EP0481575B1 - Verfahren zur Herstellung eines hochfesten schweissgeeigneten Bleches und dessen Verwendung - Google Patents

Verfahren zur Herstellung eines hochfesten schweissgeeigneten Bleches und dessen Verwendung Download PDF

Info

Publication number
EP0481575B1
EP0481575B1 EP91250279A EP91250279A EP0481575B1 EP 0481575 B1 EP0481575 B1 EP 0481575B1 EP 91250279 A EP91250279 A EP 91250279A EP 91250279 A EP91250279 A EP 91250279A EP 0481575 B1 EP0481575 B1 EP 0481575B1
Authority
EP
European Patent Office
Prior art keywords
max
sheet
cooled
air
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91250279A
Other languages
English (en)
French (fr)
Other versions
EP0481575A3 (en
EP0481575A2 (de
Inventor
Klaus Dr. Freier
Klaus Dr. Seifert
Walter Dr. Zimnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Preussag Stahl AG
Original Assignee
Preussag Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Preussag Stahl AG filed Critical Preussag Stahl AG
Publication of EP0481575A2 publication Critical patent/EP0481575A2/de
Publication of EP0481575A3 publication Critical patent/EP0481575A3/de
Application granted granted Critical
Publication of EP0481575B1 publication Critical patent/EP0481575B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Definitions

  • the invention relates to a method for producing a high-strength weldable sheet and its use according to the preambles of claims 1 and 4.
  • Such steels are used for all types of welded structures.
  • Thermomechanically rolled, easily weldable steels which can also have a ferritic-pearlitic structure and a yield strength of up to 500 N / mm2, for example grade StE 480.7 TM, have the following composition (in% by weight) according to DE standard DIN 17172: 0 , 04-0.16% C; 0.55% Si; 1.10 to 1.90% Mn; Max. 0.035% P; Max. 0.025% S; Max. 0.20% V and Nb, balance iron.
  • Thick-walled sheets made of known steels with yield strength values above 500 N / mm2 receive their good ones Strength properties apart from the alloy additives, in particular Cr, Mo and higher Ni additions, by accelerated cooling with water directly at the rolling heat (Stahlrohr Handbuch, 10th edition, pp. 79-80, plates XLVII, XLVIII).
  • the invention is therefore based on the problem of proposing a method for producing a thick-walled sheet from high-strength weldable steel which makes it possible to use the advantages of a ferritic-pearlitic structure of the steel and in which water cooling can be dispensed with and a suitable advantageous one Specify use.
  • a steel produced by this special thermomechanical treatment and hardening at temperatures below the transition point A1 has Yield strengths of more than 500 N / mm2 and at the same time ferritic-pearlitic structure. This fine structure gives the steel unexpectedly high toughness values. In extensive tests, it was surprisingly found that it is possible to raise structural steels of this type without accelerated cooling with water by appropriate hardening to yield strength values of up to about 750 N / mm2.
  • the slab can be heated both from room temperature and after hot use to the metallurgically favorable temperature of greater than 1200 ° C. known to the person skilled in the art.
  • Ti is limited to 0.04% in order to positively influence the fine grain structure of the structure in the heat affected zone of welded component edges.
  • the Cu content is deliberately driven above the usual addition amounts in order to activate the strength-increasing effect of Cu by tempering treatment.
  • the potential strength of the steel produced according to the invention is thus exploited as far as possible.
  • the manufacturing process can also be used for steels with yield strengths of approximately 420-500 N / mm2.
  • the alloy additives can be reduced accordingly.
  • weldable structural steels of this strength are known, the method according to the invention saves the use of expensive annealing or cooling treatments.
  • the preferred tempering temperature is 560-600 ° C. In this area, the effect of Cu on the strength values of the steel is optimized. In addition, components in this temperature range usually become low-voltage after welding annealed so that stress relieving cannot adversely affect the metallurgical effect according to the invention.
  • the sheets produced according to the invention in particular with thicknesses of greater than 15 mm to 50 mm and higher, can advantageously be used for offshore structures such as oil platforms, pipes and the like, since the high impact strength combined with a high yield strength and a relatively homogeneous hardness curve over the welding zone of components meet the extreme requirements for the swell strength of steels for such structures.
  • the sheets can also be used in commercial vehicle construction such as B. used in mobile cranes or in mining for support purposes.
  • a strip of 500 mm width was cut from each of the 2 sheets, divided into 5 sections and annealed in electrically heated laboratory annealing furnaces in the temperature range between 440 and 620 ° C. The individual examinations for the two sheet thicknesses will be discussed below.
  • the sheet A 1 was divided into 5 sections Q, R, S, T, U with the dimensions 500 x 400 mm and annealed at 5 tempering temperatures from 480 to 620 ° C. All tempering treatments required an annealing time of 1.5 hours.
  • tempering temperatures of 600 ° C approximately the same yield strength and tensile strength values can be determined. It is remarkable that in the above-mentioned tempering temperature range up to 600 ° C the very high yield strengths with values between 600 and 650 N / mm2 for the transverse samples are still associated with good elongation at break values over 24% and very good indentation values over 70%.
  • the notched impact strength-temperature profiles are shown in Table 4, lower area, as a function of the tempering temperature.
  • values for the transverse samples are still above 200 J / cm2 even at -40 ° C.
  • the samples left at 480 ° C are at the lower limit of a scattering band 620 ° C samples annealed as expected at the upper limit.
  • Ground specimens (not shown) were taken over the entire sheet thickness. They consistently showed the appearance of grain lines with coarser grains for all heat treatment conditions. While most of the structure was made up of extremely fine-grained crystallites of sizes 12 to 13, there were occasional lines with grain sizes 7 to 8. The structure consisted largely of acicular ferrite and pearlite.
  • the notched bar impact specimens also showed extremely high notched bar impact strengths, which were between 239 and 321 J / cm2 at the test temperature of -40 ° C. Even at -80 ° C at least 130 J / cm2 were measured.
  • a steel sheet B 1 of 40 mm thickness was produced from a steel melt B (Table 5) in the same way as in Example 1.
  • the yield strength was 736 N / mm2, the tensile strength 882 N / mm2 with an elongation at break of 20.2%.
  • the melt B showed random traces of Cr and Mo.
  • the sheet C 1 not produced according to the invention has only half the thickness of the sheet B 1, its values for the impact energy (Table 6) on the ISO-V cross-sample are about 20 to 40% lower than for sheet B 1. This shows clearly the effect of the invention.
  • sample sections were cut to length from the sheet A 2 produced according to the invention and these were welded to one another by manual arc welding and UP tandem welding after a V-seam preparation.
  • the samples were subjected to a Vickers hardness test across the weld seam, without first being stress-relieved.
  • Table 7 shows the hardness values for sample A 21.
  • the measured hardness values HV 10 are plotted on the ordinate for the measuring zones of base material (GW), heat affected zone (WEZ) and weld metal.
  • the upper curve in the table shows the Hardness curve at the top of the seam, the lower curve shows the hardness curve at the seam root.
  • the weld seam was created with manual arc welding.
  • Tables 8 and 10 show in an analogous manner the course of hardness over samples A 22, A 23, which, however, were generated by UP tandem welding.
  • Typical of the sheets produced according to the invention are unexpectedly small increases in hardness and decreases in hardness in the heat affected zone.
  • the hardening was a maximum of 20% compared to the hardness in the base material (sample A 23, seam root).
  • HZ heat affected zone
  • Table 11 shows the notched impact energy measured in the welding area for the three samples A 21, A 22, A 23 at the test temperatures + 20 ° C, -10 ° C, -40 ° C.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines hochfesten schweißgeeigneten Bleches und dessen Verwendung gemäß den Oberbegriffen der Ansprüche 1 und 4.
  • Derartige Stähle werden für Schweißkonstruktionen aller Art eingesetzt.
  • Bekannte Baustähle der Güten StE 460 - 500 mit einer Zusammensetzung gemäß der DE-Norm DIN 17 102 weisen (in Gewichts-%) max. 0,21 % C; 0,10 bis 0,60 % Si; 1,00 bis 1,70 % Mn; max. 0,035 % P; max. 0,030 % S; max. 0,3 % Cr; max. 0,70 % Cu; max. 0,10 % Mo; max. 1,00 % Ni; max. 0,22 % Nb, Ti, V in Kombination, Rest Eisen, auf. Damit werden gut schweißgeeignete Stähle mit ferritisch-perlitischem Gefüge und einer Streckgrenze bis 500 N/mm² durch Normalglühen erzielt.
  • Thermomechanisch gewalzte, gut schweißbare Stähle, die ebenfalls ferritisch-perlitisches Gefüge und bis 500 N/mm² Streckgrenze, beispielsweise die Güte StE 480.7 TM, aufweisen können, haben gemäß der DE-Norm DIN 17172 folgende Zusammensetzung (in Gew.-%): 0,04-0,16 % C; 0,55 % Si; 1,10 bis 1,90 % Mn; max. 0,035 % P; max. 0,025 % S; max. 0,20 % V und Nb, Rest Eisen.
  • Dickwandige Bleche aus bekannten Stählen mit Streckgrenzenwerten über 500 N/mm² erhalten ihre guten Festigkeitseigenschaften außer aus den Legierungszusätzen, insbesondere von Cr, Mo und höheren Ni-Zugaben, durch eine beschleunigte Abkühlung mit Wasser direkt an der Walzhitze (Stahlrohrhandbuch, 10. Auflage, S. 79-80, Tafeln XLVII, XLVIII).
  • Außerdem ist bei ähnlichen Güten bekannt, diese Stähle vor der beschleunigten Abkühlung mit Wasser einer Austenitisierungsbehandlung zu unterziehen. Derartige Stähle haben im Lieferzustand ein Gefüge aus Bainit oder angelassenem Martensit.
    für die beschleunigte Abkühlung des Stahlbleches sind aufwendige besondere Wasserkühlanlagen mit entsprechendem Energieverbrauch erforderlich, um das Material gezielt abzukühlen.
  • Von daher liegt der Erfindung das Problem zugrunde, ein Verfahren zur Herstellung eines dickwandigen Bleches aus hochfestem schweißgeeigneten Stahl vorzuschlagen, das es ermöglicht, die Vorteile eines ferritisch-perlitischen Gefüges des Stahles zu nutzen und bei dem auf eine Wasserabkühlung verzichtet werden kann sowie eine geeignete vorteilhafte Verwendung anzugeben.
  • Dieses Problem wird erfindungsgemäß durch die Ansprüche 1, 2, 4 and 5 gelöst.
    Eine vorteilhafte Weiterbildung der Erfindung ist im Unteranspruch 3 erfaßt.
  • Ein durch diese besondere thermomechanische Behandlung und Aushärtung bei Temperaturen unterhalb des Umwandlungspunktes A1 hergestellter Stahl weist Streckgrenzen von größer 500 N/mm² und gleichzeitig ferritisch-perlitisches Gefüge auf. Dieses feine Gefüge verleiht dem Stahl unerwartet hohe Zähigkeitswerte. In umfangreichen Versuchen wurde überraschend festgestellt, daß es möglich ist, derartige Baustähle ohne beschleunigte Abkühlung mit Wasser durch eine entsprechende Aushärtung auf Streckgrenzenwerte bis etwa 750 N/mm² anzuheben.
  • Besonders wichtig ist dabei, daß die gute Schweißeignung der Baustähle erhalten bleibt. Es hat sich völlig überraschend herausgestellt, daß in dem so erzeugten ferritisch-perlitischen Gefüge der Stahl nach dem Schweißen im Bereich der Wärmeeinflußzone nicht die gewohnte Aufhärtung und nur sehr geringen Härteabfall zeigt. Dies ist offenbar, neben der erfindungsgemäßen Legierungsauswahl, auf die Abkühlung der Bramme vor Beginn des Walzens und die Anlaßbehandlung als kombinierte Maßnahme zurückzuführen.
  • Die Erwärmung der Bramme kann sowohl von Raumtemperatur als auch nach Warmeinsatz auf die für den Fachmann bekannte metallurgisch günstige Temperatur von größer 1200°C erfolgen.
  • Besonders wichtig ist es erfindungsgemäß, den C-Gehalt bewußt niedriger anzusetzen als die gewünschten Festigkeitswerte nach bisher üblicher Bemessung erfordern. Ebenso wird die Verwendung von Mo vermieden und eine Verringerung von Nb so weit wie möglich angestrebt, um die Zähigkeitseigenschaften des erfindungsgemäß hergestellten Bleches zu verbessern. Als Ersatz werden 0,06 - 0,10 % V zugegeben.
  • Ti wird auf 0,04 % begrenzt, um die Feinkörnigkeit des Gefüges in der Wärmeeinflußzone geschweißter Bauteilkanten positiv zu beeinflussen.
  • Andererseits wird der Cu-Gehalt bewußt über bisher übliche Zugabemengen getrieben, um die festigkeitssteigernde Wirkung von Cu durch eine Anlaßbehandlung zu aktivieren. Damit wird die potentielle Festigkeit des erfindungsgemäß hergestellten Stahles soweit wie möglich ausgenutzt.
  • Zur Steigerung der Zähigkeit werden geringe Mengen an Ni und Mn zugegeben.
  • Die synergistische Wirkung der eingesetzten Legierungselemente und des angewandten Herstellverfahrens ermöglicht die insgesamt überraschenden Ergebnisse.
  • In Fortführung des Erfindungsgedankens kann das Herstellverfahren auch für Stähle mit Streckgrenzen von etwa 420-500 N/mm² angewendet werden. Die Legierungszusätze können dabei entsprechend stark verringert werden. Zwar sind schweißbare Baustähle dieser Festigkeitsbelasse bekannt, jedoch erspart das erfindungsgemäße Verfahren die Anwendung von teuren Glüh- oder Abkühlbehandlungen.
  • Die bevorzugte Anlaßtemperatur liegt bei 560-600°C. In diesem Bereich wird die Wirkung von Cu auf die Festigkeitswerte des Stahles optimiert.
    Außerdem werden in diesem Temperaturbereich üblicherweise Bauteile nach dem Schweißen spannungsarm geglüht, so daß das Spannungsarmglühen den erfindungsgemäßen metallurgischen Effekt nicht ungünstig beeinflussen kann.
  • Versuche haben gezeigt, daß der Härtekurvenverlauf vom Grundwerkstoff über die wärmebeeinflußte Zone bis zur Schweißnahtmitte statt der üblichen Schwankungen von bis zu 100 % auf weniger als 20 % reduziert wird, wenn die erfindungsgemäß hergestellten Bleche durch Unter-Pulver-Schweißen oder sonstiges Lichtbogenschweißen miteinander verbunden werden. Auch nach dem Spannungsarmglühen ändern sich die Werte kaum.
  • Die erfindungsgemäß hergestellten Bleche, insbesondere mit Dicken von größer 15 mm bis 50 mm und höher, können vorteilhaft für Offshore-Bauten wie Ölplattformen, Rohre und ähnliches eingesetzt werden, da die hohe Kerbschlagzähigkeit bei gleichzeitiger hoher Streckgrenze und relativ homogenem Härteverlauf über die Schweißzone von Bauteilen den extremen Anforderungen an die Schwellfestigkeit der Stähle für derartige Bauten genügen. Mit besonderer Wirtschaftlichkeit können die Bleche auch im Nutzfahrzeugbau wie z. B. bei Autokranen oder auch im Bergbau für Abstützzwecke eingesetzt werden.
  • Anhand von Ausführungsbeispielen soll die Erfindung näher erläutert werden.
  • Beispiel 1
  • Zwei im Strang vergossene, 210 mm dicke Brammen aus Stahl der Schmelze A (Tabelle 1) wurden nach Abkühlung auf Raumtemperatur auf 1250°C im Stoßofen erwärmt und nach einer Haltezeit von 220 min. dann an ruhender Luft abgekühlt, bis die Oberflächentemperatur unter 1000°C lag. Mit Anstichtemperaturen (Tabelle 2) von 930°C bzw. 920°C wurden sie im Vorgerüst VG auf 67 mm (Blech A 1) bzw. 57 mm (Blech A 2) Dicke heruntergewalzt. Im Fertiggerüst FG bei einer Anstichtemperatur von 815°C und einer Endwalztemperatur von 685°C, erhielt das Blech A 1 seine Enddicke von 40 mm. Analog wurde bei einer Anstichtemperatur von 820°C das Blech A 2 auf die Enddicke von 25 mm gewalzt. Aus der Analyse (Tabelle 1) läßt sich ein Kohlenstoffäquivalent (nach IIW-Formel) von CE = 0,442 errechnen, was für einen Stahl dieser Streckgrenzenklasse sehr niedrig ist.
  • Von jedem der 2 Bleche wurde ein Streifen von 500 mm Breite abgetrennt, in jeweils 5 Abschnitte aufgeteilt und in elektrisch beheizten Laborglühöfen im Temperaturbereich zwischen 440 und 620°C angelassen. Auf die einzelnen Untersuchungen bei den beiden Blechdicken soll nachfolgend eingegangen werden.
  • 1.1 Untersuchungen am Blech A 1
  • Das Blech A 1 wurde in 5 Abschnitte Q, R, S, T, U mit den Abmessungen 500 x 400 mm aufgeteilt und bei 5 Anlaßtemperaturen von 480 bis 620°C geglüht. Alle Anlaßbehandlungen erforderten eine Glühdauer von 1,5 h.
  • Bei dieser Blechdicke von 40 mm wurden die Rundzug- und Kerbschlagbiegeproben oberflächennah (bei 1/4 der Blechdicke) entnommen:
    • Rundzugproben oberflächennah, quer zur Walzrichtung
    • ISO-V-Proben oberflächennah, quer zur Walzrichtung

    Die Ergebnisse aller Zugversuche sind aus Tabelle 3 ersichtlich. Eine Übersicht über den Verlauf der Streckgrenze (Re) und Zugfestigkeit (Rm) in Abhängigkeit von der Anlaßtemperatur vermittelt Tabelle 4 im oberen Teil.
  • Bis zu Anlaßtemperaturen von 600°C sind etwa gleiche Streckgrenzen- und Zugfestigkeitswerte festzustellen. Bemerkenswert ist, daß im genannten Anlaßtemperaturbereich bis 600°C die sehr hohen Streckgrenzen mit Werten zwischen 600 und 650 N/mm² für die Querproben immer noch mit guten Bruchdehnungswerten über 24 % und sehr guten Einschürungswerten über 70 % verbunden sind.
  • Ein starker Abfall der Streckgrenzenwerte und ein geringerer Abfall der Zugfestigkeit findet sich dann für die Anlaßtemperatur 620°C. Hier fällt die Streckgrenze unter den Zielwert von 500 N/mm². Dies ist nicht mit einem Anstieg von Bruchdehnung und Einschnürung verbunden, vielmehr vermindern sich bei einer Anlaßtemperatur von 620°C auch diese Werte.
  • Die Kerbschlagzähigkeit-Temperatur-Verläufe (Mittelwerte mehrerer Proben) sind in Tabelle 4, unterer Bereich, in Abhängigkeit von der Anlaßtemperatur dargestellt. Für die übliche Probenlage in 1/4 der Blechdicke, d. h. bei 40 mm-Blechen aus der Nähe der Oberfläche, finden sich für die Querproben selbst bei -40°C noch Werte über 200 J/cm². Dabei liegen die bei 480°C angelassenen Proben an der unteren Grenze eines Streubandes, die bei 620°C geglühten Proben erwartungsgemäß an der oberen Grenze.
  • Es wurden Schliffproben (nicht dargestellt) über die gesamte Blechdicke entnommen. Sie wiesen übereinstimmend für alle Wärmebehandlungszustände das Auftreten von Kornzeilen mit gröberen Körnern auf. Während der größte Teil des Gefüges aus überaus feinkörnigen Kristalliten der Größe 12 bis 13 aufgebaut war, traten vereinzelt Zeilen mit der Korngröße 7 bis 8 auf. Das Gefüge bestand weitgehend aus Acikularferrit und etwa Perlit.
  • 1.2 Untersuchungen an Blech A 2
  • Die 500 mm langen Abschnitte wurden mit V, W, X, Y und Z bezeichnet und bei Temperaturen von 440 bis 600°C angelassen. Die Glühzeit betrug 1 h. Im einzelnen wurden aus jedem Abschnitt mehrere Proben entnommen:
    • Rundzugproben quer zur Walzrichtung
    • Rundzugproben parallel zur Walzrichtung
    • ISO-V-Proben quer zur Walzrichtung

    Alle Proben wiesen Streckgrenzenwerte auf, die weitgehend von der Anlaßtemperatur unabhängig waren und sehr hoch lagen (Tabelle 3): für die Querproben zwischen 625 N/mm² und 687 N/mm², für die vergleichsweise entnommenen Längsproben (nicht dargestellt) zwischen 609 und 646 N/mm². Alle Zugfestigkeiten der Querproben ergaben Werte um 700 N/mm².
  • Vom Blech A 2 wurde später ein zusätzlicher Streifen abgeschnitten und im walzharten Zustand (ohne Anlassen) geprüft. Das Ergebnis der Zugversuche ist ebenfalls in Tabelle 3 eingetragen. Demnach wird an den Querproben bereits in diesen Zustand die erwünschte Mindeststreckgrenze übertroffen (an der Längsprobe wurden - nicht eingezeichnet - 484 N/mm² gemessen). Mit 702 N/mm² liegt die Zugfestigkeit auf gleicher Höhe wie nach den Anlaßwärmebehandlungen.
  • Da sich die Längsproben als unkritisch erwiesen hatten, wurden nur Querproben geprüft. Sie stammten aus dem oberen Teil der Blechdicke und erfaßten den Kernbereich kaum. Die aK-T-Verläufe sind aus Tabelle 4 ersichtlich, die Werte aus Tabelle 3 ablesbar.
  • Trotz der hohen Festigkeitswerte ergaben auch die Kerbschlagbiegeproben überaus hohe Kerbschlagzähigkeiten, die bei der Prüftemperatur von -40°C noch zwischen 239 und 321 J/cm² lagen. Auch bei -80°C wurden noch mindestens 130 J/cm² gemessen.
  • Am unteren Bereich der Streubreite befanden sich die bei 520°C angelassenen Proben, die Höchstwerte wurden durch die bei 560°C und bei 600°C angelassenen Proben erreicht. Die walzhart belassenen Proben wurden nicht in Tabelle 4 eingezeichnet.
  • Aus den unverformten Köpfen der Rundzugproben wurden Längs- und Querschliffe angefertigt. Unabhängig von der angewandten Anlaßtemperatur fand sich ein zeiliges Gefüge aus Ferrit und etwas Perlit. Der Kornaufbau war äußerst feinkörnig mit Korngrößen 13 bis 14 in Oberflächennähe und selbst im Kern noch im 10 bis 13.
  • Beispiel 2
  • Aus einer Stahl-Schmelze B (Tabelle 5) wurde in gleicher Weise wie bei Beispiel 1 erfindungsgemäß ein Blech B 1 von 40 mm Dicke erzeugt. Die Streckgrenze betrug 736 N/mm², die Zugfestigkeit 882 N/mm² bei einer Bruchdehnung von 20,2 %.
    Die Schmelze B wies zufällige Spuren von Cr und Mo auf.
  • Ein Vergleichsblech C 1 von 20 mm Dicke aus der Vergleichsschmelze C (Tabelle 5) mit 0,08 % C und höheren Nb-Werten von 0,07 % sowie einem Mo-Gehalt von 0,32 % wies eine Streckgrenze von 735 N/mm² und eine Zugfestigkeit von 857 N/mm² bei Raumtemperatur auf. Obwohl das nicht erfindungsgemäß hergestellte Blech C 1 nur die halbe Dicke des Bleches B 1 aufweist, liegen dessen Werte für die Kerbschlagarbeit (Tabelle 6) an der ISO-V-Querprobe um etwa 20 bis 40 % niedriger als beim Blech B 1. Dies zeigt deutlich die Wirkung der Erfindung.
  • Beispiel 3
  • Aus dem erfindungsgemäß erzeugten Blech A 2 mit 25 mm Dicke wurden nach erfindungsgemäßer Anlaßbehandlung im Walzwerk Probenabschnitte abgelängt und diese durch Lichtbogenhandschweißung und UP-Tandem-Schweißung nach einer V-Nahtvorbereitung miteinander verschweißt. Die Proben wurden direkt nach Abkühlung quer zur Schweißnaht einer Härteprüfung nach Vickers unterzogen, ohne zuvor spannungsarm geglüht zu werden. Tabelle 7 zeigt die Härtewerte an Probe A 21. Auf der Ordinate sind die gemessenen Härtewerte HV 10 aufgetragen für die Meßzonen Grundwerkstoff (GW), Wärmeeinflußzone (WEZ) und Schweißgut. Die obere Kurve in der Tabelle zeigt den Härteverlauf an der Nahtoberseite, die untere Kurve den Härteverlauf an der Nahtwurzel. Die Schweißnaht wurde mit Lichtbogenhandschweißung erzeugt.
    Die Tabellen 8 und 10 zeigen in analoger Weise den Härteverlauf über die Proben A 22, A 23, die jedoch durch UP-Tandemschweißen erzeugt wurden.
  • Typisch für die erfindungsgemäß erzeugten Bleche sind unerwartet geringe Härteanstiege und Härteabfälle in der Wärmeeinflußzone. Die Aufhärtung betrug maximal 20 % gegenüber der Härte im Grundwerkstoff (Probe A 23, Nahtwurzel).
  • Eine zum Vergleich herangezogene Schweißprobe aus Blechen D1, D2 von 28 mm Dicke (Tabelle 9) mit X-Naht-Vorbereitung aus einem wasservergüteten Stahl des Typs HY80 (Stahlrohrhandbuch, 10. Auflage, S. 79/80), die im UP-Tandem-Verfahren verschweißt worden ist, zeigt sowohl an der Nahtoberseite (strichliniert) als auch an der Nahtunterseite (durchgezogene Linie) den bekannten Härteanstieg in der Wärmeeinflußzone (WEZ) von 50-90 % gegenüber dem Grundwerkstoff (GW).
  • Tabelle 11 zeigt schließlich für die drei Proben A 21, A 22, A 23 die gemessene Kerbschlagarbeit im Schweißbereich bei den Prüftemperaturen +20°C, -10°C, -40°C.
  • Erwartungsgemäß sind die Werte für die beiden Proben A 22, A 23 im Übergangsbereich (Ü) Schweiße/Wärmeeinflußzone bei niedrigster Prüftemperatur ungünstiger als in Schweißnahtmitte (MS), jedoch besser als nach dem Stand der Technik zu erwarten war.
  • Bei der Probe A 21, die schon in Tabelle 7 die geringsten Schwankungen im Härteverlauf zeigte, liegt der analoge Meßwert im Übergangsbereich sogar besser als die Vergleichswerte aus dem Schweißgut.
  • Insgesamt sind die erzielten Meßwerte jedoch erheblich höher als nach der Schmelzanalyse des Stahles zu erwarten war.
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007

Claims (5)

  1. Verfahren zur Herstellung eines dickwandigen Bleches aus Stahl mit ferritisch-perlitischem Gefüge, einer Streckgrenze größer 500 N/mm² bei gleichzeitig hoher Zähigkeit und guter Schweißeignung aus einer im Strang vergossenen Bramme der Zusammensetzung in Gew.%
    0,04 bis 0,10 % C
    0,25 bis 0,50 % Si
    1,40 bis 2,00 % Mn
    max. 0,02 % P
    max. 0,01 % S
    0,015 bis 0,08 % Al
    max. 0,01 % N
    0,60 bis 1,60 % Ni
    0,60 bis 1,60 % Cu
    0,06 bis 0,10 % V
    0,03 bis 0,05 % Nb
    0,01 bis 0,04 % Ti
    Rest Eisen und unvermeidliche Verunreinigungen, wobei die Bramme auf Temperaturen größer 1200°C aufgeheizt, an Luft auf weniger als 1000°C Oberflächentemperatur abgekühlt, dann thermomechanisch ohne Walzpause mit einer Walzendtemperatur von ca. 750 bis 650°C gewalzt, das Blech anschließend an ruhender Luft oder im Stapel auf unter 200°C abgekühlt und schließlich nach einer Erwärmung auf etwa 420 bis 610°C wiederum an Luft auf Raumtemperatur abgekühlt wird.
  2. Verfahren zur Herstellung eines dickwandigen Bleches aus Stahl mit ferritisch-perlitischem Gefüge, einer Streckgrenze von 420 bis 500 N/mm² bei gleichzeitig hoher Zähigkeit und guter Schweißeignung aus einer im Strang vergossenen Bramme der Zusammensetzung in Gew.%
    0,02 bis 0,05 % C
    0,05 bis 0,30 % Si
    1,00 bis 1,40 % Mn
    max. 0,02 % P
    max. 0,01 % S
    0,015 bis 0,08 % Al
    max. 0,01 % N
    0,30 bis 0,60 % Ni
    0,20 bis 0,60 % Cu
    0,04 bis 0,06 % V
    0,01 bis 0,03 % Nb
    0,01 bis 0,04 % Ti
    Rest Eisen und unvermeidliche Verunreinigungen, wobei die Bramme auf Temperaturen größer 1200°C aufgeheizt, an Luft auf weniger als 1000°C Oberflächentemperatur abgekühlt, dann thermomechanisch ohne Walzpause mit einer Walzendtemperatur von ca. 750 bis 650°C gewalzt, das Blech anschließend an ruhender Luft oder im Stapel auf unter 200°C abgekühlt und schließlich nach einer Erwärmung auf etwa 420 bis 610°C wiederum an Luft auf Raumtemperatur abgekühlt wird.
  3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch eine Anlaßbehandlung mit einer Erwärmung des Bleches auf 560 bis 600°C.
  4. Verwendung eines nach einem der Ansprüche 1 bis 3 hergestellten Bleches mit einer Dicke von größer 15 mm für hochfeste Schweißkonstruktionen für Offshore- und Nutzfahrzeugbauten.
  5. Durch Lichtbogenschweißen hergestelltes Bauteil aus Blechen mit einer Dicke größer 15 mm, bestehend aus Stahl mit ferritisch-perlitischem Gefüge, hoher Zähigkeit und guter Schweißeignung aus einer im Strang vergossenen Bramme mit der Zusammensetzung (in Gewichts-%)
    0,02 bis 0,10 % C
    0,05 bis 0,50 % Si
    1,00 bis 2,00 % Mn
    max. 0,02 % P
    max. 0,01 % S
    0,015 bis 0,08 % Al
    max. 0,01 % N
    0,30 bis 1,60 % Ni
    0,20 bis 1,60 % Cu
    0,04 bis 0,10 % V
    0,01 bis 0,05 % Nb
    0,01 bis 0,04 % Ti
    Rest Eisen und unvermeidliche Verunreinigungen, wobei die Bramme auf Temperaturen größer 1200°C aufgeheizt, an Luft auf weniger als 1000°C Oberflächentemperatur abgekühlt, dann thermomechanisch ohne Walzpause mit einer Walzendtemperatur von ca. 750 bis 650°C gewalzt, das Blech anschließend an ruhender Luft oder im Stapel auf unter 200°C abgekühlt und schließlich nach einer Erwärmung auf etwa 420 bis 610°C wiederum an Luft auf Raumtemperatur abgekühlt wird, wobei das Bauteil einen Härteverlauf quer zur Schweißnaht von Grundwerkstoff zu Grundwerkstoff mit Härtewerten, deren Minima und Maxima um weniger als 20 % voneinander abweichen, aufweist.
EP91250279A 1990-10-19 1991-10-11 Verfahren zur Herstellung eines hochfesten schweissgeeigneten Bleches und dessen Verwendung Expired - Lifetime EP0481575B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4033700 1990-10-19
DE4033700A DE4033700C1 (de) 1990-10-19 1990-10-19

Publications (3)

Publication Number Publication Date
EP0481575A2 EP0481575A2 (de) 1992-04-22
EP0481575A3 EP0481575A3 (en) 1992-08-26
EP0481575B1 true EP0481575B1 (de) 1995-06-28

Family

ID=6416886

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91250279A Expired - Lifetime EP0481575B1 (de) 1990-10-19 1991-10-11 Verfahren zur Herstellung eines hochfesten schweissgeeigneten Bleches und dessen Verwendung

Country Status (4)

Country Link
EP (1) EP0481575B1 (de)
AT (1) ATE124464T1 (de)
DE (2) DE4033700C1 (de)
ES (1) ES2074651T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069008A1 (en) * 2002-02-12 2003-08-21 The Timken Company Low carbon microalloyed steel
CN105132805B (zh) * 2015-09-15 2017-03-15 攀钢集团攀枝花钢铁研究院有限公司 一种含钒焊接结构用钢及其制备方法
DE102018132816A1 (de) * 2018-12-19 2020-06-25 Voestalpine Stahl Gmbh Verfahren zur Herstellung von thermo-mechanisch hergestellten profilierten Warmbanderzeugnissen
DE102018132908A1 (de) * 2018-12-19 2020-06-25 Voestalpine Stahl Gmbh Verfahren zur Herstellung von thermo-mechanisch hergestellten Warmbanderzeugnissen
CN114438415A (zh) * 2022-01-26 2022-05-06 宝武集团鄂城钢铁有限公司 一种36kg级特厚低温高韧性船板钢及其生产方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0030309B1 (de) * 1979-12-06 1985-02-13 Preussag Stahl Aktiengesellschaft Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung
CS330783A2 (en) * 1982-07-09 1984-06-18 Mannesmann Ag Zpusob vyroby plechu s jemnozrnnou strukturou z nizce legovane oceli pro vyrobu trub velkeho prumeru
CA1207639A (en) * 1983-03-17 1986-07-15 Rodney J. Jesseman Low alloy steel plate and process for production therefor
DE3818879C1 (de) * 1988-06-01 1989-11-16 Mannesmann Ag, 4000 Duesseldorf, De
JPH0794687B2 (ja) * 1989-03-29 1995-10-11 新日本製鐵株式会社 高溶接性、耐応力腐食割れ性および低温靭性にすぐれたht80鋼の製造方法

Also Published As

Publication number Publication date
DE4033700C1 (de) 1992-02-06
ES2074651T3 (es) 1995-09-16
EP0481575A3 (en) 1992-08-26
EP0481575A2 (de) 1992-04-22
DE59105852D1 (de) 1995-08-03
ATE124464T1 (de) 1995-07-15

Similar Documents

Publication Publication Date Title
DE60121266T2 (de) Hochfestes warmgewalztes stahlblech mit ausgezeichneten reckalterungseigenschaften
EP2855717B1 (de) Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts
DE60214086T2 (de) Hochduktiles Stahlblech mit exzellenter Pressbarkeit und Härtbarkeit durch Verformungsalterung sowie Verfahren zu dessen Herstellung
DE69828865T2 (de) Hochfestes, hervorragend bearbeitbares kaltgewalztes stahlblech mit hervorragender schlagbeständigkeit
EP1200635B1 (de) Höherfestes stahlband oder -blech und verfahren zu seiner herstellung
DE60033498T2 (de) Heissgetauchtes galvanisiertes stahlblech mit hoher festigkeit und hervorragenden eigenschaften beim umformen und galvanisieren
DE2124994C3 (de) Verfahren zur Herstellung starker, zähfester Stahlplatten
EP3305935B9 (de) Hochfestes stahlflachprodukt und verwendung eines hochfesten stahlflachprodukts
DE3401406A1 (de) Verfahren zur herstellung von stahlplatten mit hoher zugfestigkeit
DE3825634C2 (de) Verfahren zur Erzeugung von Warmbad oder Grobblechen
DE60133493T2 (de) Feuerverzinktes Stahlblech und Verfahren zu dessen Herstellung
DE69908450T2 (de) Breitflanschträger aus Stahl mit hoher Zähigkeit und Streckgrenze und Verfahren zur Herstellung dieser Bauteile
DE19610675C1 (de) Mehrphasenstahl und Verfahren zu seiner Herstellung
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
EP3504349B1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
DE60300561T2 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
DE3142782A1 (de) Verfahren zum herstellen von stahl mit hoher festigkeit und hoher zaehigkeit
DE112006003553B9 (de) Dicke Stahlplatte für eine Schweißkonstruktion mit ausgezeichneter Festigkeit und Zähigkeit in einem Zentralbereich der Dicke und geringen Eigenschaftsänderungen durch ihre Dicke und Produktionsverfahren dafür
EP1319725B1 (de) Verfahren zum Herstellen von Warmband
EP0481575B1 (de) Verfahren zur Herstellung eines hochfesten schweissgeeigneten Bleches und dessen Verwendung
EP1453984B1 (de) Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl
EP0030309A2 (de) Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung
EP3719147A1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
DE2716081C2 (de) Verwendung eines kontrolliert gewalzten Stahls
WO2022049282A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE ES FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PREUSSAG STAHL AKTIENGESELLSCHAFT

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE ES FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19920909

17Q First examination report despatched

Effective date: 19941118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 124464

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59105852

Country of ref document: DE

Date of ref document: 19950803

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2074651

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970910

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970916

Year of fee payment: 7

Ref country code: AT

Payment date: 19970916

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970918

Year of fee payment: 7

Ref country code: GB

Payment date: 19970918

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970923

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19971006

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971008

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971014

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981011

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981011

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19981013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

BERE Be: lapsed

Owner name: PREUSSAG STAHL A.G.

Effective date: 19981031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981011

EUG Se: european patent has lapsed

Ref document number: 91250279.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990803

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051011