EP0477735A1 - Hochdruckentladungslampe - Google Patents

Hochdruckentladungslampe Download PDF

Info

Publication number
EP0477735A1
EP0477735A1 EP91115778A EP91115778A EP0477735A1 EP 0477735 A1 EP0477735 A1 EP 0477735A1 EP 91115778 A EP91115778 A EP 91115778A EP 91115778 A EP91115778 A EP 91115778A EP 0477735 A1 EP0477735 A1 EP 0477735A1
Authority
EP
European Patent Office
Prior art keywords
pressure discharge
discharge lamp
piston
electrode rod
bulb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91115778A
Other languages
English (en)
French (fr)
Other versions
EP0477735B1 (de
Inventor
Alfred Roznerski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0477735A1 publication Critical patent/EP0477735A1/de
Application granted granted Critical
Publication of EP0477735B1 publication Critical patent/EP0477735B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors

Definitions

  • the invention relates to a high-pressure discharge lamp with the features mentioned in the preamble of the main claim.
  • Such high-pressure discharge lamps filled with inert gas have relatively high operating currents; this requires relatively large and therefore heavy electrodes - generally made of high-melting tungsten - and even with lamps of medium power (some 100 W) rod-shaped power supplies, "electrode rods", a few mm in diameter.
  • the electrode rods, also made of tungsten are melted through the piston wall in a gas-tight manner using complex, predominantly manual processes using intermediate glasses, the thermal expansion coefficient of which lies between that of the tungsten and the very small expansion coefficient of the quartz glass.
  • the melts or bushings are mechanically very sensitive; No forces may be transferred to them through the electrode rods, since they can easily be damaged by cracks and thus leak.
  • DE-GM 19 39 204 shows a noble gas high-pressure lamp in which the bulb necks are narrowed in a capillary manner from the transition into the bulb to close to the melting point.
  • the constriction is achieved by deforming the piston neck, which has been heated to approx. Vacuum in the bulb makes it easier for the quartz glass to fall onto the electrode rods; When cooling to room temperature, an annular gap of a few tenths of a millimeter is created between the electrode rod and the support capillary.
  • the capillary provides secure support for the electrode rods and a transfer of forces, such as those that occur during handling and transport due to vibrations of the heavy electrodes, onto the melting point is practically impossible.
  • the shortening of the capillary leads to an increase in the mechanical stability of the lamp, because the shortening reduces the risk of capillary rupture, it facilitates the evacuation of the lamp, because the pump resistance is reduced due to the now shorter annular gap, and it leads to the loss of a part the complex deformation work to be carried out manually by special forces on the piston neck, significant cost advantages.
  • each bulb neck has only a slight constriction near the transition to the bulb, against which a loose on the electrode rod pushed on support element, for example in the form of a just a few mm long circular cylindrical roller made of quartz glass, is resiliently pressed by a tungsten spiral spring which is also loosely pushed onto the electrode rod between the support element and the melt.
  • a disadvantage of the designs according to DE-PS 30 29 824 and DE-GM 78 35 279 for electrode rod support is, however, that a relatively large volume to be filled with inert gas is created in the piston-distant space of the piston neck between the melting point and the rod support.
  • the noble gas in this volume remains relatively cold during lamp operation, since it is not heated directly by the discharge processes, and leads to a lowering of the temperature and thus the operating pressure of the noble gas in the actual discharge bulb via convection.
  • lamps in the version according to DE-PS 30 29 824 also occasionally occur in unfavorable cases - especially due to resonance effects during transport - large forces between the support element and the inner wall of the bulb neck, which cause abrasion and injury to the quartz glass surface with a number of adverse consequences for the correct lamp operation.
  • an embodiment of the electrode rod support is now known which avoids the disadvantage of the relatively large volume to be filled with noble gas in the part of the piston neck remote from the piston.
  • a long cylindrical roller made of quartz glass, for example, is used as a support element, which - loosely pushed onto the electrode rod - fills the entire piston neck between the melting point and the actual piston; a tungsten coil spring, also loosely pushed between the electrode and the roller, is used to position the roller.
  • the present invention is based on the object to find reliable support for the electrode rods without complex deformation work on the piston neck and with the smallest possible volume to be filled with inert gas in the piston neck.
  • the volume to be filled with inert gas in the piston neck is reduced in that one or more circular-cylindrical disks, preferably made of ceramic, have a diameter slightly below the inside diameter of the piston neck , between a support element, preferably made of quartz glass, and a spiral spring made of tungsten, which is supported against part of the melt, are loosely pushed onto the electrode rod.
  • the construction according to the invention requires only a small amount of deformation work on the piston neck in order to produce the constriction necessary for the positioning of the support element and permits simple coordination between the production steps which result from manually carried out production steps Length tolerances and the force caused by compression of the coil spring, so that as a result, a resiliently tight fit of the support element and disc (s) on the electrode rod can be achieved without problems.
  • the central bore of the disks is selected to be slightly larger than the electrode rod diameter, which means that any radial displacement of the disks with respect to the central axis of the electrode rod up to (one-sided) contact with the inner wall of the piston neck is possible.
  • the disks thus take over part of the support function, since they contribute to the damping of electrode rod vibrations via the friction against one another or with the support element, and thereby advantageously relieve the actual support element, so that in the embodiment according to the invention there are no signs of wear and tear due to transport stresses on the support element and / or occur on the inside of the piston neck.
  • the disks advantageously cool the electrode rod by dissipating heat as a result of heat conduction from the electrode rod into the quartz glass wall of the piston neck.
  • the temperatures on the electrode rod are significantly reduced by the discs pushed onto it; as a result, the melting of the electrode rod and the base region are thermally relieved, as a result of which the operational safety of the lamp is increased.
  • the outer surface of the piston neck is increased from the transition into the piston to in to increase the radiation provide the area under the base sleeve with a layer of high radiation emissivity in the infrared and / or visible wavelength range.
  • the thermal expansion coefficient of the aluminum oxide preferably used for the panes with 7.5x10 ⁇ 6 / K is more than a power of ten greater than that of quartz glass with 0.56x10 ⁇ 6 / K.
  • the lamp gap between the discs and the bulb neck is therefore noticeably smaller than at room temperature during lamp operation, which hinders the convection currents which impair the arc stability, while a larger ring gap facilitates the evacuation of the discharge vessel during manufacture.
  • the figure shows an embodiment in side view, partially in section.
  • the piston 1 made of quartz glass with two piston necks 2, 2 '- also made of quartz glass - two electrodes 3, 3' are diametrically opposed.
  • the electrodes 3, 3 ' are mounted on rod-shaped current leads made of tungsten, the electrode rods 4, 4'.
  • the electrode rods 4, 4 ' are melted in a gas-tight manner to the outside at the ends of the piston necks remote from the piston and are connected in an electrically conductive manner via strands to base sleeves 5, 5' cemented onto the piston necks.
  • Each of the electrode rods 4, 4 ' is supported by a support element 6, 6' made of quartz glass which is loosely slid onto it and which is loosely supported by a between the relevant melt 7 the respective electrode rod 4, 4 'pushed, compressed coil spring 8 made of tungsten via also loosely pushed onto the respective electrode rod 4, 4' discs 9, 9 'made of alumina ceramic resilient against a constriction 10, 10' in the piston neck 2, 2 'at the transition to Piston 1 is pressed.
  • the inside diameter of the piston neck is 19.0 + 0.4 mm, the outside diameter of the discs 18.8 - 0.05 mm, their thickness 5.0 ⁇ 0.1 mm.
  • the diameter of the inner bore of the discs is 4.3 + 0.05 mm, the electrode rod diameter 4.0 ⁇ 0.02 mm.
  • the discharge vessel is filled with xenon of approx. 8 bar, the nominal power consumption of the lamp is 2 kW.
  • Each of the piston necks 2, 2 ' is provided on its outer surface from the transition into the piston to the area under the base sleeve 5, 5' with a high-temperature-resistant black layer 11 '.
  • the high-temperature-resistant black layer contains Fe2O3 pigments and leads to a reduction in temperature from 250 ° C to 220 ° C at the outer ends of the bulb necks when the lamp is operated at nominal power in a horizontal burning position.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Zur Verringerung des Edelgaskaltfülldrucks bei Hochdruckentladungslampen werden die Volumina der kolbenfernen, im Lampenbetrieb mit relativ kaltem Gas gefüllten Räume in den Kolbenhälsen (2, 2') durch auf die Elektrodenstäbe (4, 4') zwischen einem Stützelement (6, 6') und einer positionsgebenden Spiralfeder (8) aufgeschobenen Scheibe(n) (9, 9,) vorzugsweise aus Aluminiumoxidkeramik aufgefüllt. Dies erleichtert infolge erniedrigter Durchschlagsspannung die Zündung und führt wegen verringerter Konvektion zu erhöhter Bogenstabilität. Die Scheiben entlasten außerdem das den Elektrodenstab (4, 4') abstützende Stützelement (6, 6') mechanisch sowie - unterstützt durch eine die Abstrahlung vergrößernde Beschichtung (11') auf den Kolbenhälsen - Einschmelzung (7) und Sockelbereich (5, 5') thermisch. <IMAGE>

Description

  • Die Erfindung betrifft eine Hochdruckentladungslampe mit dem im Oberbegriff des Hauptanspruchs genannten Merkmalen.
  • Solche Hochdruckentladungslampen mit Edelgasfüllung haben relativ hohe Betriebsströme; dies erfordert relativ große und damit schwere Elektroden - i.a. aus hochschmelzendem Wolfram - und schon bei Lampen mittlerer Leistung (einige 100 W) stabförmige Stromzuführungen, "Elektrodenstäbe", von einigen mm Durchmesser. Die Elektrodenstäbe, ebenfalls aus Wolfram, sind nach aufwendigen, überwiegend manuellen Verfahren unter Verwendung von Zwischengläsern, deren thermischer Ausdehnungskoeffizient zwischen dem des Wolframs und dem sehr kleinen Ausdehnungskoeffizienten des Quarzglases liegt, gasdicht eingeschmolzen durch die Kolbenwand geführt.
  • Die Einschmelzungen oder Durchführungen sind mechanisch sehr empfindlich; auf sie dürfen durch die Elektrodenstäbe keine Kräfte übertragen werden, da sie leicht durch Sprünge beschädigt und damit undicht werden können.
  • Das DE-GM 19 39 204 zeigt eine Edelgashochdrucklampe, bei der die Kolbenhälse vom Übergang in den Kolben bis nahe zur Einschmelzung kapillarartig verengt sind.
  • Die Verengung erfolgt durch Verformen des z.B. mit dem Knallgasgebläse auf ca. 2000 °C erhitzten und dann erweichten Kolbenhalses; Unterdruck im Kolben erleichtert dabei das Auffallen des Quarzglases auf die Elektrodenstäbe; beim Abkühlen auf Zimmertemperatur entsteht dann ein Ringspalt von einigen zehntel mm zwischen Elektrodenstab und Stützkapillare.
    Durch die Kapillare ist eine sichere Abstützung der Elektrodenstäbe gegeben und eine Übertragung von Kräften, wie sie beim Hantieren und beim Transport durch Schwingungen der schweren Elektroden auftreten, auf die Einschmelzung ist praktisch ausgeschlossen.
  • Aus dem DE-GM 78 35 279 ist eine Hochdruckentladungslampe mit verkürzter Stützkapillare im kolbennahen Teil des Kolbenhalses bekannt.
  • Die Verkürzung der Kapillare führt zu einer Erhöhung der mechanischen Stabilität der Lampe, weil durch die Verkürzung die Gefahr des Kapillarbruchs vermindert wird, sie erleichtert das Evakuieren der Lampe, weil der Pumpwiderstand durch den jetzt kürzeren Ringspalt verkleinert wird und sie bringt wegen des Fortfalls eines Teils der aufwendigen, manuell von Spezialkräften am Kolbenhals durchzuführenden Verformungsarbeit wesentliche Kostenvorteile.
  • Aus der DE-PS 30 29 824 ist eine Hochdruckentladungslampe und ein Verfahren zu ihrer Herstellung bekannt, bei der jeder Kolbenhals lediglich eine leichte Verengung in der Nähe des Übergangs zum Kolben aufweist, gegen die ein lose auf den Elektrodenstab aufgeschobenes Stützelement, z.B. in Form einer nur wenige mm langen kreiszylindrischen Rolle aus Quarzglas, durch eine ebenfalls lose auf dem Elektrodenstab zwischen dem Stützelement und der Einschmelzung aufgeschobenen Spiralfeder aus Wolfram federnd angedrückt wird. Bei dieser Art der Elektrodenstababstützung kommen die bereits für die verkürzte Kapillare geschilderten Vorteile verstärkt zur Geltung:
    Wegen der lediglich leichten Verengung des Kolbenhalses entfällt praktisch die Bruchgefahr in diesem Bereich, der Pumpweg längs des stützenden Elements ist auf wenige mm verkürzt, die aufwendige Verformungsarbeit ist auf ein Minimum - leichtes Eindellen des Kolbenhalses - reduziert.
  • Ein Nachteil der Ausführungen nach der DE-PS 30 29 824 und dem DE-GM 78 35 279 zur Elektrodenstababstützung ist es jedoch, daß ein mit Edelgas zu füllendes, relativ großes Volumen im kolbenfernen Raum des Kolbenhalses zwischen Einschmelzung und Stababstützung entsteht. Das Edelgas in diesem Volumen bleibt bei Lampenbetrieb relativ kalt, da es nicht direkt durch die Entladungsprozesse aufgeheizt wird, und führt über Konvektion zu einer Absenkung der Temperatur und damit des Betriebsdruckes des Edelgases im eigentlichen Entladungskolben.
    Um die Betriebswerte von Lampen mit unverkürzter Kapillare zu erreichen, ist es daher erforderlich, bei Lampen in der Ausführung nach DE-PS 30 29 824 und DE-GM 78 35 279 den Kaltfülldruck des Edelgases deutlich zu erhöhen, wodurch wiederum die für die Lampenzündung wesentliche Durchschlagsspannung in unerwünschter Weise steigt und es außerdem zu zusätzlichen Kosten wegen der größeren Einfüllmenge des teuren Edelgases (z.B. Xenon!) kommt.
  • Bei Lampen in der Ausführung nach der DE-PS 30 29 824 treten darüber hinaus gelegentlich in ungünstigen Fällen - insbesondere durch Resonanzeffekte während des Transports - große Kräfte zwischen dem Stützelement und der Kolbenhalsinnenwand auf, die dort zu Abrieb und Verletzungen der Quarzglasoberfläche mit einer Reihe von nachteiligen Folgen für den einwandfreien Lampenbetrieb führen.
  • Ein weiterer Nachteil der Ausführungen nach der DE-PS 30 29 824 und dem DE-GM 78 35 279 zur Elektrodenstababstützung ist es, daß die auftretenden Konvektionsströmungen zu einer Verringerung der Stabilität des Entladungsbogens führen können.
  • Aus der EP-PS 00 86 479 ist nun eine Ausführung der Elektrodenstababstützung bekannt, die den Nachteil des relativ großen, mit Edelgas zu füllenden Volumens im kolbenfernen Teil des Kolbenhalses vermeidet. Als Stützelement wird hier eine lange kreiszylindrische Rolle z.B. aus Quarzglas verwendet, die - lose auf den Elektrodenstab aufgeschoben - den gesamten Kolbenhals zwischen Einschmelzung und eigentlichem Kolben ausfüllt; zur Positionierung der Rolle dient eine zwischen Elektrode und Rolle ebenfalls lose aufgeschobene Spiralfeder aus Wolfram.
    Diese Lösung hat sich in der Praxis jedoch nicht bewährt, da eine Abstimmung zwischen den auftretenden Längentoleranzen und der Federkraft zur sicheren Positionierung des relativ schweren Stützelements nicht ausreichend zuverlässig gewährleistet werden konnte und es dadurch häufiger zu Beschädigungen an der Einschmelzung durch ein in der Achsenrichtung des Elektrodenstabs bewegliches Stützelement kam.
  • Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, ohne aufwendige Verformungsarbeiten am Kolbenhals und bei möglichst kleinem, mit Edelgas zu füllendem Volumen im Kolbenhals eine sichere Abstützung der Elektrodenstäbe zu finden.
  • Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Besonders vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen.
  • Ausgehend von der in der Praxis bewährten Ausführung der Elektrodenstababstützung nach DE-PS 30 29 824 wird das mit Edelgas zu füllende Volumen im Kolbenhals dadurch verkleinert, daß eine oder mehrere kreiszylindrische Scheiben vorzugsweise aus Keramik mit einem Durchmesser, der geringfügig unter dem Innendurchmesser des Kolbenhalses liegt, zwischen einem Stützelement vorzugsweise aus Quarzglas und einer Spiralfeder aus Wolfram, die sich gegen ein Teil der Einschmelzung abstützt, lose auf den Elektrodenstab aufgeschoben werden. Die erfindungsgemäße Konstruktion erfordert nur eine geringe Verformungsarbeit am Kolbenhals zur Herstellung der für die Positionierung des Stützelements notwendigen Verengung und erlaubt eine einfache Abstimmung zwischen den sich infolge manuell durchgeführter Fertigungsschritte ergebenden Längentoleranzen und der durch Kompression der Spiralfeder auftretenden Kraft, so daß im Ergebnis ein federnd fester Sitz von Stützelement und Scheibe(n) auf dem Elektrodenstab problemlos erreicht werden kann.
  • Die Mittelbohrung der Scheiben sind geringfügig größer gewählt als der Elektrodenstabdurchmesser, wodurch eine beliebige radiale Versetzung der Scheiben bezüglich der Mittelachse des Elektrodenstabs bis hin zur (einseitigen) Berührung der Innenwandung des Kolbenhalses möglich ist. Damit übernehmen die Scheiben einen Teil der Stützfunktion, da sie über die Reibung aneinander bzw. mit dem Stützelement zur Dämpfung von Elektrodenstabschwingungen beitragen, und entlasten dadurch in vorteilhafter Weise das eigentliche Stützelement, so daß in der erfindungsgemäßen Ausführung keine Verschleißerscheinungen durch Transportbeanspruchungen am Stützelement und/oder an der Kolbenhalsinnenwand auftreten.
  • Darüber hinaus sorgen die Scheiben durch Wärmeabfuhr infolge Wärmeleitung vom Elektrodenstab in die Quarzglaswandung des Kolbenhalses in vorteilhafter Weise für eine Kühlung des Elektrodenstabs. Die Temperaturen auf dem Elektrodenstab werden durch die auf ihn aufgeschobenen Scheiben deutlich abgesenkt; dadurch wird die Einschmelzung des Elektrodenstabs und der Sockelbereich thermisch entlastet, wodurch die Lampenbetriebssicherheit erhöht wird. Zur Verbesserung der Wärmeabfuhr des hierdurch zusätzlich aufgeheizten Kolbenhalses wird zur Erhöhung der Abstrahlung die Außenoberfläche des Kolbenhalses vom Übergang in den Kolben bis in den Bereich unter der Sockelhülse mit einer Schicht hohen Strahlungsemissionsvermögens im infraroten und/oder sichtbaren Wellenlängenbereich versehen.
  • Ein weiterer Vorteil ergibt sich daraus, daß der thermische Ausdehnungskoeffizient des für die Scheiben vorzugsweise verwendeten Aluminiumoxids mit 7,5x10⁻⁶/K um mehr als eine Zehnerpotenz größer ist als der von Quarzglas mit 0,56x10⁻⁶/K. Damit ist bei Lampenbetrieb der Ringspalt zwischen den Scheiben und dem Kolbenhals merklich kleiner als bei Zimmertemperatur, wodurch die die Bogenstabilität beeinträchtigenden Konvektionsströmungen behindert werden, während beim Herstellgang ein größerer Ringspalt das Evakuieren des Entladungsgefäßes erleichtert.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels erläutert.
  • Die Figur zeigt ein Ausführungsbeispiel in Seitenansicht, teilweise geschnitten.
  • Im Kolben 1 aus Quarzglas mit zwei Kolbenhälsen 2, 2' - ebenfalls aus Quarzglas - stehen sich zwei Elektroden 3, 3' diametral gegenüber. Die Elektroden 3, 3' sind auf stabförmigen Stromzuführungen aus Wolfram, den Elektrodenstäben 4, 4', montiert. Die Elektrodenstäbe 4, 4' sind an den kolbenfernen Enden der Kolbenhälse gasdicht eingeschmolzen nach außen geführt und über Litzen elektrisch-leitend mit auf den Kolbenhälsen aufgekitteten Sockelhülsen 5, 5' verbunden. Jeder der Elektrodenstäbe 4, 4' ist durch ein auf ihm lose aufgeschobenes Stützelement 6, 6' aus Quarzglas abgestützt, das durch eine zwischen der betreffenden Einschmelzung 7 lose auf den jeweiligen Elektrodenstab 4, 4' aufgeschobene, komprimierte Spiralfeder 8 aus Wolfram über ebenfalls lose auf den jeweiligen Elektrodenstab 4, 4' aufgeschobene Scheiben 9, 9' aus Aluminiumoxidkeramik federnd gegen eine Verengung 10, 10' im Kolbenhals 2, 2' am Übergang zum Kolben 1 angedrückt wird.
  • Der Innendurchmesser des Kolbenhalses beträgt 19,0 + 0,4 mm, der Außendurchmesser der Scheiben 18,8 - 0,05 mm, ihre Dicke 5,0 ± 0,1 mm.
  • Der Durchmesser der Innenbohrung der Scheiben ist 4,3 + 0,05 mm, der Elektrodenstabdurchmesser 4,0 ± 0,02 mm.
  • Das Entladungsgefäß ist mit Xenon von ca. 8 bar gefüllt, die Nennleistungsaufnahme der Lampe beträgt 2 kW.
  • Jeder der Kolbenhälse 2, 2' ist auf seiner Außenoberfläche vom Übergang in den Kolben bis in den Bereich unter der Sockelhülse 5, 5' mit einer hochtemperaturfesten schwarzen Schicht 11' versehen.
  • Die hochtemperaturfeste schwarze Schicht enthält Fe₂O₃-Pigmente und führt an den äußeren Enden der Kolbenhälse zu einer Temperaturabsenkung von 250 °C auf 220 °C bei Betrieb der Lampe an Nennleistung in waagerechter Brennlage.

Claims (5)

  1. Hochdruckentladungslampe, bestehend aus einem edelgasgefüllten Quarzglaskolben (1) mit zwei Kolbenhälsen (2, 2'), in dem sich zwei Elektroden (3, 3') diametral gegenüberstehen, die auf stabförmigen Stromzuführungen, den Elektrodenstäben (4, 4'), montiert sind, die im kolbenfernen Teil des jeweiligen Kolbenhalses (2, 2') hermetisch eingeschmolzen nach außen geführt sind und in der Nähe des Übergangs des jeweiligen Kolbenhalses (2, 2') in den Kolben (1) durch ein auf den Elektrodenstab (4, 4') lose aufgeschobenes Stützelement (6, 6'), das durch die Kraft einer ebenfalls lose auf den Elektrodenstab zwischen dem Stützelement (6, 6') und der Einschmelzung (7) aufgeschobenen, komprimierten Spiralfeder (8) federnd gegen eine Verengung (10, 10') im jeweiligen Kolbenhals (2, 2') angedrückt wird, abgestützt sind, dadurch gekennzeichnet, daß zwischen dem jeweiligen Stützelement (6, 6') und der Spiralfeder (8) eine oder mehrere Scheiben (9, 9') vorzugsweise aus Keramik lose auf den Elektrodenstab (4, 4') aufgeschoben sind.
  2. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Kolbenhälse (2, 2') auf ihrer Außenseite mit einer hochtemperaturfesten Beschichtung (11') hohen Emissionsvermögens im infraroten und/oder sichtbaren Spektralbereich versehen sind.
  3. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die zwischen Stützelement (6, 6') und Spiralfeder (8) auf den Elektrodenstab (4, 4') lose aufgeschobenen Scheiben (9, 9') eine Dicke zwischen 1 bis 5 mm und einen Durchmesser haben, der zwischen 0,2 bis 0,8 mm unter dem Innendurchmesser des Kolbenhalses (2, 2') liegt.
  4. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die aufgeschobenen Scheiben (9, 9') aus Aluminiumoxidkeramik bestehen.
  5. Hochdruckentladungslampe nach Anspruch 2, dadurch gekennzeichnet, daß die hochtemperaturfeste Beschichtung (11') aus einem hochtemperaturfesten schwarzen Lack besteht.
EP91115778A 1990-09-28 1991-09-17 Hochdruckentladungslampe Expired - Lifetime EP0477735B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4030820A DE4030820A1 (de) 1990-09-28 1990-09-28 Hochdruckentladungslampe
DE4030820 1990-09-28

Publications (2)

Publication Number Publication Date
EP0477735A1 true EP0477735A1 (de) 1992-04-01
EP0477735B1 EP0477735B1 (de) 1995-04-19

Family

ID=6415228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91115778A Expired - Lifetime EP0477735B1 (de) 1990-09-28 1991-09-17 Hochdruckentladungslampe

Country Status (4)

Country Link
US (1) US5140222A (de)
EP (1) EP0477735B1 (de)
JP (1) JP2787821B2 (de)
DE (2) DE4030820A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110203A2 (de) * 2007-03-12 2008-09-18 Osram Gesellschaft mit beschränkter Haftung Entladungslampe und verfahren zum herstellen einer entladungslampe
DE102011087833A1 (de) 2011-12-06 2013-06-06 Osram Gmbh Entladungslampe mit Elektrodenstabstützelement
CN103760478A (zh) * 2014-01-07 2014-04-30 广东电网公司电力科学研究院 一种高重复性标准沿面放电模型装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19825004A1 (de) * 1998-04-24 1999-10-28 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe
EP0964432B1 (de) * 1998-05-12 2005-08-03 Ushiodenki Kabushiki Kaisha Hochdruck-Entladungslampe
JP2001015070A (ja) 1999-06-29 2001-01-19 Ushio Inc 放電ランプ
JP3669292B2 (ja) * 2001-06-14 2005-07-06 ウシオ電機株式会社 ショートアーク型放電ランプ
JP4036039B2 (ja) * 2002-06-19 2008-01-23 ウシオ電機株式会社 ショートアーク型放電ランプ
EP1656692A2 (de) * 2003-08-15 2006-05-17 Koninklijke Philips Electronics N.V. Entladungslampe mit elektroden mit konischem rutschteil
DE102009019526A1 (de) 2009-04-30 2010-11-04 Osram Gesellschaft mit beschränkter Haftung Entladungslampe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2324090A1 (de) * 1972-05-16 1973-12-06 Philips Nv Hochdruckgasentladungslampe
DE2623099A1 (de) * 1975-06-05 1976-12-23 Philips Nv Kurzbogenentladungslampe
DE3029824A1 (de) * 1980-08-06 1982-03-11 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe
EP0086479A2 (de) * 1982-02-16 1983-08-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe
US4734612A (en) * 1985-07-15 1988-03-29 Kabushiki Kaisha Toshiba High pressure metal vapor discharge lamp
EP0264764A2 (de) * 1986-10-23 1988-04-27 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Einschmelzung für eine Hochdruckentladungslampe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1939204A1 (de) * 1969-08-01 1971-02-18 Wiesauplast Kunststoff Und For Pruefeinrichtung fuer den Fuellstand eines Akkumulators
US3636401A (en) * 1969-12-22 1972-01-18 Duro Test Corp Liquid-cooled electrode for high-pressure compact arc
DE7835279U1 (de) * 1978-11-28 1979-08-02 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen Hochdruckentladungslampe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2324090A1 (de) * 1972-05-16 1973-12-06 Philips Nv Hochdruckgasentladungslampe
DE2623099A1 (de) * 1975-06-05 1976-12-23 Philips Nv Kurzbogenentladungslampe
DE3029824A1 (de) * 1980-08-06 1982-03-11 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe
EP0086479A2 (de) * 1982-02-16 1983-08-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe
US4734612A (en) * 1985-07-15 1988-03-29 Kabushiki Kaisha Toshiba High pressure metal vapor discharge lamp
EP0264764A2 (de) * 1986-10-23 1988-04-27 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Einschmelzung für eine Hochdruckentladungslampe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110203A2 (de) * 2007-03-12 2008-09-18 Osram Gesellschaft mit beschränkter Haftung Entladungslampe und verfahren zum herstellen einer entladungslampe
WO2008110203A3 (de) * 2007-03-12 2008-11-27 Osram Gmbh Entladungslampe und verfahren zum herstellen einer entladungslampe
DE102011087833A1 (de) 2011-12-06 2013-06-06 Osram Gmbh Entladungslampe mit Elektrodenstabstützelement
CN103760478A (zh) * 2014-01-07 2014-04-30 广东电网公司电力科学研究院 一种高重复性标准沿面放电模型装置

Also Published As

Publication number Publication date
JP2787821B2 (ja) 1998-08-20
JPH04249060A (ja) 1992-09-04
EP0477735B1 (de) 1995-04-19
DE4030820A1 (de) 1992-04-02
DE59105245D1 (de) 1995-05-24
US5140222A (en) 1992-08-18

Similar Documents

Publication Publication Date Title
EP0479087A1 (de) Hochdruckentladungslampe
EP0839381B1 (de) Reflektorlampe
EP0391283B1 (de) Zweiseitig gesockelte Hochdruckentladungslampe
EP0477735B1 (de) Hochdruckentladungslampe
DE2623099A1 (de) Kurzbogenentladungslampe
DE1220039B (de) Elektrische Metalldampflampe
DE2641867A1 (de) Elektrische entladungslampe
DE4229317A1 (de) Hochdruckentladungslampe
DE2129142A1 (de) Gaslaser
DE19729219A1 (de) Hochdruckentladungslampe mit gekühlter Elektrode
DE2737931C2 (de) Endverschluß für eine Entladungslampe
DE2102112C3 (de) Hochdruck-Entladungslampe
DE1929622A1 (de) Elektrische Lampe in Langform mit abgebogenem Ende
EP0479088A1 (de) Hochdruckentladungslampe und Verfahren zur Herstellung der Lampe
DE2417820B2 (de) Katodenkopf einer Drehanoden-Röntgenröhre
DE2943358A1 (de) Laseranordnung
DE69911735T2 (de) Hochdruckentladungslampe
DE69915253T2 (de) Hochdruckentladungslampe
DE3200699A1 (de) Entladungsgefaess fuer hochdruck-natriumdampflampen
DE3132699C2 (de) Natriumdampf-Hochdrucklampe
DE1809443A1 (de) Metalldampfbogenlampe
DE645829C (de) Gluehkathodenroehre, bei der die Erhitzung der Kathode mit Hilfe einer aeusseren Waermequelle durch die Gefaesswand hindurch erfolgt
DE2117161A1 (de)
DE4119031C1 (en) Discharge lamp contg. inert and doping gases - has getter in thermal contact with one electrode for rapid heating for increased ignition ability
DE2522649C3 (de) Hochdruck-Metalldampflampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19920423

17Q First examination report despatched

Effective date: 19940607

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59105245

Country of ref document: DE

Date of ref document: 19950524

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950627

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020910

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020930

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030917

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051121

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403