EP0472478A1 - Procédé d'obtention par moulage de pièces bimatériaux - Google Patents

Procédé d'obtention par moulage de pièces bimatériaux Download PDF

Info

Publication number
EP0472478A1
EP0472478A1 EP91420281A EP91420281A EP0472478A1 EP 0472478 A1 EP0472478 A1 EP 0472478A1 EP 91420281 A EP91420281 A EP 91420281A EP 91420281 A EP91420281 A EP 91420281A EP 0472478 A1 EP0472478 A1 EP 0472478A1
Authority
EP
European Patent Office
Prior art keywords
core
film
matrix
alloy
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91420281A
Other languages
German (de)
English (en)
Inventor
Philippe Jarry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pechiney Recherche GIE
Original Assignee
Pechiney Recherche GIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Recherche GIE filed Critical Pechiney Recherche GIE
Publication of EP0472478A1 publication Critical patent/EP0472478A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0081Casting in, on, or around objects which form part of the product pretreatment of the insert, e.g. for enhancing the bonding between insert and surrounding cast metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Definitions

  • the present invention relates to a process for obtaining bimaterial parts by molding.
  • It relates more particularly to the parts formed from an aluminum alloy core inserted into a matrix of another aluminum alloy.
  • This particular structure is used, for example, for the manufacture of automobile parts such as the cylinder heads of engines in order to locally modify their properties and the insertion of conduits in aeronautical parts made by molding.
  • the adhesion between the components of the parts is not always suitable and this then results in mechanical or physical properties (such as thermal conductivity, for example) insufficient;
  • the molding is carried out with a metal in the molten state by filling a mold in which has been placed the insert, if the metal forming the insert has a melting temperature lower or close to that of the molding metal, there is a deformation of the insert detrimental to the correct location of the latter.
  • the latter consists of a process for obtaining by molding bimaterial parts formed of a core of an aluminum alloy inserted in a matrix of another aluminum alloy characterized in that the natural layer of alumina is removed present on the surface of the core, then it is immediately coated with a gas-impermeable film of a metal having a free oxide-forming energy greater than -500 kJ / mole of oxygen between the ambient and 1000 K, having a melting temperature higher than those of the core and the matrix, being soluble in liquid aluminum and forming with aluminum an eutectic, the coated core is placed in a mold which is filled with the alloy of the matrix in the molten state at a temperature such that at least 30% of the core is remelted superficially.
  • the first characteristic of the invention consists in removing the natural layer of alumina inevitably present on the surface of the alloy forming the core. This can be achieved by acidic or basic pickling. This operation removes the main obstacle to establishing a metallurgical link between the components of the part and must be carried out immediately before proceeding to the next one to avoid the formation of a new layer of alumina.
  • the second characteristic of the invention is the coating of the core by a film impermeable to gases in order to avoid its oxidation over time.
  • This film is made of a metal having a free energy of formation of the oxide higher than -500 kJ / mole of oxygen between the ambient and 1000 K so as to be sufficiently resistant to oxidation.
  • This metal must be soluble in aluminum in order to allow the establishment of metallurgical continuity between the core and the matrix at the time of casting. It must also have a melting temperature higher than those of the core and of the matrix so as to ensure, until the moment of its dissolution, a protective function of the insert against oxidation.
  • This film has the function of replacing the layer of alumina still present on the surface of the insert, and which constitutes an obstacle to the establishment of a bond with the matrix, a metallic layer having better affinities with the alloys. aluminum liquids.
  • the third characteristic of the invention consists in placing the coated core in a mold and filling it with the alloy of the matrix in the molten state at a temperature such that the thermal balance of the casting operation leads to a at least 30% surface reflow of the core.
  • the invention also consists in using a core containing a dispersion of refractory products.
  • refractory products have the function of forming a species of skeleton which preserves the integrity of the shape of the insert during the casting of the matrix. Indeed, although the said insert is partially remelted, the skeleton being made of a refractory material, that is to say infusible under the casting conditions, will allow the insert to keep its initial shape. In addition, one can take advantage of the improvement in mechanical properties and dimensional stability provided by the presence of the skeleton in the aluminum alloy, advantages abundantly described in the literature.
  • This skeleton can be made of any refractory ceramic material, whether in the form of fibers or particles, usually used with aluminum alloys and preferably alumina. It preferably has a geometry similar to that of the insert so as to produce a preform. It represents by volume a proportion of between 5 and 60% relative to the alloy constituting the core; a lower proportion making it difficult to produce the preform while a higher proportion constitutes a limit of compaction of the fibers by a conventional process for manufacturing the preform.
  • the pairs of alloys used in the invention are such that at the temperature corresponding to partial reflow at 30% of the core, the alloy of the matrix is still completely liquid.
  • the alloys of the series of 200 are used for the core according to the standards of the Aluminum Association and for the matrix the alloys of the series of 300 and 6000 according to the same standards.
  • the alloy 204.2 called formerly A-U5GT (aluminum alloy containing mainly by weight: 4.2-4.9% copper, 0.20-0.35% magnesium, 0.15-0.25% titanium) and for the matrix, either the alloy B380 also called according to the French standard AFNOR: A-S9U3 (aluminum alloy containing approximately 9% of silicon, approximately 3% of copper) or the alloys A356 and A357 corresponding to A-S7G according to AFNOR (aluminum alloys containing by weight approximately 7% of silicon, approximately 0.3% or 0.7% of magnesium) or the alloy 6061.
  • A-U5GT aluminum alloy containing mainly by weight: 4.2-4.9% copper, 0.20-0.35% magnesium, 0.15-0.25% titanium
  • the alloy B380 also called according to the French standard AFNOR: A-S9U3 (aluminum alloy containing approximately 9% of silicon, approximately 3% of copper) or the alloys A356 and A357 corresponding to A-S7G according to AFNOR
  • Molding is generally carried out in a sand or metal mold by gravity, under low pressure, under pressure or even by the lost wax technique.
  • the metals which are most suitable for producing the film are either nickel, cobalt, silver or gold.
  • the film preferably has a thickness of between 0.5 and 5 ⁇ m. However, the best results are obtained in the thickness range between 1 and 2 ⁇ m. Beyond 5 ⁇ m, the thickness is too great and makes the dissolution of the film in the matrix too slow.
  • the best method for obtaining a correct coating consists in a chemical deposition process always preceded by degreasing and pickling of the oxide layer.
  • the coating has good corrosion behavior; it has a covering power which makes it possible to obtain a regular deposit whatever the shape of the part to be treated; its adhesion to metallic substrates is good and can be further improved by heat treatment.
  • FIG. 2 The invention can be illustrated with the aid of attached figures 1 and 2 which represent micrographs of parts obtained respectively according to the prior art and according to the invention. These parts were produced from an insert of alloy A204.2 (A-U5GT) reinforced with 20% by volume of alumina fibers (SAFFIL brand) having a length of a few tens of microns and an alloy matrix B380 (A -S9U3). The insert of the part in FIG. 2 was coated with a 2 ⁇ m thick nickel film before molding the matrix.
  • the invention finds its application, in particular in the manufacture of inter-valve bridges of cylinder heads of new generations of turbodiesel engines and the insertion of conduits of complex shape in the molding parts for aeronautics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

L'invention est relative à un procédé d'obtention par moulage de pièces bimatériaux formées par deux alliages d'aluminium dont l'un constitue l'âme et l'autre la matrice. Ce procédé consiste à mettre en oeuvre une âme, contenant éventuellement un squelette réfractaire, à enlever la couche naturelle d'alumine présente à la surface de l'âme, à revêtir immédiatement après l'ensemble ainsi obtenu d'un film imperméable aux gaz d'un métal tel que le nickel , à placer l'ensemble revêtu dans un moule que l'on remplit avec l'alliage de la matrice à l'état fondu à une température telle qu'au moins 30% de l'âme soit refondue superficiellement. Elle trouve son application dans la confection de pièces automobiles telles que les culasses de moteurs et l'insertion de conduits dans des pièces aéronautiques. <IMAGE>

Description

  • La présente invention est relative à un procédé d'obtention par moulage de pièces bimatériaux .
  • Elle concerne plus particulièrement les pièces formées d'une âme en alliage d'aluminium insérée dans une matrice en un autre alliage d'aluminium.
  • Cette structure particulière est utilisée, par exemple, pour la confection de pièces automobiles telles que les culasses de moteurs dans le but de modifier localement leurs propriétés et l'insertion de conduits dans les pièces aéronautiques faites par moulage.
  • En effet, il est connu que de telles pièces sont soumises localement lors de leur utilisation à des contraintes particulières , notamment thermiques, et que pour éviter certaines repercussions fâcheuses sur leur comportement, on recourt généralement à l'implantation dans les dites pièces d'inserts ayant des propriétés qui répondent mieux à ces contraintes que le matériau de base.
  • Toutefois, on a constaté que la réalisation de ces pièces bimatériaux posait des problèmes, notamment en ce qui concerne la liaison entre l'insert et la matrice.
  • En effet, d'une part, l'adhérence entre les constituants des pièces n'est pas toujours convenable et il en résulte alors des propriétés mécaniques ou physiques ( comme la conductivité thermique, par exemple ) insuffisantes ; d'autre part, le moulage s'effectuant avec un métal à l'état fondu par remplissage d'un moule dans lequel a été placé l'insert, si le métal formant l'insert a une température de fusion inférieure ou voisine de celle du métal de moulage, il se produit une déformation de l'insert préjudiciable à la localisation correcte de ce dernier.
  • C'est pourquoi, la demanderesse, consciente de l'intérêt présenté par les pièces bimatériaux et des problèmes que pose leur réalisation , a cherché et trouvé une solution qui constitue la matière de la présente invention.
  • Cette dernière consiste en un procédé d'obtention par moulage de pièces bimatériaux formées d'une âme en un alliage d'aluminium insérée dans une matrice en un autre alliage d'aluminium caractérisé en ce que l'on enlève la couche naturelle d'alumine présente en surface de l'âme, puis, on la revêt immédiatement après d'un film imperméable aux gaz d'un métal ayant une énergie libre de formation d'oxyde supérieure à -500 kJ/mole d'oxygène entre l'ambiante et 1000 K, ayant une température de fusion supérieure à celles de l'âme et de la matrice, étant soluble dans l'aluminium liquide et formant avec l'aluminium un eutectique, on place l'âme revêtue dans un moule que l'on remplit avec l'alliage de la matrice à l'état fondu à une température telle qu'au moins 30% de l'âme soit refondue superficiellement.
  • Ainsi, la première caractéristique de l'invention consiste à enlever la couche naturelle d'alumine inévitablement présente à la surface de l'alliage formant l'âme. Ceci peut être obtenu par décapage acide ou basique. Cette opération permet de lever l'obstacle principal à l'établissement d'un lien métallurgique entre les composants de la pièce et doit être réalisée immédiatement avant de procéder à la suivante afin d'éviter la formation d'une nouvelle couche d'alumine.
  • La deuxième caractéristique de l'invention est le revêtement de l'âme par un film imperméable aux gaz afin d'éviter son oxydation dans le temps.
    Ce film est en un métal ayant une énergie libre de formation de l'oxyde supérieure à -500 kJ/mole d'oxygène entre l'ambiante et 1000 K de manière à être suffisamment résistant à l'oxydation.
    Ce métal doit être soluble dans l'aluminium afin de permettre l'établissement de la continuité métallurgique entre l'âme et la matrice au moment de la coulée. Il doit avoir également une température de fusion supérieure à celles de l'âme et de la matrice de façon à assurer jusqu'au moment de sa dissolution une fonction de protection de l'insert contre l'oxydation.
    Ce film a pour fonction de substituer à la couche d'alumine toujours présente à la surface de l'insert, et qui constitue un obstacle à l'établissement d'une liaison avec la matrice, une couche métallique ayant de meilleures affinités avec les alliages d'aluminium liquides.
  • La troisième caractéristique de l'invention consiste à placer l'âme revêtue dans un moule et à le remplir avec l'alliage de la matrice à l'état fondu à une température telle que le bilan thermique de l'opération de coulée conduise à une refusion superficielle de l'âme d'au moins 30%.
  • La combinaison de ces caractéristiques aboutit finalement à la continuité métallurgique recherchée et permet d'atteindre des taux de liaison compris entre 90 et 100%.
  • Toutefois, dans ces conditions, si le métal formant l'insert a une température inférieure ou voisine de celle du métal de moulage, on ne peut empêcher la déformation dudit insert préjudiciable à sa localisation correcte. C'est pourquoi, dans ce cas, l'invention consiste également à utiliser une âme contenant une dispersion de produits rèfractaires.
  • Ces produits réfractaires ont pour fonction de former une espèce de squelette qui préserve l'intégrité de la forme de l'insert pendant la coulée de la matrice. En effet, bien que le dit insert soit refondu partiellement, le squelette étant constitué d'un matériau réfractaire, c'est à dire infusible dans les conditions de la coulée, permettra à l'insert de garder sa forme initiale. En outre, on peut tirer avantage de l'amélioration des propriétés mécaniques et de la stabilité dimensionnelle procurées par la présence du squelette dans l'alliage d'aluminium, avantages abondamment décrits dans la littérature.
  • Ce squelette peut être constitué par tout matériau céramique réfractaire, qu'il soit sous forme de fibres ou de particules, habituellement utilisé avec les alliages d'aluminium et de préférence l'alumine. Il a de préférence une géométrie analogue à celle de l'insert de manière à réaliser une préforme.
    Il représente en volume une proportion comprise entre 5 et 60 % par rapport à l'alliage constituant l'âme ; une proportion plus faible rendant difficile la réalisation de la préforme tandis qu'une proportion plus forte constitue une limite de compaction des fibres par un procédé classique de fabrication de préforme.
  • Néanmoins, les meilleurs résultats sont obtenus quand la fraction volumique est comprise entre 10 et 40 %.
  • Les couples d'alliages utilisés dans l'invention sont tels qu'à la température correspondant à la refusion partielle à 30% de l'âme, l'alliage de la matrice est lui encore totalement liquide. De préférence, on met en oeuvre pour l'âme les alliages de la série des 200 suivant les normes de l'Aluminium Association et pour la matrice les alliages de la série des 300 et des 6000 suivant les mêmes normes. On peut citer, par exemple, pour l'âme, l'alliage 204.2 appelé autrefois A-U5GT ( alliage d'aluminium contenant principalement en poids : 4,2-4,9% de cuivre, 0,20-0,35% de magnésium, 0,15-0,25% de titane ) et pour la matrice, soit l'alliage B380 encore appelé suivant la norme française AFNOR : A-S9U3 ( alliage d'aluminium contenant environ 9% de silicium, environ 3% de cuivre ) ou les alliages A356 et A357 correspondant aux A-S7G suivant l'AFNOR ( alliages d'aluminium contenant en poids environ 7% de silicium, environ 0,3% ou 0,7% de magnésium ) ou encore l'alliage 6061.
  • Le moulage s'effectue généralement dans un moule en sable ou métallique par gravité, sous basse pression, sous pression ou encore par la technique de la cire perdue.
  • De préférence également, les métaux qui conviennent le mieux à la réalisation du film sont soit le nickel, le cobalt, l'argent ou l'or.
  • Pour être suffisamment étanche, le film a de préférence une épaisseur comprise entre 0,5 et 5µm. Toutefois, les meilleurs résultats sont obtenus dans la gamme d'épaisseur comprise entre 1 et 2µm. Au delà de 5µm, l'épaisseur est trop forte et rend la dissolution du film dans la matrice trop lente.
  • En ce qui concerne le nickel, il a été trouvé que la meilleure méthode pour obtenir un revêtement correct consistait en un procédé chimique de dépôt toujours précédé d'un dégraissage et d'un décapage de la couche d'oxyde .
  • Dans ces conditions, le revêtement a un bon comportement à la corrosion; il a un pouvoir couvrant qui permet d'obtenir un dépôt régulier quelle que soit la forme de la pièce à traiter; son adhérence aux substrats métalliques est bonne et peut encore être améliorée par un traitement thermique.
  • De plus, il adhère parfaitement aux fibres qui affleurent en surface.
  • L'invention peut être illustrée à l'aide des figures 1 et 2 ci-jointes qui représentent des micrographies de pièces obtenues respectivement suivant l'art antérieur et suivant l'invention. Ces pièces ont été réalisées à partir d'un insert en alliage A204.2 (A-U5GT) renforcé par 20% en volume de fibres en alumine (marque SAFFIL) ayant une longueur de quelques dizaines de microns et d'une matrice en alliage B380 (A -S9U3). L'insert de la pièce de la figure 2 a été revêtu d'un film de nickel d'épaisseur 2 um avant moulage de la matrice.
  • On constate sur la micrographie de la figure 1, entre l'insert et la matrice, une discontinuité représentée par la ligne courbe 1 tandis que sur la micrographie de la figure 2, la liaison est parfaite entre l'insert et la matrice.
  • L'invention trouve son application, notamment dans la fabrication des pontets inter soupapes des culasses des nouvelles générations de moteurs turbodiesel et l'insertion de conduits de forme complexe dans les pièces de moulage pour l'aéronautique.

Claims (16)

1.-Procédé d'obtention par moulage de pièces bimatériaux formées d'une âme en un alliage d'aluminium insérée dans une matrice en un autre alliage d'aluminium caractérisé en ce que l'on enlève la couche naturelle d'alumine présente en surface de l'âme, puis, on la revêt immédiatement après d'un film imperméable aux gaz d'un métal ayant une énergie libre de formation d'oxyde supérieure à -500 kJ/mole d'oxygène entre l'ambiante et 1000 K, ayant une température de fusion supérieure à celles de l'âme et de la matrice, étant soluble dans l'aluminium liquide et formant avec l'aluminium un eutectique, on place l'âme revêtue dans un moule que l'on remplit avec l'alliage de la matrice à l'état fondu à une température telle qu'au moins 30% de l'âme soit refondue superficiellement.
2.-Procédé selon la revendication 1 caractérisé en ce que l'on met en oeuvre une âme contenant un squelette réfractaire.
3.-Procédé selon la revendication 1 caractérisé en ce que les alliages constituant la matrice appartiennent à la série des 300 et des 6000 suivant les normes de l'Aluminium Association.
4.-Procédé selon la revendication 3 caractérisé en ce que l'alliage appartient au groupe constitué par l'A351, l'A356, le B380 et l'AA6061.
5.-Procédé selon la revendication 1 caractérisé en ce que les alliages constituant l'âme appartiennent à la série des 200 suivant les normes de l'Aluminium Association.
6.-Procédé selon la revendication 5 caractérisé en ce que l'alliage est l'A204.2.
7.-Procédé selon la revendication 1 caractérisé en ce que le produit réfractaire fibreux est à base d'alumine.
8.-Procédé selon la revendication 1 caractérisé en ce que la proportion volumique de fibres dans l'âme est comprise entre 5 et 60%.
9.-Procédé selon la revendication 8 caractérisé en ce que la proportion volumique de fibres est comprise entre 10 et 40 %.
10.-Procédé selon la revendication 1 caractérisé en ce que le métal formant le film est le nickel.
11.-Procédé selon la revendication 1 caractérisé en ce que le métal formant le film est le cobalt.
12.-Procédé selon la revendication 1 caractérisé en ce que le métal formant le film est l'argent.
13.-Procédé selon la revendication 1 caractérisé en ce que le métal formant le film est l'or.
14.-Procédé selon la revendication 1 caractérisé en ce que le film a une épaisseur comprise entre 0,5µm et 5µm.
15.-Procédé selon la revendication 13 caractérisé en ce que le film a une épaisseur comprise entre 1 et 2 µm.
16.-Procédé selon la revendication 1 caractérisé en ce que le film de nickel est formé par voie chimique.
EP91420281A 1990-07-31 1991-07-29 Procédé d'obtention par moulage de pièces bimatériaux Withdrawn EP0472478A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9010224A FR2665383A1 (fr) 1990-07-31 1990-07-31 Procede d'obtention par moulage de pieces bimateriaux.
FR9010224 1990-07-31

Publications (1)

Publication Number Publication Date
EP0472478A1 true EP0472478A1 (fr) 1992-02-26

Family

ID=9399592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91420281A Withdrawn EP0472478A1 (fr) 1990-07-31 1991-07-29 Procédé d'obtention par moulage de pièces bimatériaux

Country Status (12)

Country Link
US (1) US5259437A (fr)
EP (1) EP0472478A1 (fr)
JP (1) JPH04231163A (fr)
KR (1) KR920002256A (fr)
AU (1) AU630824B2 (fr)
BR (1) BR9103235A (fr)
CA (1) CA2048161A1 (fr)
CZ (1) CZ238191A3 (fr)
FR (1) FR2665383A1 (fr)
HU (1) HUT60946A (fr)
IE (1) IE912675A1 (fr)
NO (1) NO912962L (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559587A1 (fr) * 1992-03-04 1993-09-08 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967) Immeuble Balzac Procédé d'obtention de pièces bimatériaux par surmoulage d'un insert revêtu d'un film métallique
FR2831845A1 (fr) * 2001-11-07 2003-05-09 Peugeot Citroen Automobiles Sa Procede et dispositif de coulee d'une piece metallique comportant un element de renforcement

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3094695A (en) * 1994-07-14 1996-02-16 Abbott Laboratories Methods and reagents for cyanide-free determination of hemoglobin and leukocytes in whole blood
DE19650056A1 (de) * 1996-12-03 1998-06-04 Thyssen Guss Ag Verfahren zur Herstellung einer Bremsscheibe, insbesondere als Achs- oder Radbremsscheibe für Schienenfahrzeuge
MXPA02003327A (es) * 2000-07-27 2004-09-10 Gen Valve Inc Ensamble de tapon molecularmente unido de doble metal para valvulas con tapon de purga y de doble bloque no lubricadas y metodo de fabricacion del mismo.
EP1570095A1 (fr) * 2002-08-20 2005-09-07 3M Innovative Properties Company Composites a matrice metallique et leurs procedes de production
US20060021729A1 (en) * 2004-07-29 2006-02-02 3M Innovative Properties Company Metal matrix composites, and methods for making the same
US20060024490A1 (en) * 2004-07-29 2006-02-02 3M Innovative Properties Company Metal matrix composites, and methods for making the same
US20060024489A1 (en) * 2004-07-29 2006-02-02 3M Innovative Properties Company Metal matrix composites, and methods for making the same
US8708425B2 (en) 2010-10-12 2014-04-29 GM Global Technology Operations LLC Bimetallic casting
CN104070153A (zh) 2013-03-28 2014-10-01 通用汽车环球科技运作有限责任公司 双金属铸造中用于改善结合的表面处理
US9770757B2 (en) * 2015-08-13 2017-09-26 GM Global Technology Operations LLC Method of making sound interface in overcast bimetal components
WO2018089023A1 (fr) 2016-11-14 2018-05-17 Siemens Aktiengesellschaft Carter polymétallique partiellement coulé pour moteur à turbine à combustion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH236429A (de) * 1943-07-30 1945-02-15 Skoda Kp Verfahren und Vorrichtung zum Umgiessen von Stützkörpern.
DE2439870A1 (de) * 1973-08-20 1975-03-06 Ford Werke Ag Kompositionsrotorgehaeuse mit abnuetzungsbestaendigem ueberzug
GB2173436A (en) * 1985-03-29 1986-10-15 Kolbenschmidt Ag Composite casting process
EP0203198A1 (fr) * 1984-11-07 1986-12-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Procede de renforcement d'un article mètallique
WO1989009669A1 (fr) * 1988-04-15 1989-10-19 Sandvik Australia Pty. Limited Elements composites a base de metal et de metal dur fritte
EP0384045A2 (fr) * 1989-02-22 1990-08-29 TEMAV S.p.A. Procédé pour obtenir un lien métallurgique entre un matériau métallique ou un matériau composite à matrice métallique et une coulée d'un métal ou d'un alliage

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB792174A (en) * 1954-11-04 1958-03-19 Henry Kremer Improvements in or relating to strengthening of metal
CH516644A (de) * 1970-01-07 1971-12-15 Bbc Brown Boveri & Cie Verfahren zur Herstellung von mit Kohlenstoff-Fasern verstärktem Metall
DE2344899B1 (de) * 1973-09-06 1974-02-07 Mahle Gmbh Verfahren zur Herstellung eines Verbundgussstueckes
SU526445A1 (ru) * 1974-12-19 1976-08-30 Предприятие П/Я Р-6209 Способ изготовлени деталей из композиционного материала
US4102033A (en) * 1977-03-21 1978-07-25 Kawasaki Steel Corporation Method of producing layer-like clad metal materials
JPS6032964A (ja) * 1983-08-03 1985-02-20 Hitachi Metals Ltd 排気ポ−トライナ−の製造方法
JPS6133752A (ja) * 1984-07-26 1986-02-17 Toyota Central Res & Dev Lab Inc 複合アルミニウム部材の製造方法
JPH0647163B2 (ja) * 1986-01-27 1994-06-22 株式会社豊田中央研究所 複合アルミニウム部材の製造方法
JPS6356345A (ja) * 1986-04-11 1988-03-10 Mitsubishi Motors Corp 鋳ぐるみ方法
GB2194277A (en) * 1986-07-25 1988-03-02 English Electric Co Ltd Composite material of nickel, & carbon fibre
JPS6475161A (en) * 1987-09-16 1989-03-20 Hino Motors Ltd Method for internal chill of separate aluminum member to base aluminum material
JPH01289560A (ja) * 1988-05-16 1989-11-21 Toyota Motor Corp 鋳ぐるみ方法
GB8818214D0 (en) * 1988-07-30 1988-09-01 T & N Technology Ltd Pistons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH236429A (de) * 1943-07-30 1945-02-15 Skoda Kp Verfahren und Vorrichtung zum Umgiessen von Stützkörpern.
DE2439870A1 (de) * 1973-08-20 1975-03-06 Ford Werke Ag Kompositionsrotorgehaeuse mit abnuetzungsbestaendigem ueberzug
EP0203198A1 (fr) * 1984-11-07 1986-12-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Procede de renforcement d'un article mètallique
GB2173436A (en) * 1985-03-29 1986-10-15 Kolbenschmidt Ag Composite casting process
WO1989009669A1 (fr) * 1988-04-15 1989-10-19 Sandvik Australia Pty. Limited Elements composites a base de metal et de metal dur fritte
EP0384045A2 (fr) * 1989-02-22 1990-08-29 TEMAV S.p.A. Procédé pour obtenir un lien métallurgique entre un matériau métallique ou un matériau composite à matrice métallique et une coulée d'un métal ou d'un alliage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559587A1 (fr) * 1992-03-04 1993-09-08 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967) Immeuble Balzac Procédé d'obtention de pièces bimatériaux par surmoulage d'un insert revêtu d'un film métallique
FR2688154A1 (fr) * 1992-03-04 1993-09-10 Pechiney Recherche Procede d'obtention de pieces bimateriaux par surmoulage d'un insert revetu d'un film metallique.
US5377742A (en) * 1992-03-04 1995-01-03 Pechiney Recherche Process for obtaining bimaterial parts by casting an alloy around an insert coated with a metal film
FR2831845A1 (fr) * 2001-11-07 2003-05-09 Peugeot Citroen Automobiles Sa Procede et dispositif de coulee d'une piece metallique comportant un element de renforcement

Also Published As

Publication number Publication date
JPH04231163A (ja) 1992-08-20
AU630824B2 (en) 1992-11-05
FR2665383A1 (fr) 1992-02-07
AU8150491A (en) 1992-02-06
HU912539D0 (en) 1992-01-28
BR9103235A (pt) 1992-05-26
IE912675A1 (en) 1992-02-12
US5259437A (en) 1993-11-09
CA2048161A1 (fr) 1992-02-01
KR920002256A (ko) 1992-02-28
NO912962L (no) 1992-02-03
HUT60946A (en) 1992-11-30
NO912962D0 (no) 1991-07-30
CZ238191A3 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
US5921312A (en) Soluble core for casting
EP0472478A1 (fr) Procédé d&#39;obtention par moulage de pièces bimatériaux
US5263530A (en) Method of making a composite casting
CA2090938C (fr) Procede d&#39;obtention de pieces bimateriaux par surmoulage d&#39;un insert revetu d&#39;un film metallique
AU632935B2 (en) Process for the lost foam casting, under low pressure, of aluminium alloy articles
US7293599B2 (en) Investment casting of bulk-solidifying amorphous alloys
US5293923A (en) Process for metallurgically bonding aluminum-base inserts within an aluminum casting
EP0519054A1 (fr) Methode d&#39;obtention de culasses moulees composites
EP1118457B1 (fr) Pièce bimétallique en alliage d&#39;aluminium comportant un insert massif en titane ou alliage de titane
JP2964794B2 (ja) チタンまたはチタン合金製部材の製造方法
EP0670190A1 (fr) Moule de fonderie et son procédé de réalisation
EP3894107A1 (fr) Barbotine de fonderie améliorée pour la fabrication de moules carapaces
EP0479672B1 (fr) Moule carapace soluble pour fonderie et procédé d&#39;élimination
EP3487649B1 (fr) Procede de fabrication de moule carapace
JP2000271728A (ja) 無加圧含浸浸透法による複合素材の製造方法
JPH0475759A (ja) 金属基材料の鋳ぐるみ方法
JPH08300137A (ja) 複合部材の製造方法
Weiss et al. Casting Composite Aluminum Alloy Components
JPH09122888A (ja) 複合部材の製造方法
FR2736850A1 (fr) Moule de fonderie et procede de realisation d&#39;un tel moule
JPS62244564A (ja) 繊維強化部分を含む金属部材の製造方法
JPH05245615A (ja) 異種金属にて被覆された金属部材の鋳造法
JPH07124738A (ja) 鋳包み方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920309

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19940405