegen die Nachteile dieser Anlage darin, daß die Pulverzugabe über eine hoch liegende Öffnung im Deckel des Mischbehälters vorgenommen werden muß. Desweiteren verfügt diese Anlage über eine Einrichtung zur Begasung. Der hohe Gasverbrauch dieser Einrichrung und die damit verbundenen hohen Kosten, beispielsweise bei der Anwendung des Gases CO₂, wird mit der erfindungsgemäßen Anlage 1 deutlich reduziert. Im Verfahren besteht ein weiterer Unterschied darin, daß mit der erfindungsgemäßen Anlage 1 Konzentrate mit unterschiediicher Konzentration hergestellt werden können und restliches Konzentrat, durch die Möglichkeit der Zusatzproduktion, nicht verworfen werden muß.
  • Ähnlich arbeitet auch die Konzentratherstellungsanlage der Firma Medizin-Technik-Walther GmbH in Ubstadt-Weiher, welche sich gegenüber der erfindungsgemäßen Anlage 1 in der Verfahrensführung grundlegend unterscheidet, was z.B. dadurch ersichtlich ist, daß für den Betrieb der Anlage zwei Pumpen erforderlich sind. Sie verfügt über keine Begasungseinheit bzw. es ist keine Anschlußmöglichkeit für ein Gas vorhanden. Auch bei dieser Anlage muß der aufzulösende Feststoff direkt in den Mischbehälter gegeben werden, dessen Öffnung, je nach Ausführung, ebenfalls sehr hoch liegt. Ein weiterer Nachteil gegenüber der erfindungsgemäßen Anlage 1 ist, daß sie, sofern sie für die Herstellung von Bicarbonatkonzentrat eingesetzt, über keine Filtrationseinheit verfügt.
  • Desweiteren sind Anlagen bekannt, in welchen die Auflösung des löslichen Feststoffes in Flüssigkeit und Mischung mittels eines Rührers vorgenommen wird, wie beispielsweise das RS-2500/RS-2130 Mischsystem der Firma Renal Systems (USA). Da gerade diese Anlage auch für die Herstellung von Bicarbonatkonzentrat konfiguriert ist, ist das Fehlen einer Filtrationseinheit und Begasungseinheit auch hier nachteilig aufzuführen. Ferner wird für das Entleeren der Anlage eine zusätzliche Pumpeinheit benötigt. Eine vollständige Entleerung ist nur durch nachteiliges Auskippen möglich und die Leitfähigkeitsmeßeinrichtung ist nicht fest installiert, weshalb eine sichere Qualitätskontrolle nicht sichergestellt ist. Letzlich wird auch hier der Feststoff direkt in den Auflösebehälter gegeben, dessen Füllöffnung sich nicht in einer ergonomischen Höhe befindet, wie sie der Vorlagebehälter 5 in der erfindungsgemäße Anlage 1 aufweist. Nach diesem Verfahren arbeitet auch die, in der OS-DE 3443911 A1 beechriebene, Anlage. Wiederum muß der aufzulösende Feststoff über eine Öffnung in der Behälteroberseite zugegeben werden und das Konzentrat über eine zusätzliche Pumpe aus dem Behälter gefördert werden. Auch diese Anlage verfügt über keine Filtrationseinheit, wie sie beispielsweise für die Herstellung von Bicarbonatkonzentrat erforderlich ist. Eine Gasrezirkulation und eine Zugabemöglichkeit für Gas bzw. eine Begasungseinheit ist ebenfalls nicht implementiert.
  • Gegenüber der erfindungsgemäßen Anlage 1 haben alle aufgeführten Anlagen den Nachteil, daß die für die Desinfektion notwendige Zugabe von Desinfektionsmittel über die sehr ungünstig angebrachten Befüllöffnungen vorgenommen werden muß, welches eine gewisse Gefährdung für den Bediener mit sich bringt.
  • Beschreibung:
  • Die Erfindung betrifft eine rechnergesteuerte Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff, nach dem Oberbegriff des Anspruchs 1.
  • Insbesondere für die Herstellung von Bicarbonatkonzentrat zur Verwendung in Dialysegeräten besteht ein Bedürfnis nach einer automatischen Herstellungsanlage, welche die Produktion eines Konzentrates mit hoher Qualität ermöglicht, da vor allem in diesem Bereich höchste Anforderungen im Hinblick auf Sterilität und ausgewogene Konzentration bestehen.
  • Es ist daher Aufgabe der vorliegenden Erfindung, eine Anlage zur Herstellung von Konzentraten durch Mischen von Flüssigkeit mit löslichem Feststoff mit hohem Automatisierungsgrad zu schaffen, die eine gleichbleibend hoch qualitative Produktion von Konzentraten mit relativ niedrigem Aufwand ermöglicht.
  • Die Lösung der Aufgabe erfolgt durch die Merkmale im Anspruch 1.
  • Dadurch wird es ermöglicht, daß beispielsweise für die Herstellung von Dialysekonzentrat Bicarbonatpulver oder Granulat mit RO-Wasser (Umkehrosmosewasser) zur Auflösung gebracht werden kann, wobei durch die Zugabe von CO₂ das Konzentrat im pH-Wert ausgeglichen und danach vorzugsweise gefiltert werden kann, um die erforderliche Sterilität sicherzustellen.
  • Zu den besonderen Vorteilen der erfindungsgemäßen Anlage gehört der hohe Automatisierungsgrad, der integrierte und voll automatische Systemtest, die verbrauchsoptimierte Begasung, die einfache Handhabung und ihre kosteneffektive Produktionsweise, bei der Konzentrate mit hoher Qualität hergestellt werden können. Handelt es sich um Dialysekonzentrate, wie beispielsweise ein Bikarbonatkonzentrat, kann dessen pH-Wert optimal eingestellt werden, um eine Carbonatausfällung im Dialysegerät zu verhindern. Darüber hinaus ist es möglich, eine Kontamination mit Bakterien oder Pyrogenen wirksam zu verhindern bzw. auf das maximal zulässige Maß abzusenken.
  • Darüber hinaus können die Abmessungen der Anlage klein gehalten werden, so daß sie sich insbesondere als Kleinanlage im Bereich der Dialysetechnik hervorragend eignet. Ferner ist es möglich, die Anlage beweglich auszubilden, wozu sie in einem entsprechend ausgebildeten Gestell angeordnet werden kann, das beispielsweise durch das vorsehen von Rädern verfahrbar gemacht werden kann. Bei dieser Ausführung kann die Anlage, durch im Gestell angebrachte, justierbare Stützen, sicher aufgestellt werden.
  • Mit der erfindungsgemäßen Anlage 1 ist es möglich, für den Dialysebereich ein Bicabbonatkonzentrat, durch volumetrische Zugabe von geeignet aufbereiteten Wassers zu Bicarbonatpulver, anzusetzen, wobei eine vollständige Auflösung des aufzulösenden Feststoffes erreicht wird. Die Konzentration der Lösung wird beispielsweise über eine Leitfähigkeitsmessung gesteuert und der pH-Wert wird durch Einleiten von CO₂ Blasen in die Lösung eingestellt. Das Endprodukt wird vor dem Abfüllen in Flaschen oder Kanistern, bzw. vor Verteilung über Rohrleitungen zu den Dialysegeräten, gefiltert, um eventuell vorhandene Bakterien und Pyrogene zu eliminieren.
  • Die Unteransprüche haben vorteilhafte Weiterbildungen der Erfindung zum Inhalt.
  • Als eine besonders bevorzugte Filtrationseinheit kann beispielsweise ein PS 600 Membranfilter verwendet werden, wie er auch im Dialysierflüssigkeitsfilter der Fa. Fresenius AG zum Einsatz kommt.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus nachfolgender Beschreibung eines Ausführungsbeispiels anhand der Zeichnung.
  • Es zeigt:
    • Fig.1 eine Schemazeichnung in Form eines Blockschaltbildes einer erfindungsgemäßen Anlage,
    • Fig.2 eine Schemazeichnung in Form einer Schnittzeichnung des Deckel einer erfindungsgemäßen Anlage und
    • Fig.3 eine Schemazeichnung der Abfülleinheit einer erfindungsgemäßen Anlage.
  • In Fig.1 ist eine Ausführungsform einer erfindungsgemäßen Anlage 1 zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff dargestellt. Eine derartige Anlage kann insbesondere zur Herstellung von Dialysekonzentraten als Kleinanlage ausgebildet sein, die in einem beispielsweise aus nichtrostendem Stahl hergestellten Rahmen montiert werden kann, der in Fig.1 jedoch nicht näher dargestellt ist. Um eine derartige Anlage verfahrbar auszustatten, kann der Rahmen mit Rädern versehen werden, wobei hierfür die Anlagenstützen verstellbar ausgeführt sein müssen. Beispielsweise weist eine derartig aufgebaute Anlage Abmessungen auf, die im praktischem Betrieb ein Verfahren der gesamten Einheit durch Türen üblicher Abmessungen gestattet. Dementsprechend werden Abmessungen von ungefähr 1,98 m x 0.83 m bei eventuell abgehobenen Deckel nicht überschritten.
  • Die in Fig.1 dargestellt Anlage weist im einzelnen eine Mischbehältereinheit 2 auf, die einen oberen zylindrischen Abschnitt 16 und einen trichterförmigen Boden 14 aufweist. Der Öffnungswinkel des trichterförmigen Bodens 14 beträgt vorzugsweise weniger als 80°.
  • Die Mischbehältereinheit 2 verfügt ferner über einen trichterförmigen Deckel 12, welcher mit zwei sich gegenüber liegenden und zur Behälterinnenseite angeordneten Rinnen 13a und 13b, sowie mit einem Hauptzuführstutzen 18 ausgestattet ist und über vier Anschlußstutzen 17a, 17b, 17c und 17d verfügt. Der Öffnungswinkel des trichterförmigen Deckels 12 beträgt vorzugsweise mehr als 100°.
  • Desweiteren ist die Mischbehältereinheit 2 mit einem Überlaufdetektor 48 versehen, der beispielsweise als optischer Sensor ausgebildet sein kann.
  • Die Flüssigkeit, vorzugsweise RO-Wasser, wird aus einem nicht näher dargestellten Flüssigkeitsspeicher über den Flüssigkeitszulauf 9, bestehend aus einem vorzugsweise elektrisch betätigbaren Dosierorgan 10, einer Durchflußmesseinheit 11 und einer schematisch dargestellten Förderleitung 20, und den Anschlußstutzen 17a im Deckel 12 in die Mischbehältereinheit 2 geleitet.
  • Die Mischbehältereinheit 2 weist ferner einen Auslaßstutzen 19 auf, der am tiefsten Punkt des trichterförmigen Bodens 14 mit dem Behälterinneren verbunden ist.
  • Ferner ist in Fig.1 verdeutlicht, daß die erfindungsgemäße Anlage einen Hauptflüssigkeitskreislauf 8 aufweist, welcher zur weiteren Verdeutlichung in die Teilsegmente 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h und 8i aufgeteilt ist. Im Teilsegment 8a, das die Mischbehältereinheit 2 über den Auslaßstutzen 19 mit dem Absperrorgan 3 verbindet, ist eine Druckmeßeinrichtung 47 zur Füllstandskontrolle angebracht. Zwischen den beiden Teilsegmenten 8a und 8b ist ein vorzugsweise elektrisch betätigbares Absperrorgan 3 angeordnet. Zwischen dem Teilsegment 8b und 8c des Hauptflüssigkeitskreislaufes 8 ist eine Umwälzpumpe 4 angeordnet, welche über das Teilsegment 8c mit dem Vorlagebehälter 5 verbunden ist.
  • Vom Teilsegment 8c zweigt eine Ablaufleitung 23a ab. Sie führt über ein vorzugsweise elektrisch betätigbares Absperrorgan 24 und die Ablaufleitung 23b in einen nicht näher dargestellt Ablauf.
  • Im Bodenteil des Vorlagebehälter 5 ist eine Begasungseinheit 15 angebracht, welche über die Leitung 29, bestehend aus den Teilsegmenten 29a und 29b, mit einem vorzugsweise elektrisch betätigbaren Entlüftungsorgan 25 verbunden ist, das zum einen über ein vorzugsweise elektrisch betätigbares Dosierorgan 26 an eine Gasflasche 28 angeschlossen ist, worüber vorzugsweise Kohlendioxid (CO₂) in den Flüssigkeitskreislauf eingebracht werden kann, und zum anderen über die Leitung 27 eine Verbindung zur Umgebung aufweist, worüber eine Entlüftung vorgenommen werden kann. An das Leitungssegment 29b ist desweiteren eine Leitung 30 angeschlossen, welche über ein Sicherheitsorgan 31 in die Umgebung führt.
  • Der Vorlagebehälter 5 weist ferner eine Öffnung 33 auf, dessen Verschlußeinsatz 34 die Form eines Kegels aufweist. Der Verschlußeinsatz 34 in der Öffnung 33 des Vorlagebehälters 5 ist mit einer Sicherungsklinke 36 versehen. Desweiteren verfügt der Vorlagebehälter 5 neben einem Einlaß 8c über zwei Auslässe 8d und 8i, zwischen welchen eine Leitfähigkeits- und Temperaturmeßeinrichtung 35 angeordnet ist, und die mit dem Leitungssegment 8e des Hauptflüssigkeitskreislaufes 8 verbunden sind.
  • Desweiteren ist im Hauptflüssigkeitskreislauf 8 zwischen den Teilsegmenten 8g und 8h ein vorzugsweise elektrisch betätigbares Schaltorgan 39 angeordnet. Vom Teilsegment 8g zweigt eine Zweigleitung 38 ab, die eine Filtrationseinheit 6 aufweist. An der Kreuzstelle 8f des Hauptflüssigkeitskreislaufes 8 ist eine Druckmesseinrichtung 49 angeordnet.
  • Die Filtrationseinheit 6 besteht vorzugsweise aus einem Kapillarfilter mit Ausschlußfähigkeit für Bakterien und Endotoxinen. Ferner ist sie mit einer Ableiteinrichtung 40 versehen, die nach Zahl der vorhandenen Filterelemente einen oder mehrere Anschlüsse und ein vorzugsweise elektrisch betätigbares Ventil 41 zur Entnahmemöglichkeit des hergestellten Konzentrates umfaßt.
  • Desweiteren ist eine Aufnahmeeinrichtung 43 für die Abfülleinheit 60 an dem Anschlußstutzen 17d im Deckel 12 der Mischbehältereinheit 2 angeordnet, welche über die Bypass-Leitung 42 mit dem Auslaßschaltorgan 41 verbunden ist. Desweiteren ist die Aufnahmeeinrichtung 43 mit einem nicht näher beschriebenen Detektor versehen. Ferner führt vom Auslaßschaltorgan 41 eine Leitung 44, welche vorzugsweise flexibel ausgeführt und in der eine Durchflußmeßeinheit 45 angebracht ist, zur Abfülleinheit 60.
  • Von der Filtrationseinheit 6 aus verläuft eine Rückführleitung 37 zu dem vorzugsweise elektrisch betätigbaren Schaltorgan 39.
  • Das Teilsegment 8h des Hauptflüssigkeitskreislaufes 8 führt vom Schaltorgan 39 über den Hauptzuführstutzen 18 im Deckel 12 der Mischbehältereinheit 2 in den Innenraum der Mischbehältereinheit 2 und ist am Ende mit einem Sprühkopf 7 versehen, dessen Funktion später erläutert werden wird.
  • Wie Fig.1 ferner verdeutlicht, weist die erfindungsgemäße Anlage 1 einen Gaskreislauf 50 auf. Die Gaspumpe 51 ist über die Leitung 52 und den Anschlußstutzen 17b mit dem Deckel 12 der Mischbehältereinheit 2 verbunden. Über die Leitung 53 ist die Gaspumpe 51 an die Leitung 29 angeschlossen.
  • In der in Fig.3 genauer dargestellten Abfülleinheit 60, welche zur Kanister- und Kanisterfüllstandsdetektion dient, ist im Gehäuse 64 ein mechanisch/optischer Sensor 63 angeordnet. In dem Füllstutzen 65, welcher fest mit dem Gehäuse 64 verbunden ist, ist ein Leitfähigkeitsdetektor, bestehend aus der Außenelektrode 62 und einer nicht näher dargestellten Innenelektrode, angeordnet. Wird beispielsweise in der Aufnahmeeinheit 43, welche der Aufnahme der Abfülleinheit 60 dient, als Detektor ein Reed-Kontakteingesetzt, ist an dem Füllstutzen ein Magnet 61 angebracht.
  • Sämtliche Sensoren, wie die Durchflußmeßeinheiten 11 und 45, die Druckmeßeinrichtungen 47 und 49, der Überlaufdetektor 48, die Detektoreneinheit 46 und der Detektor in der Aufnahmeeinrichtung 43 sind mit der elektronischen Steuer-, Regel-, Meß- und Rechnereinheit 100 über Steuerleitungen verbunden. Desweiteren sind alle Organe, wie die Absperrorgane 3 und 24, das Schaltorgan 39, das Auslaßschaltorgan 41, die Dosierorgane 10 und 26, sowie das Entlüftungsorgan 25 ebenfalls an die elektronische Steuer-, Regel-, Meß- und Rechnereinheit 100 angeschlossen. Ferner werden von der Steuer-, Regel-, Meß- und Rechnereinheit 100 über eine Convertereinheit 101 die Umwälzpumpe 4, und über eine Schalteinheit 102 die Gaspumpe 51 betrieben.
  • An die Steuer-, Regel-, Meß- und Rechnereinheit 100 ist eine Eingabeeihheit 103 angeschlossen, über welche die Anlage 1 bedient wird.
  • Die Eingabeeinheit 103, welche hier im Detail nicht näher beschrieben ist, verfügt über eine optische Ausgabekomponente, vorzugsweise ein Display, und einer mechanischen Eingabekomponente, vorzugsweise eine Tastatur. Hierüber können verschieden Betriebszustände der Anlage 1 eingestellt oder aber Informationen, wie beispielsweise die Qualitätsparameter, abgefragt werden. Desweiteren verfügt die Anlage 1 über eine Ausgabekomponente 104, vorzugsweise ein Drucker, welche ebenfalls an der Steuer-, Regel-, Meß- und Rechnereinheit 100 angeschlossen ist und worüber eine detaillierte Herstellungsdokumentation ausgegeben werden kann.
  • Ferner sind an der Steuer-, Regel-, Meß- und Rechnereinheit 100 eine akustische Signaleinheit 106, vorzugsweise ein Lautsprecher, eine optische Signaleinheit 105, vorzugsweise eine, einer Ampel entsprechenden Lichteinheit und eine Datenleseeinheit 107, welche beispielsweise ein Barcodeleser sein kann, angeschlossen.
  • Funktionsweise: A: Konzentratherstellung: Beschickung der Anlage mit Flüssigkeit und Feststoff:
  • Zur Herstellung eines Konzentrates wird zunächst der Vorlagebehälter 5, über die Öffnung 33, mit der gewünschten Menge an löslichem Feststoff, wie beispielsweise Bicarbonatpulver, befüllt, nachdem man durch die Sicherungsklinke 36 den Verschlußeinsatz 34 entriegelt hat und der Vorlagebehälter 5 vom Bediener geöffnet wurde. Die Menge des einzugebenden Feststoffes, beispielsweise die Anzahl der verwendeten Säcke, wird manuell über die Eingabeeinheit 103 in die Steuer-, Regel-, Meß- und Rechnereinheit 100 eingegeben. Die flexible Eingabekonfiguration für die Menge an löslichen Feststoff erlaubt beliebige Feststoffmengen, bis zu einer anlagengemäßen, spezifischen Obermenge von vorzugsweise 50 kg Natriumbikarbonatpulver, zu verarbeiten. Die dabei verwendete Einheit, wie zum Beispiel Kilogramm, Mol oder Sack ist frei wählbar Der Vorlagebehälter 5 wird nach Abschluß der Beschickung mit Feststoff vom Bediener wieder verschlossen und der Verschlußeinsatz 34 durch die Sicherungsklinke 36 im Anschluß daran automatisch wieder verriegelt.
  • Dichtigkeitsprüfung:
  • In der darauffolgende Phase des Herstellungsprozesses wird das System mittels eines Drucktests auf seine Funktionalität hin getestet, wobei insbesondere geprüft wird, ob der Deckel 34 dicht verschlossen ist. Mittels der Gaspumpe 51 wird Gas in den Vorlagebehälter 5 gepumpt, wodurch zwischen dem Absperrorgan 3 und dem Schaltorgan 39, einschließlich dem Kompartiment 6a der Filtrationseinheit 6, ein Druck aufgebaut. Sofern die Membran 6c in der Filtrationseinheit 6 dicht ist, wird der Prüfdruck erreicht, der vorzugsweise nicht unter 1 bar liegt. Über den zu beobachtenden Druckabfall wird sowohl die Dichtigkeit als auch der Zustand der Filtrationseinheit 6 beurteilt. Liegt der Druckabfall in dem fest vorgegebenen Zeitraum von einer Minute unter vorzugsweise 0.1 bar, ist das System hinreichend dicht.
  • Zeitvorwahl:
  • Im Anschluß daran, kann mittels einer in 100 enthaltenen Zeitschalteinriohtung gewählt werden, ob der Misch- und Auflösungsprozeß sofort oder zu einem frei einzustellenden Zeitpunkt gestartet werden soll.
  • Flüssigkeitszugabe:
  • Der Auflösungsprozeß beginnt in der Weise, daß im Folgenden die Mischbehältereinheit 2 über den Flüssigkeitszulauf 9 mit vorzugsweise RO-Wasser beschickt wird, dessen Endvolumen unter der theoretisch benötigten Flüssigkeitsmengeliegt, um während der anschließenden Auflösungsphase eine Überkonzentration des herzustellenden Konzentrates zu erreichen. Der zulaufende Volumenstrom an Flüssigkeit wird über die Durchflußmeßeinheit 11 permanent erfaßt und mittels der Druckmeßeinrichtung 47 kontrolliert.
  • Auflösung des Feststoffes:
  • Die Auflösung des Feststoffs erfolgt dadurch, daß nach der Flüssigkeitszugabe mittels der Umwälzpumpe 4 die Flüssigkeit aus der Mischbehältereinheit 2 abgesaugt, durch den mit löslichem Feststoff beladenen Vorlagebehälter 5, den Hauptflüssigkeitskreislauf 8 nebst Schaltorgan 39, zurück in die Mischbehältereinheit 2 gepumpt wird. Wird beispielsweise Bicarbonatkonzentrat hergestellt, bei welchem während des Auflösens CO₂ aus der Lösung austritt, wird über den Gaskreislauf 50 mittels der Gaspumpe 51 das entweichende Gas über dem Flüssigkeitspegel in der Mischbehältereinheit 2 abgepumpt und dieses über die Leitungen 53 und 29 und der Begasungseinheit 15 dem Konzentrat durch einperlen wieder zugeführt. Um das chemische Gleichgewicht definiert von Na₂CO₃ nach NaHCO₃ zu verschieben, kann zusätzlich CO₂ mittels der Gasflasche 28 über die Leitung 29 dem System zugeführt werden.
  • Feineinstellung der Konzentration:
  • Sobald während des Auflösevorgangs mittels der Leitfähigkeits- und Temperaturmeßeinrichtung 35 eine stabile Überkonzentration des Konzentrates festgestellt wird, wird von der Steuer-, Regel-, Meß- und Rechnereinheit 100 die fehlende Flüssigkeitsmenge berechnet und über den Flüssigkeitszulauf 9, mittels der Durchflußmeßeinrichtung 11, schrittweise zudosiert. Dabei wird die Qualität der Lösung ständig mit der Leitfähigkeits- und Temperaturmeßeinrichtung 35 von der Steuer-, Regel-, Meß- und Rechnereinheit 100 überwacht, wie auch das Flüssigkeitsvolumen über die Druckmeßeinheit 47 in der Mischbehältereinheit 2. Die Leitfähigkeitsmessung ist dabei vorteilhafterweise temperaturkompensiert.
  • Abfüllung des Produktes:
  • Zum Abfüllen des Konzentrates in Flaschen oder Kanister wird eine Abfülleinheit 60 verwendet. Diese befindet sich, wenn nicht abgefüllt wird, in der dafür konzipierten Aufnahmeeinrichtung 43. Sie wird nun aus dieser Ruhestellung genommen und in die Öffnung des Kanisters gesteckt, dessen Öffungsradius vorzugsweise 34 mm betragen sollte. Durch das Hereinstecken der Abfülleinheit 60 in die Kanisteröffnung wird über den mechanisch/optischen Sensor 63 die Befüllung des Kanisters in Gang gesetzt. Erreicht der Füllstand im Kanister seinen Sollwert, wird dies in der Abfülleinheit 60 über den Leitfähigkeitsdetektor registriert und der Befüllvorgang sofort gestoppt. Die Abfülleinheit 60 wird nun in die Öffnung des nächsten zu befüllenden Kanisters gesteckt und der Vorgang wiederholt sich. Mittels des Schaltorgans 39 läßt sich der Flüssigkeitsstrom durch die Filtrationseinheit 6 leiten und von dort, in Abhängigkeit davon, ob gerade eine Abfüllung stattfindet oder nicht, zur Abfülleinheit 60 bzw. über die Bypass-Leitung 42 zurück in die Mischbehältereinheit 2 führen. Wird die Befüllung unterbrochen oder beendet, wird die Abfülleinheit 60 wieder in der Aufnahmeeinrichtung 43 fixiert. In Abhängigkeit der Drehzahl der Umwälzpumpe 4, welche über die Steuer-, Regel-, Meß- und Rechnereinheit 100 stufenlos eingestellt werden kann, und der Stellung des Schaltorgans 39 läßt sich der Druck und damit verbunden die Produktfördermenge variieren. Die Sensorik in der Abfülleinheit 60 und in der Aufnahmeeinrichtung 43 läßt einen Betrieb der Anlage 1 nur zu, wenn sich die Abfülleinheit entweder in der vorgesehen Aufnahmeeinheit 43, oder sich während der Abfüllphase in der Flaschen- bzw. Kanisteröffnung befindet. Somit weist die Anlage 1 vorteilhafterweise keinerlei Totwasserzonen auf.
  • B: Desinfektion:
  • Die erfindungsgemäße Anlage 1 muß in regelmäßigen Zeitabständen desinfiziert werden. Bei einer Anlage für den Dialysebereich, beispielsweise nach einer Füllung in Intervallen von ein bis mehreren Tagen. Vor Beginn der Desinfektion wird noch vorhandenes Konzentrat aus der erfindungsgemäßen Anlage 1 vollautomatisch entfernt. Zum Desinfizieren der erfindungsgemäßen Anlage 1 wird diese mit beispielsweise 100 l RO-Wasser und einem zugeführten Desinfektionsmittel gefüllt. Ein derartiges Desinfektionsmittel kann beispielsweise Peressigsäure sein, wobei die Konzentration der Spüllösung 0.2% betragen sollte. Die Zugabe des Desinfektionsmittels geschieht in der Weise, daß nach der Befüllung der Anlage der Vorlagebehälter 5 geflutet wird und im Anschluß daran, durch Einleiten eines definierten Gasvolumens in den Vorlagebehälter 5, mittels der Gaspumpe 51 über die Begasungseinheit 15, ein dadurch ebenfalls definiertes Flüssigkeitsvolumen aus dem Vorlagebehälter 5 verdrängt wird. Das Absperrorgan 3 wird daraufhin sofort geschlossen und der Verschlußeinsatz 34 entriegelt, in dem die Sicherungsklinke 36 geöffnet wird. Vom Bediener wird nun der Vorlagebehälter 5 geöffnet und die entsprechende Menge an Desinfektionsmittel in diesen gegeben. Im Anschluß daran wird der Vorlagebehälter 5 wieder verschlossen und verriegelt. Nachdem das System auf seine Dichtigkeit hin überprüft wurde, wird die Desinfektionslösung vorzugsweise 30 Minuten lang zirkuliert, bei wechselnden Positionen der Stellorgane. Diese Zirkulation erfolgt ebenfalls durch die Pumpe 4, wobei bei entsprechenden Schaltstellungen der Sprühkopf 7 ebenfalls mit Desinfektionslösung beschickt werden kann, was es ermöglicht, sämtliche Behälterinnenwände mit Desinfektionslösung zu benetzen, da der Sprühkopf 7 im oberen Bereich der Mischbehältereinheit 2 angeordnet ist. Darüber hinaus ermöglicht die Verwendung eines derartigen Sprühkopfes 7, daß die Menge an erforderlicher Flüssigkeit zur Desinfektion minimiert werden kann. Nach der Desinfektion wird die Anlage 1 mehrere Male vollautomatisch gespült. Durch Prüfung mit Teststreifen kann sichergestellt werden, daß keine Desinfektionsmittelrückstände sich mehr in der Anlage befinden.
  • Die Desinfektion kann auch alternativ durch Heißwasser, vorzugsweise von mehr als 70°C, erfolgen. Dafür wird eine nicht näher beschriebene Heizeinrichtung nach dem Stand der Technik eingebaut. Selbstverständlich kann auch bei Verwendung von Desinfektionsmittel mit erhöhter Temperatur gearbeitet werden.
  • C: Spülung:
  • Die erfindungsgemäße Anlage 1 kann auch nur gespült werden. Der Spülvorgang wird über die Eingabeeinheit 103 aktiviert. Wie beim zuvor beschriebenen Desinfektionsvorgang, wird auch hier die erfindungsgemäße Anlage 1 mit vorzugsweise 100 l RO-Wasser befüllt und dieses im Anschluß daran einige Minuten, bei wechselnden Positionen der Stellorgane, mittels der Pumpe 4 zirkuliert. Eventuell noch vorhandenes Konzentrat, welches mittels der Druckmeßeinrichtung 47 festgestellt werden kann, wird zuvor aus der erfindungsgemäßen Anlage 1 vollautomatisch entfernt, indem das Absperrorgan 24 geöffnet und die Flüssigkeit mittels der Umwälzpumpe 4 abgepumpt wird.
  • D: Bedienungskomfort:
  • Vorteilhafterweise ist die erfindungsgemäße Anlage 1 äußerst einfach zu bedienen. Zunächst muß die Anlage 1 mit eine Energieversorgung verbunden werden und es muß sichergestellt sein, daß der Flüssigkeitszulauf, sowie und sofern gewünscht, die entsprechende Gasflasche 28, angeschlossen sind. Dann kann die Anlage 1 mittels eines Einschaltorgans, beispielsweise einen an der Steuer-, Regel-, Meß- und Rechnereinheit 100 befindlichen Netzschalter, eingeschaltet werden. Danach ist die Anlage sofort betriebsbereit und der aktuelle Zustand ist über die Ausgabekomponente entnehmbar. Da die Anlage 1 über eine batteriegepufferte Speichereinheit verfügt, in welcher alle Anlagenparameter gespeichert sind, können vom System verschiedene Aufforderungen bzw. notwendige Maßnahmen dem Bediener mitgeteilt werden. So kann beispielsweise nach einem längeren Stillstand die Aufforderung zu einer Desinfektion erscheinen, die aus Sicherheitsgründen nicht umgangen werden kann. Verschiedene Prozesse, wie beispielsweise eine Spülung, können vom Bediener zu jeder Zeit und unabhängig vom aktuellen Zustand der Anlage 1 vorgenommen werden.
  • E: Zentralversorgung:
  • Auch kann die erfindungsgemäße Anlage 1 als Zentralversorgungsanlage für zur Versorgung von mehreren Dialysegeräten mit einem Konzentrat, beispielsweise Bicarbonatkonzentrat, in Dialysestationen eingesetzt werden. Hierzu wird die erfindungsgemäße Anlage 1 über die Leitung 44, in welcher die Durchflußmeßeinheit 45 angeordnet ist, direkt mit einem Versorguggsringleitungssystem bzw. einer Versorgungsstichleitungssystem verbunden, welches in Fig.1 nicht näher dargestellt ist. Eine weitere, vorteilhafte Möglichkeit der Anbindung an ein zentrales Versorgungssystem kann in der Weise realisiert werden, daß die Abfülleinheit 60 mittels eines nicht näher dargestellten Gegenstückes an die Versorgungsleitung angeschlossen wird. Wird beispielsweise ein Versorgungsringleitungssystem angeschlossen, so kann dessen Rücklauf an dem Anschlußstutzen 17c angebracht werden, wodurch vorteilhafterweise das rückgeführte Konzentrat in die Mischbehältereinheit 2 geleitet wird und somit erneut die Filtrationseinheit 6 passieren muß, bevor es erneut mittels der Umwälzpumpe 4 in die Versorgangsringleitung gepumpt wird.
  • Mit der erfindungsgemäßen Anlage 1 ist es möglich, Konzentrate mit höchster Qualität, automatisch und zeitgesteuert herzustellen und dabei einen einfachen und betriebssicheren Ablauf zu gewährleisten.
  • 1
    Anlage
    2
    Mischbehältereinheit
    3
    Absperrorgan
    4
    Umwälzpumpe
    5
    Vorlagebehälter
    6
    Filtrationseinheit
    7
    Sprühkopf
    8
    Hauptflüssigkeitskreislauf
    8a
    Leitungssegment
    8b
    Leitungssegment
    8c
    Leitungssegment/Einlaßleitung
    8d
    Leitungssegment/Auslaßleitung
    8e
    Leitungssegment
    8f
    Kreuzstück
    8g
    Leitungssegment
    8h
    Leitungssegment
    8i
    Leitungssegment/Auslaßleitung
    9
    Flüssigkeitszulauf
    10
    Dosierorgan
    11
    Durchflußmeßeinheit
    12
    Deckel
    13a
    Rinne
    13b
    Rinne
    14
    trichterförmiger Boden
    15
    Begasungseinheit
    16
    zylindrischer Abschnitt
    17a
    Anschlußstutzen
    17b
    Anschlußstutzen
    17c
    Anschlußstutzen
    17d
    Anschlußstutzen
    18
    Hauptzuführstutzen
    19
    Auslaßstutzen
    20
    Förderleitung
    23a
    Ablaufleitung
    23b
    Ablaufleitung
    24
    Absperrorgan
    25
    Entlüftungsorgan
    26
    Dosierorgan
    27
    Leitung
    28
    Gasflasche
    29
    Gasleitung
    29a
    Leitungssegment
    29b
    Leitungssegment
    30
    Leitung
    31
    Sicherheitsorgan
    32
    Leitung
    33
    Öffnung
    34
    Verschlußeinsatz
    35
    Leitfähigkeits- u. Temperaturmeßeinrichtung
    36
    Sicherungsklinke
    37
    Rückführleitung
    38
    Zweigleitung
    39
    Schaltorgan
    36
    Sicherungsklinke
    40
    Ableiteinrichtung
    41
    Ventil
    42
    Bypass-Leitung
    43
    Aufnahmeeinrichtung
    44
    Leitung
    45
    Durchflußmeßeinheit
    47
    Druckmeßeinrichtung
    48
    Überlaufdetektor
    49
    Druckmeßeinrichtung
    50
    Gaskreislauf
    51
    Gaspumpe
    52
    Leitung
    53
    Leitung
    60
    Abfülleinheit
    61
    Magnet
    62
    Außenelektrode
    63
    optisch/mechanischer Detektor
    64
    Gehäuse
    65
    Füllstutzen
    100
    Steuer-, Regel-, Meß- und Rechnereinheit
    101
    Convertereinheit
    102
    Schalteinheit
    103
    Eingabeeinheit
    104
    Ausgabekomponente
    105
    optische Signaleinheit
    106
    akustische Signaleinheit
    107
    Datenleseeinheit

Claims (11)

  1. Anlage zur Herstellung von Konzentrat, insbesondere Hämodialysekonzentrat, aus Wasser und löslichem Feststoff mit einer Mischbehältereinheit (2), einer Wasserzuführeinheit (9), einem Flüssigkeitskreislauf (8), einer Abfülleinheit (60) und einer Filtereinheit (6), sowie einer Gaszuführeinrichtung (25) bis (29), dadurch gekennzeichnet, daß in dem Flüssigkeitskreislauf (8) ein Vorlagebehälter (5) zur Aufnahme des Feststoffes eingebaut ist.
  2. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß der trichterförmige Boden der Mischbehältereinheit (2) einen Öffnungswinkel kleiner 80° aufweist.
  3. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß der Vorlagebehälter (5) eine Begasungseinheit (15) im Behälterboden aufweist.
  4. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß der Vorlagebehälter (5) einen kegelförmigen Verschlußeinsatz (34) aufweist.
  5. Anlage nach Anspruch 4, dadurch gekennzeichnet, daß der Verschlußeinsatz (34) durch einer Sicherungsklinke (36) sicherbar ist. ist.
  6. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß der Vorlagebehälter (5), eine tangential angeordneten Einlaßleitung (8c) und zwei ebenfalls tangential angeordneten Auslaßleitungen (8d) und (8i) aufweist.
  7. Anlage nach Anspruch 6, dadurch gekennzeichnet, daß zwischen den beiden tangential angeordneten Auslaßleitungen (8d) und (8i) eine Leitfähigkeits/Temperatur-Meßeinheit (35) angeordnet ist.
  8. Anlage nach Abspruch 1, dadurch gekennzeichnet, daß im Flüssigkeitszulauf (9) ein vorzugsweise elektrisch betriebenes Absperrventil (10) und eine Durchflußmeßeinrichtung (11) angeordnet ist.
  9. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß ein zusätzlicher Gaskreislauf (50) vorgesehen ist, der eine Gaspumpe (51) aufweist, die über die Leitung (52) an den Deckel (12) und über die Leitung (53) an die Begasungsleitung (29) angeschlossen ist.
  10. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß eine Abfülleinheit (60) vorgesehen ist, die einen mechanisch/optischen Detektor (63) aufweist, der ein Signal abgibt, wenn die Abfülleinheit (60) sich in einem geeigneten Kanister befindet, dessen Stutzen vorzugsweise einen Innendurchmesser von 34 mm bis 60 mm aufweist.
  11. Anlage nach Anspruch 10, dadurch gekennzeichnet, daß die Abfülleinheit (60) einen Füllstandssensor (62) aufweist, der ein Signal abgibt, wenn der Sollfüllstand im Kanister erreicht ist.
EP90125390A 1990-12-23 1990-12-23 Automatische Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff Expired - Lifetime EP0491981B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP90125390A EP0491981B1 (de) 1990-12-23 1990-12-23 Automatische Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff
ES90125390T ES2070990T3 (es) 1990-12-23 1990-12-23 Instalacion automatica para la elaboracion de concentrado mediante la mezcla de liquido con solido soluble.
DE59008490T DE59008490D1 (de) 1990-12-23 1990-12-23 Automatische Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90125390A EP0491981B1 (de) 1990-12-23 1990-12-23 Automatische Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff

Publications (2)

Publication Number Publication Date
EP0491981A1 EP0491981A1 (de) 1992-07-01
EP0491981B1 true EP0491981B1 (de) 1995-02-15

Family

ID=8204891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90125390A Expired - Lifetime EP0491981B1 (de) 1990-12-23 1990-12-23 Automatische Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff

Country Status (3)

Country Link
EP (1) EP0491981B1 (de)
DE (1) DE59008490D1 (de)
ES (1) ES2070990T3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055781A1 (de) * 2010-12-23 2012-06-28 Manfred Völker Mischanlage
US8486272B2 (en) 2007-08-07 2013-07-16 Fresenius Medical Care Deutschland Gmbh Method and device for maintaining a constant pH value of a medical liquid during the dispensing thereof from a container
US8881600B2 (en) 2005-07-01 2014-11-11 Gambro Lundia Ab Apparatus and process for testing filters
US11571501B2 (en) 2018-04-25 2023-02-07 Gambro Lundia Ab Apparatus and method for testing integrity of an ultrafilter membrane

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1260638B (it) * 1993-04-05 1996-04-22 S I F Ra Societa Italiana Farm Sistema per la preparazione di un fluido da utilizzare in trattamenti medicali
FR2711063B1 (fr) * 1993-10-15 1997-03-28 Hospal Ind Dispositif de préparation d'un liquide d'entretien d'un circuit hydraulique.
DE19534417A1 (de) * 1995-09-16 1997-03-20 Fresenius Ag Verfahren zum Überprüfen von mindestens einem im Dialysierflüssigkeitssystem einer Vorrichtung zur extrakorporalen Blutbehandlung angeordneten Filter
US6586098B1 (en) * 2000-07-27 2003-07-01 Flex Products, Inc. Composite reflective flake based pigments comprising reflector layers on bothside of a support layer
FR2915105A1 (fr) 2007-04-19 2008-10-24 Gambro Lundia Ab Appareil medical de traitement des fluides et procede pour preparer un appareil medical de traitement des fluides.
GB201020923D0 (en) 2010-12-09 2011-01-26 Akzo Nobel Coatings Int Bv An assembly
DE202014105204U1 (de) * 2014-10-30 2016-02-02 Christoph Dumschat Dialysekonzentrat-Herstellungsanordnung
DE102017127637A1 (de) * 2017-11-22 2019-05-23 Vivonic Gmbh Vorrichtung und Verfahren zur Herstellung einer medizinischen Lösung
IT202000025099A1 (it) * 2020-10-22 2022-04-22 Baxter Int Sistema mobile di generazione di un fluido medicale
CN112934025A (zh) * 2021-04-15 2021-06-11 上海千立自动化设备有限公司 一体式水泵双循环式搅拌器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH370057A (de) * 1959-05-21 1963-06-30 Buss Ag Verfahren zum Inkontaktbringen eines Gases mit einer Flüssigkeit und Einrichtung zur Ausübung des Verfahrens
FR1333222A (fr) * 1962-06-15 1963-07-26 Mélangeur perfectionné destiné notamment au mélange d'un solide et d'un liquide
CH607934A5 (en) * 1976-01-27 1978-12-15 Sulzer Ag Appliance for introducing gases into liquids and/or liquid-solid mixtures
JPS57188261A (en) * 1981-03-31 1982-11-19 Tersteegen Bernd Method and apparatus for producing blood dialyzing liquid
US4734198A (en) * 1984-02-06 1988-03-29 Minntech Corporation Dialysis solution mixing system
DE3844174A1 (de) * 1988-12-29 1990-07-05 Fresenius Ag Anlage zur herstellung von konzentraten durch mischung von fluessigkeit mit loeslichem feststoff

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881600B2 (en) 2005-07-01 2014-11-11 Gambro Lundia Ab Apparatus and process for testing filters
US9366615B2 (en) 2005-07-01 2016-06-14 Gambro Lundia Ab Apparatus and process for testing filters
US8486272B2 (en) 2007-08-07 2013-07-16 Fresenius Medical Care Deutschland Gmbh Method and device for maintaining a constant pH value of a medical liquid during the dispensing thereof from a container
DE102010055781A1 (de) * 2010-12-23 2012-06-28 Manfred Völker Mischanlage
DE102010055781B4 (de) * 2010-12-23 2014-07-24 Manfred Völker Mischanlage
US11571501B2 (en) 2018-04-25 2023-02-07 Gambro Lundia Ab Apparatus and method for testing integrity of an ultrafilter membrane

Also Published As

Publication number Publication date
EP0491981A1 (de) 1992-07-01
ES2070990T3 (es) 1995-06-16
DE59008490D1 (de) 1995-03-23

Similar Documents

Publication Publication Date Title
DE69109012T2 (de) Vorrichtung zum Auflösen eines Korrekturmediums einer dialytischen Lösung.
EP0491981B1 (de) Automatische Anlage zur Herstellung von Konzentraten durch Mischung von Flüssigkeit mit löslichem Feststoff
DE4138140C2 (de) Vorrichtung zur Desinfektion von Hämodialysegeräten mit einem pulverförmigen Konzentrat
DE2838414C2 (de) Vorrichtung zur Hämodialyse und zum Entziehen von Ultrafiltrat
EP1163917B9 (de) Dialysevorrichtung mit einer Ausgleichskammer
DE102007009269B4 (de) Vorrichtung und Verfahren zum Befüllen und/oder Entleeren eines Dialysegerätes
DE3844174C2 (de)
DE4142089A1 (de) Vorrichtung zum entsorgen von koerperausscheidungen im medizinischen bereich
DE4102055A1 (de) Desinfektionsvorrichtung fuer endoskope
DE10313965B3 (de) Vorrichtung zur Herstellung von Dialysekonzentraten, insbesondere sauren Konzentraten
DE2819231A1 (de) Verfahren und vorrichtung zur behandlung von wasser
WO2014029740A1 (de) Dosiervorrichtung und verfahren zur dosierung von zusatzmitteln in behandlungsflüssigkeiten einer fahrzeugbehandlungsanlage
DE10262036B4 (de) Reinstwasserversorgungsanlage für Dialysegeräte
DE102005049951B4 (de) Apparatur zur Herstellung von physiologischen, therapeutischen und chemotherapeutischen wässrigen Spüllösungen
EP1454643B1 (de) Verfahren zur Bereitstellung von Dialyseflüssigkeit
EP3488202A1 (de) Vorrichtung und ein verfahren zum automatischen, gewichtsabhängigen füllen eines schlauchsystems
EP3713618A1 (de) Vorrichtung und verfahren zur herstellung des dialysates
EP0536645A2 (de) Bereitstellung der bei der Bikarbonat-Hämodialyse benötigten Bikarbonatlösung am Dialysegerät
DE4113032A1 (de) Verfahren zur herstellung einer konzentrierten loesung, die der versorgung eines geraetes zur generierung eines dialysebades dient und vorrichtung zur durchfuehrung des vefahrens
DE10153063A1 (de) Behältnis mit Bestandteilen eines Konzentrats, insbesondere eines sauren Konzentrats für eine Dialysierflüssigkeit sowie Verfahren und Vorrichtung zum Aufbereiten eines Konzentrats, insbesondere einer Dialysierflüssigkeit
DE9302790U1 (de) Hilfsgerät zur Verwendung bei einem Bikarbonat-Hämodialyseverfahren
DE19929327A1 (de) Vorrichtung zur Versorgung einer medizintechnischen Einrichtung mit einer Flüssigkeit
WO2000001624A1 (de) Elektrisch betriebenes haushaltsgerät zum diskontinuierlichen bzw. zum portionsweisen aufreinigen von wasser
WO2022013201A1 (de) Bioreaktorreinigungsanlage mit einem säuretank sowie einer einrichtung zum neutralisieren der säure
DE202020104037U1 (de) Bioreaktorreinigungsanlage für Bioreaktoren in Schienenfahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19920905

17Q First examination report despatched

Effective date: 19940422

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59008490

Country of ref document: DE

Date of ref document: 19950323

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950223

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2070990

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20091218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091224

Year of fee payment: 20

Ref country code: GB

Payment date: 20091221

Year of fee payment: 20

Ref country code: FR

Payment date: 20100105

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100223

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101223