EP0464265B1 - Method for nitriding titanium - Google Patents

Method for nitriding titanium Download PDF

Info

Publication number
EP0464265B1
EP0464265B1 EP90125660A EP90125660A EP0464265B1 EP 0464265 B1 EP0464265 B1 EP 0464265B1 EP 90125660 A EP90125660 A EP 90125660A EP 90125660 A EP90125660 A EP 90125660A EP 0464265 B1 EP0464265 B1 EP 0464265B1
Authority
EP
European Patent Office
Prior art keywords
titanium
ammonia
mpa
temperatures
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90125660A
Other languages
German (de)
French (fr)
Other versions
EP0464265A1 (en
Inventor
Friedrich Dr. Preisser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALD Vacuum Technologies GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP0464265A1 publication Critical patent/EP0464265A1/en
Application granted granted Critical
Publication of EP0464265B1 publication Critical patent/EP0464265B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Definitions

  • the invention relates to a method for applying nitride layers to parts made of titanium and titanium alloys by thermochemical treatment of the parts with ammonia or ammonia-containing gas mixtures under pressure and at temperatures above 500 ° C.
  • titanium As a construction material, titanium has several advantages over steel, which result from its low specific weight, its corrosion resistance and its high strength. This is offset by the relatively low hardness, which makes surface treatment necessary if the wear resistance is to be increased.
  • This surface treatment usually consists of the production of layers of titanium carbide or titanium nitride. In previously known methods for nitriding parts made of titanium and titanium alloys, high-energy gases or electromagnetic fields are used. These processes are very complex and can only be used for simple geometry of the parts to be treated.
  • JP-A-2-025 559 Patent Abstracts of Japan, vol. 14, Ni. 176, 4119 describes the nitriding of titanium and titanium alloys in an ammonia atmosphere at normal pressure.
  • EP-A 0 105 835 describes a method for producing nitride layers on components made of titanium and titanium alloys by exposing the components in an autoclave to pressures of at least 10 MPa and temperatures of at least 200 ° C. in an ammonia atmosphere.
  • the ammonia must be of great purity.
  • the nitration is preferably carried out at 90 to 130 MPa and temperatures from 930 ° to 1000 ° C. This process has the disadvantage that it is very expensive due to the use of autoclaves and very pure ammonia and 20 ⁇ m thick layers only in periods of three and more hours can be reached.
  • This object is achieved in that the treatment is carried out at temperatures from 700 to 950 ° C. and pressures from 0.5 to 7 MPa, the ammonia partial pressure being kept at least at 0.2 MPa.
  • components made of titanium and titanium alloys of any geometry and size can be provided with sufficiently thick nitride layers of 20 ⁇ m and more in appropriate chamber furnaces.
  • no high-purity gases are required for this, but the normal commercial quality of ammonia is sufficient.
  • nitrogen is also possible to add nitrogen to the ammonia, with only an ammonia partial pressure of at least 0.2 MPa being required for the nitriding process.
  • the layer thickness of the titanium nitride that forms depends on the temperature and the treatment time in large pressure ranges.
  • the surface is shiny gold and causes a significant increase in hardness.
  • the layer thickness is almost independent of the pressure.
  • the figure shows the formation of a titanium nitride layer on parts made of pure titanium depending on the pressure and the temperature of the ammonia-containing atmosphere.
  • a TiN layer of, for example, 30 ⁇ m builds up if the samples are kept at 880 ° C for one hour.
  • titanium alloys such as TiAl6V4 are nitrided.
  • An autoclave is not required for these coatings, but the treatment can be carried out in a commercially available chamber furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemically Coating (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Road Paving Structures (AREA)
  • Revetment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

An economical method for applying nitride layers to titanium and titanium alloys. In a short time, layer thicknesses of 20 mu m are achieved by nitriding under pressure in an ammonia atmosphere. Temperatures of 500 to 1000 DEG C and pressures of 0.2 to 10 Mpa are required for this purpose.

Description

Die Erfindung betrifft ein Verfahren zum Aufbringen von Nitridschichten auf Teile aus Titan und Titanlegierungen durch thermochemische Behandlung der Teile mit Ammoniak oder ammoniakhaltigen Gasgemischen unter Druck und bei Temperaturen oberhalb 500° C.The invention relates to a method for applying nitride layers to parts made of titanium and titanium alloys by thermochemical treatment of the parts with ammonia or ammonia-containing gas mixtures under pressure and at temperatures above 500 ° C.

Titan hat als Konstruktionswerkstoff gegenüber Stahl einige Vorteile, die sich aus dem geringen spezifischen Gewicht, seiner Korrosionsbeständigkeit und seiner hohen Festigkeit ergeben. Dem steht die relativ geringe Härte gegenüber, die eine Oberflächenbehandlung notwendig macht, wenn die Verschleißfestigkeit erhöht werden soll. Diese Oberflächenbehandlung besteht in der Regel aus der Erzeugung von Schichten aus Titancarbid oder Titannitrid. Bei bisher bekannten Verfahren zur Nitrierung von Teilen aus Titan und Titan legierungen wird mit hochenergetischen Gasen oder elektromagnetischen Feldern gearbeitet. Diese Verfahren sind sehr aufwendig und nur für einfache Geometrie der zu behandelnden Teile anwendbar.As a construction material, titanium has several advantages over steel, which result from its low specific weight, its corrosion resistance and its high strength. This is offset by the relatively low hardness, which makes surface treatment necessary if the wear resistance is to be increased. This surface treatment usually consists of the production of layers of titanium carbide or titanium nitride. In previously known methods for nitriding parts made of titanium and titanium alloys, high-energy gases or electromagnetic fields are used. These processes are very complex and can only be used for simple geometry of the parts to be treated.

In der japanischen Patentanmeldung JP-A- 2-025 559 (Patent Abstracts of Japan, Bd.14, Ni. 176, 4119) wird das Nitrieren von Titan und Titanlegierungen in einer Ammoniakatmosphäre bei Normaldruck beschrieben.Japanese patent application JP-A-2-025 559 (Patent Abstracts of Japan, vol. 14, Ni. 176, 4119) describes the nitriding of titanium and titanium alloys in an ammonia atmosphere at normal pressure.

In der EP-A 0 105 835 wird ein Verfahren zur Herstellung von Nitridschichten auf Bauteilen aus Titan und Titanlegierungen beschrieben, indem man die Bauteile in einem Autoklaven Drucken von mindestens 10 MPa und Temperaturen von mindestens 200° C in einer Ammoniakatmosphäre aussetzt. Dabei muß der Ammoniak von großer Reinheit sein. Vorzugsweise erfolgt die Nitrierung bei 90 bis 130 MPa und Temperaturen von 930° bis 1000° C. Dieses Verfahren hat den Nachteil, daß es durch die Verwendung von Autoklaven und sehr reinem Ammoniak sehr teuer ist und 20 um-starke Schichten erst in Zeiträumen von drei und mehr Stunden erreichbar sind.EP-A 0 105 835 describes a method for producing nitride layers on components made of titanium and titanium alloys by exposing the components in an autoclave to pressures of at least 10 MPa and temperatures of at least 200 ° C. in an ammonia atmosphere. The ammonia must be of great purity. The nitration is preferably carried out at 90 to 130 MPa and temperatures from 930 ° to 1000 ° C. This process has the disadvantage that it is very expensive due to the use of autoclaves and very pure ammonia and 20 µm thick layers only in periods of three and more hours can be reached.

Es war daher Aufgabe der vorliegenden Erfindung, ein Verfahren zum Aufbringen von Nitridschichten auf Teile aus Titan und Titanlegierungen durch thermochemische Behandlung der Teile mit Ammoniak oder ammoniakhaltigen Gasgemischen unter Druck und bei Temperaturen oberhalb 500° C zu entwickeln, das preisgünstig ist und Nitridschichtdicken von 20 µm und mehr in kurzen Zeiträumen von weniger als drei Stunden ermöglicht.It was therefore an object of the present invention to develop a process for applying nitride layers to parts made of titanium and titanium alloys by thermochemical treatment of the parts with ammonia or ammonia-containing gas mixtures under pressure and at temperatures above 500 ° C., which is inexpensive and nitride layer thicknesses of 20 μm and more in less than three hours.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Behandlung bei Temperaturen von 700 bis 950° C und Drucken von 0,5 bis 7 MPa durchgeführt wird, wobei der Ammoniakpartialdruck mindestens bei 0,2 MPa gehalten wird.This object is achieved in that the treatment is carried out at temperatures from 700 to 950 ° C. and pressures from 0.5 to 7 MPa, the ammonia partial pressure being kept at least at 0.2 MPa.

Mit diesem Druck verfahren können Bauteile aus Titan und Titanlegierungen beliebiger Geometrie und Größe in entsprechenden Kammeröfen mit ausreichend dicken Nitridschichten von 20 µm und mehr versehen werden. Überraschenderweise sind hierfür keine hochreinen Gase erforderlich, sondern es genügt die normale Handelsqualität von Ammoniak. Außerdem ist es möglich, dem Ammoniak Stickstoff beizumischen, wobei lediglich ein Ammoniakpartialdruck von mindestens 0,2 MPa für das Nitrierverfahren erforderlich ist.With this pressure process, components made of titanium and titanium alloys of any geometry and size can be provided with sufficiently thick nitride layers of 20 µm and more in appropriate chamber furnaces. Surprisingly, no high-purity gases are required for this, but the normal commercial quality of ammonia is sufficient. It is also possible to add nitrogen to the ammonia, with only an ammonia partial pressure of at least 0.2 MPa being required for the nitriding process.

Die Schichtdicke des sich ausbildenden Titannitrids ist in großen Druckbereichen abhängig von der Temperatur und der Behandlungszeit. Die Oberfläche ist goldglänzend und bewirkt eine signifikante Härtesteigerung. Bei Drucken im Bereich oberhalb 6 MPa ist die Schichtdicke fast unabhängig vom Druck.The layer thickness of the titanium nitride that forms depends on the temperature and the treatment time in large pressure ranges. The surface is shiny gold and causes a significant increase in hardness. When printing in the range above 6 MPa, the layer thickness is almost independent of the pressure.

Die Abbildung zeigt die Ausbildung einer Titannitridschicht auf Teilen aus Reintitan in Abhängigkeit vom Druck und der Temperatur der ammoniakhaltigen Atmosphäre.The figure shows the formation of a titanium nitride layer on parts made of pure titanium depending on the pressure and the temperature of the ammonia-containing atmosphere.

Bereits bei Temperaturen von beispielsweise 500° C wurde bei 2 MPa (= 20 bar) Absolutdruck nach einer Stunde eine TiN-Schichtdicke von 10 µm gemessen. Bei 880° C wird in dieser Zeit eine reine TiN-Schicht von 20 µm aufgebaut.Even at temperatures of, for example, 500 ° C., a TiN layer thickness of 10 μm was measured at 2 MPa (= 20 bar) absolute pressure after one hour. During this time, a pure 20 µm TiN layer is built up at 880 ° C.

Bei einem Druck von 6 MPa (= 60 bar) baut sich eine TiN-Schicht von beispielsweise 30 µm auf, wenn die Proben für eine Stunde bei 880° C gehalten werden.At a pressure of 6 MPa (= 60 bar), a TiN layer of, for example, 30 µm builds up if the samples are kept at 880 ° C for one hour.

Bei weiter gesteigertem Druck bis zu 9 MPa (= 90 bar) nimmt der Einfluß des Druckes auf die TiN-Schichtdicke ab. Die Zunahme ist nicht mehr linear. Bei noch höheren Drücken ist aufgrund der sich rasch bildenden dichten TiN-Schicht nur noch die Diffusion des Stickstoff durch die Schicht der zeitbestimmende Faktor.With a further increased pressure up to 9 MPa (= 90 bar), the influence of the pressure on the TiN layer thickness decreases. The increase is no longer linear. At even higher pressures, only the diffusion of nitrogen through the layer is the time-determining factor due to the rapidly forming dense TiN layer.

Wie Reintitan können auch Titanlegierungen, wie z.B. TiAl6V4 nitriert werden.Like pure titanium, titanium alloys such as TiAl6V4 are nitrided.

Für diese Beschichtungen ist kein Autoklav erforderlich, sondern die Behandlung kann in einem handelsüblichen Kammerofen erfolgen.An autoclave is not required for these coatings, but the treatment can be carried out in a commercially available chamber furnace.

Claims (1)

  1. Method of applying nitride layers to parts composed of titanium and titanium alloys by thermochemical treatment of the parts with ammonia or ammonia-containing gas mixtures under pressure and at temperatures of more than 500°C,
    characterised in that
    the treatment is carried out at temperatures of 700 to 950°C and pressures of 0.5 to 7 MPa, the ammonia partial pressure being maintained at at least 0.2 MPa.
EP90125660A 1990-07-04 1990-12-28 Method for nitriding titanium Expired - Lifetime EP0464265B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4021286 1990-07-04
DE4021286A DE4021286C1 (en) 1990-07-04 1990-07-04

Publications (2)

Publication Number Publication Date
EP0464265A1 EP0464265A1 (en) 1992-01-08
EP0464265B1 true EP0464265B1 (en) 1996-03-06

Family

ID=6409636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90125660A Expired - Lifetime EP0464265B1 (en) 1990-07-04 1990-12-28 Method for nitriding titanium

Country Status (14)

Country Link
EP (1) EP0464265B1 (en)
JP (1) JPH0649924B2 (en)
CN (1) CN1020476C (en)
AT (1) ATE135058T1 (en)
AU (1) AU627960B2 (en)
BR (1) BR9101899A (en)
CZ (1) CZ279472B6 (en)
DE (2) DE4021286C1 (en)
ES (1) ES2085320T3 (en)
NO (1) NO905209L (en)
PL (1) PL166281B1 (en)
PT (1) PT98195A (en)
RU (1) RU1836484C (en)
TW (1) TW208721B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1169487A1 (en) * 1999-04-15 2002-01-09 Vacuumschmelze GmbH Corrosion-free iron-nickel alloy for residual-current circuit-breakers and clockworks
JP4684383B2 (en) * 2000-04-03 2011-05-18 株式会社アライドマテリアル Refractory metal material having oxidation resistant layer and method for producing the same
JP2001295023A (en) * 2000-04-06 2001-10-26 Allied Material Corp High melting point metallic material having surface hardened layer and its producing method
US9580790B2 (en) 2006-12-22 2017-02-28 Iap Research, Inc. System and method for surface hardening of refractory metals
US10031113B2 (en) 2007-02-28 2018-07-24 Waters Technologies Corporation Liquid-chromatography apparatus having diffusion-bonded titanium components
JP5977669B2 (en) * 2012-12-28 2016-08-24 株式会社セブン・セブン Method for manufacturing vacuum insulated double container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0105835A1 (en) * 1982-09-07 1984-04-18 Vereinigte Drahtwerke AG Method of producing a hard layer on articles of Ti or Ti-alloys

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2804410A (en) * 1953-10-27 1957-08-27 Nat Lead Co Method for nitriding titanium surfaces

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0105835A1 (en) * 1982-09-07 1984-04-18 Vereinigte Drahtwerke AG Method of producing a hard layer on articles of Ti or Ti-alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TRANSACTIONS OF THE ASM vol.46 (1954) p 540 ff *

Also Published As

Publication number Publication date
CN1020476C (en) 1993-05-05
PL290931A1 (en) 1992-10-05
CS198891A3 (en) 1992-02-19
AU627960B2 (en) 1992-09-03
DE4021286C1 (en) 1991-02-21
DE59010178D1 (en) 1996-04-11
TW208721B (en) 1993-07-01
AU6760290A (en) 1992-01-09
JPH04232247A (en) 1992-08-20
CZ279472B6 (en) 1995-05-17
CN1057866A (en) 1992-01-15
JPH0649924B2 (en) 1994-06-29
PL166281B1 (en) 1995-04-28
NO905209D0 (en) 1990-11-30
EP0464265A1 (en) 1992-01-08
BR9101899A (en) 1992-01-14
PT98195A (en) 1992-04-30
ATE135058T1 (en) 1996-03-15
RU1836484C (en) 1993-08-23
NO905209L (en) 1992-01-06
ES2085320T3 (en) 1996-06-01

Similar Documents

Publication Publication Date Title
EP0105835A1 (en) Method of producing a hard layer on articles of Ti or Ti-alloys
DE2417179B2 (en) PROCESS FOR CARBURING HIGH-ALLOY STEELS
DE3104112C2 (en) Process for the production of oxide layers
DE3419638A1 (en) METHOD FOR PRODUCING OXIDIC PROTECTIVE LAYERS ON THE SURFACE OF METALS OR. METAL ALLOYS
DE1957903A1 (en) Process for the production of a coating on flat bodies made of steel
EP0464265B1 (en) Method for nitriding titanium
EP0544987A1 (en) Method of treating steel alloys and refractory metals
EP0662525B1 (en) Process for preventing surface oxidation during steel carburizing
DE3042469A1 (en) NITRIDE USE TREATMENT AND THE PRODUCT OBTAINED THROUGH IT
DE10322255A1 (en) Carburizing steel parts with a carbon dispenser gas within an evacuated chamber comprises feeding a nitrogen-releasing gas, e.g. ammonia, into the treatment chamber during the heating-up phase and during the diffusion phase
DE2303756C3 (en) Process for the production of a mixed carbide layer of vanadium and chromium on carbonaceous ferrous materials
DE2317447A1 (en) Coating carbide cutting tools with oxides - by pretreating carbide surface to prevent binder or carbon diffusion into oxide
EP0366646B1 (en) Process for producing a clad moulded body
DE3143566C2 (en) Process for the continuous heat treatment of zirconium and titanium metals and their alloys
EP0353699A1 (en) Method of heat-treating a high-alloy chromium steel
DE102016221891A1 (en) Process for the heat treatment of a high-alloy steel workpiece
EP2055801A1 (en) Method for hardening stainless steel surfaces on workpieces and fused salt for performing the method
DE3726073C1 (en) Process for the production of thin-walled semi-finished products and their uses
DE2635167C2 (en) Process for reducing the gas permeability of porous bodies made of reaction-sintered silicon nitride
DE1928695C3 (en) The use of an austenitic steel as a material for the aerospace industry
EP0545069A1 (en) Method of treating steel and refractory metals
DE3827141C1 (en) Process for alitising objects of austenitic steel or nickel-based alloys
DE3125450A1 (en) METHOD FOR HEAT TREATING METALS
DE2031502A1 (en) Process for the production of coatings from hard carbides or Karbonitri the
DE10162339A1 (en) Process for producing an oxide layer on metal parts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920707

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19960306

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960306

REF Corresponds to:

Ref document number: 135058

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 59010178

Country of ref document: DE

Date of ref document: 19960411

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960416

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2085320

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEGUSSA AKTIENGESELLSCHAFT TRANSFER- ALD VACUUM TE

NLS Nl: assignments of ep-patents

Owner name: ALD VACUUM TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: ALD VACUUM TECHNOLOGIES GMBH TRANSFER- ALD VACUUM TECHNOLOGIES AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20091224

Year of fee payment: 20

Ref country code: SE

Payment date: 20091214

Year of fee payment: 20

Ref country code: AT

Payment date: 20091217

Year of fee payment: 20

Ref country code: ES

Payment date: 20091222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091222

Year of fee payment: 20

Ref country code: FR

Payment date: 20100108

Year of fee payment: 20

Ref country code: GB

Payment date: 20091218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091222

Year of fee payment: 20

Ref country code: BE

Payment date: 20100212

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *ALD VACUUM TECHONOLOGIES G.M.B.H.

Effective date: 20101228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20101228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20101227

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101227

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101228