EP0473233B1 - Hochfluss-Neutronenröhre - Google Patents

Hochfluss-Neutronenröhre Download PDF

Info

Publication number
EP0473233B1
EP0473233B1 EP91202149A EP91202149A EP0473233B1 EP 0473233 B1 EP0473233 B1 EP 0473233B1 EP 91202149 A EP91202149 A EP 91202149A EP 91202149 A EP91202149 A EP 91202149A EP 0473233 B1 EP0473233 B1 EP 0473233B1
Authority
EP
European Patent Office
Prior art keywords
neutron tube
anode
revolution
ion source
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91202149A
Other languages
English (en)
French (fr)
Other versions
EP0473233A1 (de
Inventor
Henri Société Civile S.P.I.D. Bernardet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical SODERN SA
Publication of EP0473233A1 publication Critical patent/EP0473233A1/de
Application granted granted Critical
Publication of EP0473233B1 publication Critical patent/EP0473233B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/04Ion sources; Ion guns using reflex discharge, e.g. Penning ion sources

Definitions

  • the present invention relates to a neutron tube comprising an ion source having at least one anode and at least one cathode having at least one extraction orifice and also comprising an acceleration device arranged so as to project at least one beam ion source ion on a target to produce a reaction resulting in the emission of neutrons.
  • Neutron tubes are most often in the form of sealed tubes containing a gaseous mixture of deuterium and tritium under low pressure from which the ion source forms a confined ionized gas.
  • the emission (or extraction) orifice is made in the cathode, the acceleration (and extraction) electrode making it possible to project the ion beam axially on a target electrode.
  • Plasma confinement can be obtained using magnetic and / or electric fields.
  • Neutron tubes are used in techniques for examining matter using fast, thermal, epithermal or cold neutrons: neutrography, activation analysis, spectrometry analysis of inelastic scattering or radiative captures, neutron scattering, etc.
  • the most used type of ion source is the Penning type source which has the advantage of being robust, of being cold cathode (hence a long service life), of giving currents significant discharge for low pressures (of the order of 7.5 ⁇ 10 ⁇ 2 A / Pa (10 A / torr)), to have a high extraction efficiency (from 20 to 40%) and be small.
  • This type of source requires a magnetic field of the order of a thousand gauss, parallel to the axis of the chamber ionization, introducing a significant transverse inhomogeneity of current density of the ions inside the discharge and at the level of the extraction which takes place along the common axis of the field and the source.
  • the fusion reaction d (3 H ), 4 He ) n delivering 14 MeV neutrons is usually the most used because of its large cross section for relatively low ion energies.
  • the number of neutrons obtained per unit of charge passing through the beam is always increasing as the energy of the ions directed towards a thick target is itself increasing and this largely at the beyond the energies of the ions obtained in the currently available sealed tubes and supplied by a THT rarely exceeding 250 kV.
  • the erosion of the target by ion bombardment is one of the most determining.
  • Erosion is a function of the chemical nature and structure of the target on the one hand, the energy of the incident ions and their density distribution profile on the impact surface on the other.
  • the target is made up of a hydrurable material (Titanium, Scandium, Zirconium, Erbium etc ...) capable of fixing and releasing large quantities of hydrogen without unacceptable disruption of its mechanical strength; the total quantity set is a function of the target temperature and the hydrogen pressure in the tube.
  • the target materials used are deposited in the form of thin layers, the thickness of which is limited by problems of adhesion of the layer to its support.
  • One way of delaying the erosion of the target consists, for example, in forming the active absorbent layer from a stack of identical layers isolated from each other by a diffusion barrier. The thickness of each of the active layers is of the order of the depth of penetration of the deuterium ions coming to strike the target.
  • Another way to protect the target and therefore increase the life of the tube is to act on the ion beam so as to improve its density distribution profile on the impact surface.
  • this improvement results from a distribution as uniform as possible of the current density over the entire surface offered by the target to the bombardment of the ions.
  • a disadvantage results from the fact that the ions extracted and accelerated towards the target react with the molecules of the gas contained in the tube at a pressure, with the first contrant order, to produce effects of ionization, dissociation and exchange of charges resulting on the one hand a decrease in the average energy on the target, that is to say a reduction in the production of neutrons and on the other hand the formation of ions and electrons which are then accelerated and bombard the ion source or the tube electrodes.
  • an average bombardment density of 0.5 mA should make it possible to exceed one thousand hours of operation; as for the neutron level, for an acceleration voltage of 250 kV, it would be around 3.1010 n / cm.2s of 14 MeV neutrons. Obtaining a level of 1013 n / s would require a target area of 300 cm2 and 3000 cm2 for 1014 n / s.
  • the basic idea of the invention consists in carrying out an extraction of ions no longer axial, but radial on the one hand, starting from the recognition of the fact that it allows a reduction of the electric fields producing the cold emission of electrodes, and the number of breakdowns resulting therefrom, thanks to an asymmetry in the distribution of the electric field and further by the fact that it makes it possible to arrange the target cylindrically around the ion source, from where an extremely gain important with regard to the size of a source with a high neutron flux.
  • a neutron tube according to the invention is thus characterized in that the ion source is arranged along at least a portion of a first surface of revolution and arranged to produce an emission of radial ions and directed towards the outside of said first surface, in that the acceleration device is arranged along at least a portion of a second surface of revolution surrounding said first surface, and in that the target is arranged along at least part of a third surface of revolution surrounding said second surface.
  • the radial extraction mode towards the outside partly eliminates the sheath effect due to the perimeter of the extraction electrode and results, all things being equal. moreover, an increase in the extraction efficiency of the source.
  • the tube according to the invention may comprise a device for suppressing secondary electrons known per se and arranged along at least a portion of a fourth surface of revolution comprised between the second and the third surface.
  • the acceleration device can advantageously be a cylindrical electrode.
  • the ion source consists of at least one elementary source with a Penning structure, which can in particular comprise a plurality of elementary sources arranged in at least portions of superimposed rings.
  • the first surface of revolution is a first cylinder and it comprises a first cylindrical magnet disposed on the smallest radius of the first cylinder, and at least a second cylindrical magnet contained in said cathode along the largest radius of the first cylinder, so as to produce a radial magnetic field.
  • An anode can be cylindrical or frustoconical of revolution. It can preferably be made up of two parallel discs or with a frustoconical section, which makes it possible to produce a single anode per ring, hence simplifying the production.
  • the extraction orifice can be an annular slot, which is favorable to the extraction efficiency.
  • the ion source consists of a structure of the inverted magnetron type.
  • a structure is usually used only as a measuring instrument (ionization gauge).
  • ionization gauge On this point one will refer to the work The Physical Basis of Ultrahigh Vacuum (Redhead et al National Research Council Ottawa, CDN edited by Chapman and Hall Ltd LONDON (GB), in its pages 333 and 334.
  • Such a device is used here as an ion source by providing at least one extraction opening in the cathode. At least one anode can be annular.
  • a third annular magnet can be arranged so as to produce a longitudinal magnetic field.
  • the magnetic field can be obtained by a solenoid surrounding the third (or if appropriate the fourth) cylindrical surface and arranged so as to produce a longitudinal magnetic field
  • a cylindrical anode can be arranged according to the smallest radius of the first cylinder and extend substantially over the height of the first cylinder. It is thus possible to obtain, with a single anode and a single cathode, an emission on a surface of revolution, especially cylindrical, elongated.
  • the ion source is of the orbitron type comprising a second cylindrical anode disposed along the smallest radius of the first cylinder and extending substantially over the height of said first cylinder.
  • the ion source may also include a hot cathode.
  • the ion source is of the electrostatic reflex type (SIRE) and has at least one annular anode, or advantageously a multiannular electrode.
  • SIRE electrostatic reflex type
  • FIG. 1 shows the main basic elements of a sealed neutron tube 11 containing a gas mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and the focusing of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.
  • a gas mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and the focusing of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.
  • the ion source 1 secured to an insulator 5 which can allow the THT supply connector, for example 250 kV (not shown) to pass, is a Penning type source for example, consisting of a cylindrical anode 6, of a cathodic structure 7 in which is incorporated a magnet with an axial magnetic field which confines the ionized gas 9 around the axis of the anode cylinder and whose lines of force 10 show a certain divergence.
  • An ion emission channel 12 is formed in said cathode structure opposite the anode.
  • the anode is brought to a higher potential of the order of a few (1 to 6 for example) kV than that of the cathode, itself brought to the very high voltage THT.
  • the acceleration electrode 2 and the target 4 are generally at ground potential.
  • a neutron tube is, according to the invention with radial emission and extraction.
  • the ion source consists of a plurality of sources of the Penning type, arranged according to a cylindrical symmetry (as shown) or else conical. To do this, it has an annular structure, or else a plurality of superimposed annular structures 20 (and of the same section in the case of a cylindrical symmetry).
  • Each annular structure 20 mechanically fixed on a central axis 18 brought to a high potential (200 to 250 kV) comprises a cylindrical magnet 8 on the smallest radius of the annular structure 20, and a flat ring 14, as well as a cylindrical part 8 ′ disposed on the largest radius of the annular structure 20.
  • the flat ring 14 forms a part of metallic structure now holding the cylindrical magnet 8 and the cylindrical part 8 ′, which can itself be constituted by a cylindrical magnet contained in the cathode structure 7.
  • the cathode 7 is then formed by the internal cylindrical surfaces corresponding on the one hand to the inner radius of lower value and on the other hand to the outer radius of higher value.
  • the cylindrical magnet 8 has a height at least equal to that of the cathode 7.
  • the flat ring due to the fact that it serves as a magnetic circuit, is itself made of magnetic material (soft iron or magnetic alloy for example).
  • a plurality of cylindrical anodes 6 are distributed radially around the periphery of the annular structure 20, and have substantially the same axis as the extraction openings 12 formed in the cylindrical part 8 ′ of the cathode structure 7.
  • An acceleration electrode 2 is in the form of a cylinder (or a cone) having acceleration openings 21 located opposite the openings 12.
  • the target has a cylindrical (or conical) support 4 on which the acceleration electrode 2 can be connected mechanically and electrically.
  • a tapered high-voltage insulator 5 mechanically holds the assembly.
  • the ion source can be arranged in such a way that the emission takes place over the entire periphery or only over a part or sector thereof.
  • the ring can extend over 360 ° or only over a more limited angle, and has openings 12 only at the useful places.
  • the openings 12 of two superimposed rings can be angularly offset for example for better homogeneity of the beam on the target.
  • a deuterium-tritium reservoir is shown at 23 as well as a pressure measurement gauge 22.
  • Electrodes 24 suppressing secondary electrons are arranged in intermediate planes between the rings, outside of the ion beams 3. Insulating bushings 25 distributed around the perimeter allow their mechanical fixing and / or their electrical supply.
  • the electrodes 24 are brought to a negative potential (-5 kV for example) relative to those of the acceleration electrode 2 and the target 4 grounded, and is advantageously made of a refractory material.
  • the electrodes 24 are preferably toric in V section to match at best the profile of the ion beams 3.
  • a second model of ion source structure always of the Penning type, consists in integrating the n cylindrical (or conical) ion source modules in an annular structure having close electrical mapping, the distribution of the magnetic field being similar to the previous.
  • the anode of the structure consists of two parallel 16 or inclined 16 ′ discs relative to each other to better match the lines of force of the magnetic field. These structures are shown in Figures 3a to 3d.
  • the cathode 7 of the structure is formed by the internal cylindrical surfaces corresponding on the one hand to the inner radius of lower value and on the other hand to the outer radius of higher value, this latter surface is pierced over its entire length with a extraction slot 32 of height and depth coupled so as to avoid excessive penetration of the electric field applied by the acceleration electrode.
  • the magnetic field inside the structure must be greater than the cut-off field (value linked on the one hand to the geometric structure: distance between the two anode rings and to a lesser degree at the intercathode distance and on the other hand to the voltage applied between anode and cathode) that is to say to the magnetic field preventing the electrons from reaching the anode from oscillations without ionizing shock.
  • the cut-off field value linked on the one hand to the geometric structure: distance between the two anode rings and to a lesser degree at the intercathode distance and on the other hand to the voltage applied between anode and cathode
  • the magnets used to produce this magnetic field consist as above of rings distributed in two assemblies held mechanically by metal carcasses 14 serving as a magnetic circuit (magnetic material).
  • the first set consists of two rings 8 'arranged on either side of the extraction slot.
  • the second magnet consists of a cylinder 8 whose thickness is a function of the magnetic field necessary for the proper functioning of the source and the nature of the material used. Its height is at least equal to the height of the cathode 7.
  • annular structures corresponding to fig.3a, but of different radii, are stacked to form a frustoconical structure.
  • the acceleration electrode 2 and the target 4 can also be frustoconical.
  • the ion source is produced from a structure called "inverted magnetron", known to produce an ionization gauge (book by Redhead et al supra).
  • the dimensions are practically identical to those of the Penning structure as well as the operating pressure and tensions.
  • the anode consists of a ring 40 (for example 3 cm high, on a radius of 5 cm) located inside the cathode cavity 42, the main element of which is constituted by the cylindrical cathode wall 41 separated into two parts by the extraction slot 32.
  • the height of an elementary cell may for example be 6 to 8 cm.
  • the electric field is, in this zone, radial and the confining magnetic field is generally perpendicular and therefore parallel to the axis of symmetry of the structure.
  • the electrons accelerated towards the anode are deflected towards the cathode by the magnetic field and describe cycloids (figure 4b) on the basis of the cylindrical surface (or the equipotential surface) on which they were created.
  • the confining magnetic field can be created by magnets 48 in the form of discs arranged symmetrically with respect to the plane of symmetry of the structure; these magnets 48 can be mechanically held on a metal support 43 acting as a magnetic circuit and the diameter is less than the anodic diameter. It can also be created by a coil 50 placed outside the tube structure ( Figures 5 and 6) and leading to the production of a magnetic field greater than the cut-off field.
  • the coil 50 has a height which can advantageously be 1.5 to 2 times the total height of the cathode structures. This configuration may be advantageous in certain uses requiring braking of the neutrons, use of a heavy coiling material, cooled by circulation of water which can also be used for cooling the target.
  • the anode can be constituted (FIG. 5) by a ring 40 disposed in each cathode cavity 42 delimited by flat rings 52 of conductive material, the cathode being constituted by conductive rings 51 (for example 3 to 4 cm in height) integral with the flat rings 52 (for example 2 mm in height) between which there are extraction slots 32.
  • the anode is preferably made up (FIG. 6) by a single cylinder ( or truncated cone) 55 fixed by spacers 56, the flat rings 52 being removed.
  • the structures presented now include an ion source, radially extracted according to the invention, with an electric confining field.
  • Figures 7 and 8 show an orbitron structure having an anode 70 of small dimension (diameter for example between 0.05 and 0.1 cm), located on the axis of cathode 51 (diameter for example between 10 and 15 cm).
  • This structure can be cold cathode ( Figure 7) and therefore requiring a high anode voltage and an operating pressure at best in the range of 1.3 ⁇ 10 ⁇ 2 - 1.3 ⁇ 10 ⁇ 1 Pa (10 ⁇ 4-10 ⁇ 3 torr) or also having a hot cathode 71 ( Figure 8), thus causing a greater extension of the operating range towards low pressures.
  • the operating principle is as follows: the electrons emitted by the filaments or the cathodes are attracted to the anode; according to their angle of emission and their initial energy, they can "miss" the anode and thus oscillate for a long time inside the structure, the probability of ionization is thus strongly increased and a discharge, with formation of a plasma is created.
  • the ions are attracted to the cathode and their extraction is done through one where several cylindrical slots 32.
  • the extraction and the position of the slots 32 can be carried out in a similar manner to the inverted magnetron structure with solenoid.
  • the acceleration 2 and suppression 24 structure of the target's secondary electrons are similar to that of ion source systems with magnetic confinement fields.
  • the shape and position of the suppressor electrode 24 must take account of the higher operating pressures, in accordance with the provisions taken in the aforementioned French patent n ° 88 13186.
  • FIGS 9 and 10 show electrostatic reflex structures (EIRS) with cold cathode.
  • the anode 90 is close to the cylindrical cathode 51 (diameter of the cathode for example between 2 and 3 cm) and the electrons oscillate between the two plane sections of the cathode; the ion current density is much greater on the two flat sections of the cathode, in particular at low pressure (1.3 ⁇ 10 ⁇ 1 Pa) (10 ⁇ 3 torr).
  • the radial extraction takes place via cylindrical slots 32 formed in the cylindrical wall of the cathode 51, under conditions similar to those of the inverted magnetron structure.
  • Their relative surface compared to the total surface of the cylindrical part of the cathode
  • the number of slots depends on the height of the structure of the ion source and its dimensions.
  • the number of annular anodes (circular or cylindrical section) cooled or not and arranged in the middle part between the extraction surfaces is a function of the height of the structure.
  • Figure 9 shows a structure with four extraction "rings"
  • Figure 10 shows a much higher neutron tube with N extraction structures (N> 4). In this case, an anode having several rings 91 is used.
  • the parts “acceleration” 2 and “suppression of secondary electrons” 24 are similar to those of structures with magnetic fields.
  • the diameter of the SIRE structure can be of the order of 10 to 15 cm.
  • Their operating pressures are generally between 1.3 ⁇ 10 ⁇ 1 Pa (10 ⁇ 3 torr) and some 1.3 Pa (10 ⁇ 2 torr), and their voltages between a few kV and 12 kV.
  • electrostatic structures their larger volume and their own configuration allows only a reduced number of complementary cells, knowing that the dimensions of the tube are close to those of magnetic field structures and that electrostatic structures are equipped with several extraction slots. It is also advantageous to modify the structures themselves (position and number of anodes in the SIRE structure, height of the cylindrical cathodes in the SIRE and orbitron structures).
  • the invention is not limited to the embodiments described and shown. It also applies, for example, to neutron tubes in a Deuterium atmosphere only (production of 2.6 MeV neutrons).
  • a pulsed operation is possible after installation in the ion source, in a manner known per se for sources with axial emission, of a source of electrons or of an ⁇ and / or ⁇ emitter and / or ⁇ producing the first electric particles at the origin of the ignition and the discharge in the ion source.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Claims (20)

  1. Neutronenröhre mit einer Ionenquelle, die wenigstens eine Anode und wenigstens eine Kathode mit wenigstens einer Extraktionsöffnung und ebenfalls eine Beschleunigungseinrichtung enthält, die zum Projizieren wenigstens eines Ionenbündels aus der Ionenquelle auf ein Target zum Erzeugen einer Reaktion zum Auslösen einer Neutronenemission angeordnet wird, dadurch gekennzeichnet, daß die Ionenquelle auf wenigstens einem Teil einer ersten Drehungsfiäche (8′, 41, 51) angeordnet und zum Erzeugen einer radialen Ionenemission angefertigt und auf die Außenseite der ersten Oberfläche (8′, 41, 51) gerichtet ist, daß die Beschleunigungseinrichtung (2) auf wenigstens einem Anteil einer zweiten Drehungsoberfläche um die erste Oberfläche (8′, 41, 51) angeordnet ist, und Daß das Target (4) auf wenigstens einem Anteil einer dritten Drehungsfläche um die zweite Fläche angeordnet ist.
  2. Neutronenröhre nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Einrichtung (24) zum Unterdrücken von Sekundärelektronen enthält, die auf wenigstens einem Anteil einer vierten Drehungsfläche zwischen der zweiten und der dritten Fläche angeordnet ist.
  3. Neutronenröhre nach einem der Ansprüche 1 oder 2, dadurch gekenn zeichnet, daß wenigstens eine Drehungsfläche ein Zylinder ist.
  4. Neutronenröhre nach Anspruch 3, dadurch gekennzeichnet, daß die Beschleunigungseinrichtung eine Zylinderelektrode ist.
  5. Neutronenröhre nach einem der Ansprüche 1 bis 4, dadurch gekenn zeichnet, daß die Ionenquelle aus wenigstens einer Elementarquelle von der Penning-Struktur (6, 8, 8′, 14) besteht.
  6. Neutronenröhre nach Anspruch 5, dadurch gekennzeichnet, daß sie eine Anzahl von Elementarquellen wenigstens auf überlagerten Ringanteilen (20) angeordnet ist.
  7. Neutronenröhre nach einem der Ansprüche 5 oder 6, dadurch gekenn zeichnet, daß sie einen ersten Zylindermagneten (8) auf dem kleinsten Strahl der ersten Drehungsfläche und wenigstens einen zweiten Zylindermagneten (8′) in der Kathode auf dem größten Strahl der ersten Drehungsfläche enthält, um ein radiales Magnetfeld zu erzeugen.
  8. Neutronenröhre nach einem der Ansprüche 5 bis 7, dadurch gekenn zeichnet, daß wenigstens eine Anode (6,6′) zylindrisch oder kreiskegelstumpfförmig ist.
  9. Neutronenröhre nach einem der Ansprüche 5 bis 7, dadurch gekenn zeichnet, daß wenigstens eine Anode aus zwei parallelen Platten (16) besteht.
  10. Neutronenröhre nach einem der Ansprüche 6 oder 7, dadurch gekenn zeichnet, daß wenigstens eine Anode aus zwei Platten mit kegelstumpfförmigem Querschnitt (16′) besteht.
  11. Neutronenröhre nach einem der Ansprüche 9 oder 10, dadurch gekenn zeichnet, daß wenigstens eine Extraktionsöffnung ein Ringspalt (32) ist.
  12. Neutronenröhre nach einem der Ansprüche 1 bis 4, dadurch gekenn zeichnet, daß die Ionenquelle aus wenigstens einer Struktur vom invertierten Magnetfeldröhrentyp besteht (Fig. 4a, 5, 6).
  13. Neutronenröhre nach Anspruch 12, dadurch gekennzeichnet, daß sie wenigstens einen dritten Ringmagneten (48) derart enthalt, daß er ein längliches Magnetfeld erzeugt.
  14. Neutronenröhre nach einem der Ansprüche 12 oder 13, dadurch gekenn zeichnet, daß wenigstens eine Anode 40 ringförmig ist.
  15. Neutronenröhre nach Anspruch 12, dadurch gekennzeichnet, daß sie ein Solenoïd (50) mit einem größeren Durchmesser als der der dritten Drehungsfläche enthält und derart angefertigt ist, daß es ein längliches Magnetfeld erzeugt.
  16. Neutronenröhre nach Anspruch 15, dadurch gekennzeichnet, daß sie eine erste Zylinderanode (55) auf dem kleinsten Strahl der ersten Drehungsfläche enthält und sich im wesentlichen auf die Höhe dieser Fläche erstreckt.
  17. Neutronenröhre nach einem der Ansprüche 1 bis 4, dadurch gekenn zeichnet, daß die Ionenquelle vom Orbitron-Typ ist (Fig. 7, 8), der eine zweite Zylinderanode (70) auf dem kleinsten Strahl der ersten Drehungsfläche enthält und sich im wesentlichen auf die Höhe dieser Fläche erstreckt.
  18. Neutronenröhre nach Anspruch 17, dadurch gekennzeichnet, daß sie ebenfalls eine warme Kathode (71) enthält.
  19. Neutronenröhre nach einem der Ansprüche 1 bis 4, dadurch gekenn zeichnet, daß die Ionenquelle vom elektrostatischen Reflex-Typ (SIRE) (Fig. 9 und 10) ist und wenigstens eine Ringanode (90) darstellt, wobei wenigstens eine Extraktionsöffnung ein Spalt (32) ist.
  20. Neutronenröhre nach Anspruch 19, dadurch gekennzeichnet, daß sie eine Mehrringanode (91) enthält.
EP91202149A 1990-08-31 1991-08-22 Hochfluss-Neutronenröhre Expired - Lifetime EP0473233B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9010873A FR2666477A1 (fr) 1990-08-31 1990-08-31 Tube neutronique a flux eleve.
FR9010873 1990-08-31

Publications (2)

Publication Number Publication Date
EP0473233A1 EP0473233A1 (de) 1992-03-04
EP0473233B1 true EP0473233B1 (de) 1995-05-17

Family

ID=9399995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91202149A Expired - Lifetime EP0473233B1 (de) 1990-08-31 1991-08-22 Hochfluss-Neutronenröhre

Country Status (5)

Country Link
US (1) US5215703A (de)
EP (1) EP0473233B1 (de)
JP (1) JPH06342699A (de)
DE (1) DE69109776T2 (de)
FR (1) FR2666477A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710782A1 (fr) * 1993-09-29 1995-04-07 Sodern Tube neutronique à confinement magnétique des électrons par aimants permanents et son procédé de fabrication.
US6383480B1 (en) 1996-07-10 2002-05-07 Meiji Milk Products, Co., Ltd. Composition comprising midkine or pleiotrophin protein and method of increasing hematopoietic cells
JP3122081B2 (ja) * 1998-11-25 2001-01-09 石油公団 中性子発生管
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
US6925137B1 (en) * 1999-10-04 2005-08-02 Leon Forman Small neutron generator using a high current electron bombardment ion source and methods of treating tumors therewith
US6907097B2 (en) * 2001-03-16 2005-06-14 The Regents Of The University Of California Cylindrical neutron generator
GB0120280D0 (en) 2001-08-21 2001-10-17 Sved John Low degradation rate linear geometry neutron generator appartus using plasma gas target
US7342988B2 (en) * 2002-02-06 2008-03-11 The Regents Of The University Of California Neutron tubes
US7176469B2 (en) * 2002-05-22 2007-02-13 The Regents Of The University Of California Negative ion source with external RF antenna
US6975072B2 (en) * 2002-05-22 2005-12-13 The Regents Of The University Of California Ion source with external RF antenna
EP1880393A2 (de) * 2005-04-29 2008-01-23 Lewis G. Larsen Vorrichtung und verfahren zur erzeugung von neutronen mit ultraniedrigem impuls
JP2009500644A (ja) * 2005-06-29 2009-01-08 ユニバーシティ オブ ヒューストン 核物質の能動的検出用小型中性子発生装置
US7596197B1 (en) * 2005-08-05 2009-09-29 The Regents Of The University Of California Gamma source for active interrogation
US20070237281A1 (en) * 2005-08-30 2007-10-11 Scientific Drilling International Neutron generator tube having reduced internal voltage gradients and longer lifetime
WO2009120243A2 (en) * 2007-12-06 2009-10-01 Nextgen, Inc. Orbitron based stand-off explosives detection
US7639770B2 (en) * 2008-04-22 2009-12-29 The Regents Of The University Of California Cylindrical neutron generator
RU2494484C2 (ru) 2008-05-02 2013-09-27 Шайн Медикал Текнолоджис, Инк. Устройство и способ производства медицинских изотопов
US8446096B1 (en) 2009-10-02 2013-05-21 The United States Of America As Represented By The Secretary Of The Navy Terahertz (THz) reverse micromagnetron
US10978214B2 (en) 2010-01-28 2021-04-13 SHINE Medical Technologies, LLC Segmented reaction chamber for radioisotope production
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
WO2013019129A2 (en) * 2011-08-03 2013-02-07 Institute Of Geological And Nuclear Sciences Limited Ion source
RU2477935C1 (ru) * 2012-03-01 2013-03-20 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук Нейтронный генератор
IN2014DN09137A (de) 2012-04-05 2015-05-22 Shine Medical Technologies Inc
GB201216368D0 (en) * 2012-09-13 2012-10-31 E2V Tech Uk Ltd Magnetron cathodes
CN104378905A (zh) * 2014-08-29 2015-02-25 常州博锐恒电子科技有限公司 一种强流中子发生装置
JP2020517930A (ja) 2017-04-20 2020-06-18 ティーグ、フィリップ 放射線分解能を用いた掘削抗における累層の近接場感度及びセメント孔隙率測定
CN109496051A (zh) * 2018-12-21 2019-03-19 北京中百源国际科技创新研究有限公司 一种用于增加低中子数量的慢化装置
RU209936U1 (ru) * 2021-11-24 2022-03-24 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Импульсный нейтронный генератор

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL50089C (de) * 1937-01-23
CH484585A (fr) * 1967-04-10 1970-01-15 Inst Fizica Atomica Procédé d'accélération linéaire de ions ou d'électrons, et dispositif pour la mise en oeuvre de ce procédé
US4996017A (en) * 1982-03-01 1991-02-26 Halliburton Logging Services Inc. Neutron generator tube
US4529571A (en) * 1982-10-27 1985-07-16 The United States Of America As Represented By The United States Department Of Energy Single-ring magnetic cusp low gas pressure ion source
FR2637727A1 (fr) * 1988-10-07 1990-04-13 Realisations Nucleaires Et Tube neutronique muni d'une source d'ions a confinement electrostatique des electrons
FR2637725A1 (fr) * 1988-10-07 1990-04-13 Sodern Dispositif d'extraction et d'acceleration des ions limitant la reacceleration des electrons secondaires dans un tube neutronique scelle a haut flux
FR2637724B1 (fr) * 1988-10-07 1990-12-28 Realisations Nucleaires Et Dispositif de perfectionnement de la source d'ions de type penning dans un tube neutronique
FR2637726A1 (fr) * 1988-10-07 1990-04-13 Realisations Nucleaires Et Tube neutronique scelle equipe d'une source d'ions multicellulaire a confinement magnetique

Also Published As

Publication number Publication date
JPH06342699A (ja) 1994-12-13
FR2666477A1 (fr) 1992-03-06
DE69109776D1 (de) 1995-06-22
EP0473233A1 (de) 1992-03-04
DE69109776T2 (de) 1995-12-07
US5215703A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
EP0473233B1 (de) Hochfluss-Neutronenröhre
Christiansen et al. Production of high current particle beams by low pressure spark discharges
EP0338619A1 (de) Hochflussneutronengenerator mit langlebigem Target
FR2679653A1 (fr) Vacumetre a ionisation.
EP0645947B1 (de) Neutronenröhre mit magnetischem Elektroneneinschluss durch Dauermagneten und dessen Herstellungsverfahren
EP0362947B1 (de) Mit einer multizellulären Ionenquelle mit magnetischem Einschluss versehene abgeschmolzene Neutronenröhre
FR2660999A1 (fr) Manometre ameliore a ionisation pour pressions tres faibles.
EP0362946A1 (de) Die Rückbeschleunigung von Sekundärelektronen begrenzende Ionenextraktions- und -beschleunigungseinrichtung in einer abgeschmolzenen Hochflup-Neutronenröhre
EP0340832B1 (de) Abgedichtete Hochfluss-Neutronenröhre
EP0300566B1 (de) Vakuumbogen-Flüssigmetall-Ionenquelle
WO2011151540A1 (fr) Dispositif de mesure de dose pour l'implantation ionique en mode immersion plasma
EP0295743B1 (de) Ionenquelle mit vier Elektroden
FR2551614A1 (fr) Source intense de rayons x mous, a compression cylindrique de plasma, ce plasma etant obtenu a partir d'une feuille explosee
EP0362953A1 (de) Mit einer Ionenquelle mit elektrostatischem Einschluss versehene abgeschmolzene Neutronenröhre
FR2514946A1 (fr) Source d'ions comprenant une chambre d'ionisation a gaz avec oscillations d'electrons
FR2637724A1 (fr) Dispositif de perfectionnement de la source d'ions de type penning dans un tube neutronique
EP0662607B1 (de) Ionisationssensor mit Mikropunktkathode
EP0362944A1 (de) Ionenextraktions- und -beschleunigungseinrichtung in einer abgeschmolzenen Hochfluss-Neutronenröhre mit Hinzufügung einer Hilfselektrode zur Vorbeschleunigung
FR2927761A1 (fr) Generateur de neutrons a foyer de plasma et procedes de fabrication de ce generateur
FR2933532A1 (fr) Dispositif generateur d'ions a resonance cyclotronique electronique
JPH024979B2 (de)
FR2647593A1 (fr) Piege a ions de faible energie
FR2645676A1 (fr) Cathode possedant une surface d'emission secondaire amelioree et amplificateur a champ croise contenant une telle cathode
EP0300932A1 (de) ELektronenquelle
FR2749703A1 (fr) Dispositif pour engendrer un champ magnetique et source ecr comportant ce dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19920727

17Q First examination report despatched

Effective date: 19940719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69109776

Country of ref document: DE

Date of ref document: 19950622

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970801

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970819

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971022

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980822

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050822