EP0662525B1 - Process for preventing surface oxidation during steel carburizing - Google Patents

Process for preventing surface oxidation during steel carburizing Download PDF

Info

Publication number
EP0662525B1
EP0662525B1 EP94202796A EP94202796A EP0662525B1 EP 0662525 B1 EP0662525 B1 EP 0662525B1 EP 94202796 A EP94202796 A EP 94202796A EP 94202796 A EP94202796 A EP 94202796A EP 0662525 B1 EP0662525 B1 EP 0662525B1
Authority
EP
European Patent Office
Prior art keywords
carbon
gas mixture
hydrogen
carburization
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94202796A
Other languages
German (de)
French (fr)
Other versions
EP0662525A1 (en
Inventor
Hans-Peter Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of EP0662525A1 publication Critical patent/EP0662525A1/en
Application granted granted Critical
Publication of EP0662525B1 publication Critical patent/EP0662525B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • the invention relates to a method for avoiding edge oxidation when carburizing steels according to the preamble of claim 1.
  • low carbon steels are annealed in carbon donors at temperatures between 800 and 950 ° C (see for example US-A-4 152 177 or US-A-4 643 402).
  • the surface is enriched with carbon and hardens when quenched.
  • Endogases which contain about 20% CO, 40% H 2 , 40% N 2 are mostly used as carbon donors.
  • the base alloy elements are oxidized in the edge zone of the steels, so that they are no longer present in the subsequent microstructure formation.
  • An undesirable one forms in the edge zone of the steels Structure which has unfavorable properties and requires mechanical removal or blasting of this edge zone in order to achieve the required properties of the steels (workpieces).
  • the released carbon, as well as the adsorbed oxygen, are released from the alloy and diffuse into the steel.
  • the amount of dissolved oxygen is determined by the oxygen activity of the gas phase and the duration of the treatment time and is very much less than the amount of carbon that dissolves.
  • the oxygen solubility in pure iron at 950 ° C. and a C level of 1% by weight carbon using an endogas from methane is approximately 0.0003% by weight oxygen (3 ppm oxygen).
  • the oxygen potential of the carburizing media used is usually so low that there is no oxidation of the iron. Alloying elements present in the steels, however, have a high affinity for oxygen, so that small amounts of dissolved oxygen in the alloy lead to what is known as internal oxidation.
  • Edge oxidation or internal oxidation means oxide precipitates of the above-mentioned metals within a metal grain or along the grain boundaries, which are formed by the diffused dissolved oxygen and are then dispersed in the matrix.
  • the invention has for its object to prevent edge oxidation when carburizing steels.
  • the invention provides a carburizing process with only low investment and operating costs because the annealing can be carried out in conventional industrial furnace systems at atmospheric pressure.
  • the edge oxidation of the steels is avoided by the heat treatment being carried out in gas phases which contain no or only little oxygen-containing molecules.
  • the partial pressure of oxygen in the gas atmosphere does not exceed the formation pressure of the oxides.
  • the gas components hydrogen and hydrocarbons of the gas mixture according to the invention are not oxygen-containing (oxygen-free), so that almost none Partial pressure of oxygen is present.
  • the carbon transfer from the gas phase into the steel during the initial and diffusion phase is large and the required carbon content in the edge of the material (approx. 1% C) sets in relatively quickly.
  • the unstable hydrocarbon (C x H y ) on the alloy surface mainly breaks down into hydrogen, methane and atomic carbon, which quickly diffuses into the material. If propane is used, the decay can take place according to the following reaction equation: C. 3rd H 8th ⁇ 2 CH 4th + C ad
  • the resulting carbon activity in the gas phase is influenced by the amount of hydrocarbon added. Since the gas phase consists mainly of hydrogen, the C level is regulated by the methane / hydrogen ratio that arises.
  • the carburization reaction via methane decay in hydrogen atmospheres is:
  • the hydrogen content and in particular the methane content that is established are continuously analyzed and the hydrocarbon supply is regulated to a desired marginal carbon content on the basis of the actual values recorded.
  • the hydrogen dissolved in the workpiece during the main carburization phase is greatly reduced, so that hydrogen embrittlement can be excluded.
  • the carbon-containing gas mixture is replaced by nitrogen after carburizing and the hydrogen dissolved in the steel is thus broken down.
  • the steel is kept in the nitrogen atmosphere for between 5 and 15 minutes.
  • the steel 16 MnCr 5 (1% Mn; 1% Cr; 0.20% Si) was carburized in an industrial furnace system.
  • the furnace system was formed with endogas at approx. 1,000 ° C before the first carburization.
  • the temperature and thermal voltage of the oxygen probe or the dew point or the CO 2 content were measured and registered, and a clear statement was made about the quality of the furnace formation.
  • the carburizing process was carried out as follows:
  • the furnace gas composition was continuously analyzed for H 2 , CH 4 , CO, CO 2 and H 2 O in both process variants throughout the entire process.
  • the temperature profile was also measured and registered. Carbon and oxygen activity were continuously determined and corrected for their target values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Arc Welding In General (AREA)

Abstract

Preventing of surface oxidn. in the carburisation of steels under a carbon-contg. gas mixt. at carburisation temp. is novel in that the steels are heated up to the carburisation temp. under a nitrogen/hydrogen gas mixt. or with pure hydrogen and during the carburisation the nitrogen/hydrogen gas mixt. or the hydrogen is replaced by a carbon-contg. gas mixt with an oxygen activity smaller than that necessary for the formation of manganese (II) or chromium (III) oxide.

Description

Die Erfindung betrifft ein Verfahren zur Vermeidung von Randoxidation beim Aufkohlen von Stählen nach dem Oberbegriff des Anspruches 1.The invention relates to a method for avoiding edge oxidation when carburizing steels according to the preamble of claim 1.

Beim Einsatzhärten werden Stähle mit niedrigem Kohlenstoffgehalt in kohlenstoffabgebenden Mitteln bei Temperaturen zwischen 800 und 950 °C geglüht (vgl. z.B. US-A-4 152 177 oder US-A-4 643 402). Die Oberfläche reichert sich mit Kohlenstoff an und wird beim Abschrecken hart. Als kohlenstoffabgebende Mittel werden meist Endogase verwendet, welche ca. 20 % CO, 40 % H2, 40 % N2 enthalten. Beim Aufkohlen dieser Stähle mit Endogas tritt eine Oxidation der unedlen Legierungselemente in der Randzone der Stähle auf, so daß diese nicht mehr bei der späteren Gefügeausbildung vorhanden sind. In der Randzone der Stähle bildet sich dabei ein unerwünschtes Gefüge aus, welches ungünstige Eigenschaften aufweist und ein mechanisches Abtragen oder Strahlen dieser Randzone erfordert, um die geforderten Eigenschaften der Stähle (Werkstücke) zu erreichen.In case hardening, low carbon steels are annealed in carbon donors at temperatures between 800 and 950 ° C (see for example US-A-4 152 177 or US-A-4 643 402). The surface is enriched with carbon and hardens when quenched. Endogases which contain about 20% CO, 40% H 2 , 40% N 2 are mostly used as carbon donors. When these steels are carburized with endogas, the base alloy elements are oxidized in the edge zone of the steels, so that they are no longer present in the subsequent microstructure formation. An undesirable one forms in the edge zone of the steels Structure which has unfavorable properties and requires mechanical removal or blasting of this edge zone in order to achieve the required properties of the steels (workpieces).

Untersuchungen haben ergeben, daß diese Randoxidation im wesentlichen durch das Sauerstoffpotential der verwendeten Endogase verursacht wird, obwohl diese Gase stark reduzierend wirken und kein "freier Sauerstoff" bei der jeweiligen Aufkohlungstemperatur vorhanden ist. Die Sauerstoffaktivität wird durch Gehalte an CO, CO2, H2O und den nichtsauerstoffhaltigen Komponenten (H2, CH4) bestimmt. Die dominierende Aufkohlungsteilreaktion in solchen CO-haltigen Gasatmosphären ist der Kohlenmonoxidzerfall auf der Werkstückoberfläche:

        COGas = [C]gelöst + [O]adsorbiert

Investigations have shown that this edge oxidation is essentially caused by the oxygen potential of the endogases used, although these gases have a strongly reducing effect and there is no "free oxygen" at the respective carburizing temperature. The oxygen activity is determined by contents of CO, CO 2 , H 2 O and the non-oxygen-containing components (H 2 , CH 4 ). The dominant partial carburization reaction in such CO-containing gas atmospheres is the decay of carbon monoxide on the workpiece surface:

CO gas = [C] dissolved + [O] adsorbed

Der freiwerdende Kohlenstoff, aber auch der bei der Reaktion entstehende adsorbierte Sauerstoff, werden von der Legierung gelöst und diffundieren in den Stahl ein. Die Menge an gelöstem Sauerstoff wird durch die Sauerstoffaktivität der Gasphase und die Dauer der Behandlungszeit bestimmt und ist sehr viel geringer als die sich lösende Kohlenstoffmenge. Die Sauerstofflöslichkeit im Reineisen beträgt bei 950 °C und einem C-Pegel von 1 Gew.% Kohlenstoff unter Verwendung eines Endogases aus Methan ungefähr 0,0003 Gew.% Sauerstoff (3 ppm Sauerstoff).The released carbon, as well as the adsorbed oxygen, are released from the alloy and diffuse into the steel. The amount of dissolved oxygen is determined by the oxygen activity of the gas phase and the duration of the treatment time and is very much less than the amount of carbon that dissolves. The oxygen solubility in pure iron at 950 ° C. and a C level of 1% by weight carbon using an endogas from methane is approximately 0.0003% by weight oxygen (3 ppm oxygen).

Wird der Sauerstoffpartialdruck für die Bildung eines Metalloxides überschritten, so tritt die Oxidation des jeweiligen Metalls ein.

        Me + H2O = MeO + H2



        Me + CO2 = MeO + CO

If the oxygen partial pressure for the formation of a metal oxide is exceeded, the oxidation of the respective metal occurs.

Me + H 2 O = MeO + H 2



Me + CO 2 = MeO + CO

Das Sauerstoffpotential der verwendeten Aufkohlungsmedien ist in der Regel so gering, daß keine Oxidation des Eisens auftritt. In den Stählen vorhandene Legierungselemente besitzen jedoch eine hohe Affinität zum Sauerstoff, so daß geringe Mengen an gelöstem Sauerstoff in der Legierung zur sogenannten inneren Oxidation führen.The oxygen potential of the carburizing media used is usually so low that there is no oxidation of the iron. Alloying elements present in the steels, however, have a high affinity for oxygen, so that small amounts of dissolved oxygen in the alloy lead to what is known as internal oxidation.

Übliche Legierungselemente sind: Cr, Mn, Si, Ti, V und andere, die in geringen Konzentrationen vorliegen. Unter der Randoxidation oder auch inneren Oxidation werden Oxidausscheidungen der oben genannten Metalle innerhalb eines Metallkorns oder entlang der Korngrenzen verstanden, die durch den eindiffundierenden gelösten Sauerstoff gebildet werden und dann dispergiert in der Matrix verteilt sind.Common alloying elements are: Cr, Mn, Si, Ti, V and others, which are present in low concentrations. Edge oxidation or internal oxidation means oxide precipitates of the above-mentioned metals within a metal grain or along the grain boundaries, which are formed by the diffused dissolved oxygen and are then dispersed in the matrix.

Die Kinetik der Sauerstoffaufnahme gehorcht einem diffusionskontrollierten Zeitgesetz und die Eindringtiefe nimmt somit parabolisch mit der Aufkohlungsdauer zu. Die Eindringtiefe des Sauerstoffs und die daraus resultierende Randoxidationstiefe kann nach folgender Gleichung berechnet werden: X t 2 = 2 · D o . C o ν . C Me . t = k p . t

Figure imgb0001
X t = k p . t
Figure imgb0002

Xt
Eindringtiefe des Sauerstoffs
Do
Diffusionskoeffizient des Sauerstoffs in der Legierung
Co
Sauerstoffkonzentration aus der Legierungsoberfläche
CMe
Konzentration des unedlen Metalls in der Legierung (z.B. Silizium)
ν
stöchiometrischer Faktor
The kinetics of oxygen uptake obey a diffusion-controlled time law and the depth of penetration thus increases parabolically with the carburization time. The penetration depth of the oxygen and the resulting edge oxidation depth can be calculated using the following equation: X t 2nd = 2 D O . C. O ν. C. Me . t = k p . t
Figure imgb0001
X t = k p . t
Figure imgb0002
X t
Oxygen penetration depth
D o
Diffusion coefficient of oxygen in the alloy
C o
Oxygen concentration from the alloy surface
C Me
Concentration of the base metal in the alloy (e.g. silicon)
ν
stoichiometric factor

Der Erfindung liegt die Aufgabe zugrunde, eine Randoxidation beim Aufkohlen von Stählen zu verhindern.The invention has for its object to prevent edge oxidation when carburizing steels.

Ausgehend von dem im Oberbegriff des Anspruches 1 berücksichtigten Stand der Technik ist diese Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen.Starting from the prior art taken into account in the preamble of claim 1, this object is achieved according to the invention with the features specified in the characterizing part of claim 1.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.

Durch die Erfindung wird ein Aufkohlungsverfahren mit nur geringen Anlage- und Betriebskosten geschaffen, weil die Glühung in herkömmlichen Industrieofenanlagen bei Atmosphärendruck ausgeführt werden kann.The invention provides a carburizing process with only low investment and operating costs because the annealing can be carried out in conventional industrial furnace systems at atmospheric pressure.

Erfindungsgemäß wird die Randoxidation der Stähle vermieden, indem die Wärmebehandlung in Gasphasen erfolgt, die keine oder nur geringe sauerstoffhaltige Moleküle enthalten. Bei der Aufkohlung dieser Stähle übersteigt der Sauerstoffpartialdruck der Gasatmosphäre nicht den Bildungsdruck der Oxide.According to the invention, the edge oxidation of the steels is avoided by the heat treatment being carried out in gas phases which contain no or only little oxygen-containing molecules. When these steels are carburized, the partial pressure of oxygen in the gas atmosphere does not exceed the formation pressure of the oxides.

Die Gaskomponenten Wasserstoff und Kohlenwasserstoffe des erfindungsgemäßen Gasgemisches, dessen Sauerstoffaktivität kleiner ist als für die Bildung von Mangan(II) - oder Chrom- (III) -oxid notwendig ist, sind nicht sauerstoffhaltig (sauerstofffrei), so daß nahezu kein Sauerstoffpartialdruck vorhanden ist. Der Kohlenstofftransfer aus der Gasphase in den Stahl während der Anfangs- und Diffusionsphase ist groß und der geforderte Kohlenstoffgehalt im Rand des Werkstoffes (ca. 1 % C) stellt sich relativ schnell ein. Bei den Aufkohlungstemperaturen zerfällt der instabile Kohlenwasserstoff (Cx Hy) auf der Legierungsoberfläche hauptsächlich in Wasserstoff, Methan und atomaren Kohlenstoff, der schnell in den Werkstoff eindiffundiert. Der Zerfall kann z.B. bei Einsatz von Propan nach folgender Reaktionsgleichung ablaufen: C 3 H 8 → 2 CH 4 + C ad

Figure imgb0003
Figure imgb0004
The gas components hydrogen and hydrocarbons of the gas mixture according to the invention, the oxygen activity of which is less than is necessary for the formation of manganese (II) or chromium (III) oxide, are not oxygen-containing (oxygen-free), so that almost none Partial pressure of oxygen is present. The carbon transfer from the gas phase into the steel during the initial and diffusion phase is large and the required carbon content in the edge of the material (approx. 1% C) sets in relatively quickly. At carburizing temperatures, the unstable hydrocarbon (C x H y ) on the alloy surface mainly breaks down into hydrogen, methane and atomic carbon, which quickly diffuses into the material. If propane is used, the decay can take place according to the following reaction equation: C. 3rd H 8th → 2 CH 4th + C ad
Figure imgb0003
Figure imgb0004

Die sich einstellende Kohlenstoffaktivität der Gasphase wird über die zudosierte Kohlenwasserstoffmenge beeinflußt. Da die Gasphase hauptsächlich aus Wasserstoff besteht, wird der C-Pegel über das sich einstellende Methan/Wasserstoff-Verhältnis geregelt. Die Aufkohlungsreaktion über den Methanzerfall in Wasserstoffatmosphären lautet:

Figure imgb0005
The resulting carbon activity in the gas phase is influenced by the amount of hydrocarbon added. Since the gas phase consists mainly of hydrogen, the C level is regulated by the methane / hydrogen ratio that arises. The carburization reaction via methane decay in hydrogen atmospheres is:
Figure imgb0005

Der Gehalt an Wasserstoff und insbesondere der sich einstellende Methangehalt werden ständig analysiert und anhand der erfaßten Istwerte wird die Kohlenwasserstoffzufuhr auf einen gewünschten Randkohlenstoffgehalt geregelt.The hydrogen content and in particular the methane content that is established are continuously analyzed and the hydrocarbon supply is regulated to a desired marginal carbon content on the basis of the actual values recorded.

Werden jedoch große Aufkohlungstiefen verlangt, d.h. lange Aufkohlungszeiten (größer 8 Stunden), so kann das Wasserstoff-/Kohlenwasserstoff-Gasgemisch durch ein verdünntes Stickstoff-Methanol-Spaltgas zum Ende der Aufkohlungsphase ausgetauscht werden. Es handelt sich somit bei dieser Aufkohlungsvariante um ein zweistufiges Aufkohlungsverfahren:

1. Stufe
Hauptaufkohlungsphase
2. Stufe
Diffusionsphase
However, if large carburization depths are required, ie long carburization times (greater than 8 hours), the hydrogen / hydrocarbon gas mixture can be brought to the end by a dilute nitrogen-methanol cracking gas Carburizing phase. This carburizing variant is therefore a two-stage carburizing process:
1st stage
Main carburizing phase
2nd stage
Diffusion phase

Während der Diffusionsphase (ca. 1 bis 2 Stunden) wird der sich während der Hauptaufkohlungsphase gelöste Wasserstoff im Werkstück stark herabgesetzt, so daß eine Wasserstoffversprödung ausgeschlossen werden kann.During the diffusion phase (approx. 1 to 2 hours), the hydrogen dissolved in the workpiece during the main carburization phase is greatly reduced, so that hydrogen embrittlement can be excluded.

Zum einstufigen Verfahren wird das kohlenstoffhaltige Gasgemisch nach dem Aufkohlen durch Stickstoff ersetzt und damit der im Stahl gelöste Wasserstoff abgebaut. Der Stahl wird zwischen 5 und 15 Minuten in der Stickstoffatmosphäre gehalten.For the one-step process, the carbon-containing gas mixture is replaced by nitrogen after carburizing and the hydrogen dissolved in the steel is thus broken down. The steel is kept in the nitrogen atmosphere for between 5 and 15 minutes.

Wird bei einer niedrigeren als der Aufkohlungstemperatur gehärtet, kann während der Abkühlphase auf Härtetemperatur mit Stickstoff gespült werden, um den gelösten Wasserstoff abzubauen. Die Aufkohlungsphase kann somit zu 100 % genutzt werden.If hardening is carried out at a lower temperature than the carburizing temperature, nitrogen can be purged during the cooling phase to harden the temperature in order to break down the dissolved hydrogen. The carburizing phase can thus be used 100%.

Beispiele:Examples:

In eine Industrieofenanlage wurde der Stahl 16 MnCr 5 (1 % Mn; 1 % Cr; 0,20 % Si) aufgekohlt. Die Ofenanlage wurde vor der ersten Aufkohlung bei ca. 1.000 °C mit Endogas formiert. Während der Formierung wurden Temperatur und Thermospannung der Sauerstoffsonde bzw. der Taupunkt oder der CO2-Gehalt gemessen und registriert und eine eindeutige Aussage über die Güte der Ofenformierung gemacht. Der Ablauf der Aufkohlung wurde wie folgt durchgeführt:The steel 16 MnCr 5 (1% Mn; 1% Cr; 0.20% Si) was carburized in an industrial furnace system. The furnace system was formed with endogas at approx. 1,000 ° C before the first carburization. During the formation, the temperature and thermal voltage of the oxygen probe or the dew point or the CO 2 content were measured and registered, and a clear statement was made about the quality of the furnace formation. The carburizing process was carried out as follows:

Einstufiges VerfahrenOne-step procedure

1. Schritt:Step 1:
Stähle in den Ofen fahren und mit Stickstoff (N2) sauerstofffrei spülen.Drive the steels into the oven and flush them with nitrogen (N 2 ) to make them oxygen-free.
2. Schritt:2nd step:
Aufheizen der Stähle auf die Aufkohlungstemperatur unter einer Stickstoff/Wasserstoff-Atmosphäre.Heating the steels to the carburizing temperature under a nitrogen / hydrogen atmosphere.
3. Schritt:3rd step:
Ab einer Temperatur von 750 °C Einspeisen eines Wasserstoff/Propan-Gasgemisches.From a temperature of 750 ° C, feed in a hydrogen / propane gas mixture.
4. Schritt:4th step:
Aufkohlen der Stähle bei vorgegebener Haltezeit und -temperatur in der Wasserstoff/Propan-Ofenatmosphäre.Carburizing the steels at a specified holding time and temperature in the hydrogen / propane furnace atmosphere.
5. Schritt:5th step:
Ungefähr 1 bis 2 Stunden vor Ablauf der Haltezeit wird der C-Pegel der Ofenatmosphäre durch Zugabe von Propan auf den Wert geregelt, der einen gewünschten Randkohlenstoffgehalt im Stahl einstellt.Approximately 1 to 2 hours before the holding time expires, the C level of the furnace atmosphere is regulated by adding propane to the value that sets a desired marginal carbon content in the steel.
6. Schritt:6th step:
Ofenraum mit Stickstoff spülen (große Spülmenge) und die Stähle ca. 10 Minuten auf Temperatur halten bzw. auf Härtetemperatur abkühlen.Flush the furnace chamber with nitrogen (large flushing volume) and keep the steels at temperature for about 10 minutes or cool them down to hardening temperature.
7. Schritt:7th step:
Stähle härten.Harden steels.
Zweistufiges VerfahrenTwo-step process

1. Schritt:Step 1:
Stähle in den Ofen fahren und mit Stickstoff (N2) sauerstofffrei spülen.Drive the steels into the oven and flush them with nitrogen (N 2 ) to make them oxygen-free.
2. Schritt:2nd step:
Aufheizen der Stähle auf die Aufkohlungstemperatur unter einer Stickstoff- (N2)/Wasserstoff- (H2) Atmosphäre.Heating the steels to the carburizing temperature under a nitrogen (N 2 ) / hydrogen (H 2 ) atmosphere.
3. Schritt:3rd step:
Ab einer Temperatur von 750 °C einspeisen eines Wasserstoff/Kohlenwasserstoff-Gasgemisches.From a temperature of 750 ° C, feed in a hydrogen / hydrocarbon gas mixture.
4. Schritt:4th step:
Aufkohlen der Stähle bei vorgegebener Haltezeit und -temperatur in der Kohlenwasserstoff-Ofenatmosphäre.Carburizing the steels at a specified holding time and temperature in the hydrocarbon furnace atmosphere.
5. Schritt:5th step:
Ungefähr 1 bis 2 Stunden vor Ablauf der Haltezeit (Aufkohlungszeit) wird die Gasatmosphäre durch ein Stickstoff-Methanol-Spaltgas ersetzt.About 1 to 2 hours before the holding time (carburizing time) expires, the gas atmosphere is replaced by a nitrogen-methanol cracked gas.
6. Schritt:6th step:
Ungefähr 1 bis 2 Stunden vor Ablauf der Haltezeit wird der C-Pegel der Ofenatmosphäre (C-Pegelregelung über Sauerstoffsonde, CO2- bzw. Wassergehalt) durch Zugabe von Propan oder andere Kohlenwasserstoffe auf den Wert geregelt, der einen gewünschten Randkohlenstoffgehalt im Stahl einstellt.Approximately 1 to 2 hours before the holding time expires, the C level of the furnace atmosphere (C level control via oxygen probe, CO 2 or water content) is regulated by adding propane or other hydrocarbons to the value that sets a desired marginal carbon content in the steel.
7. Schritt:7th step:
Stähle auf Härtetemperatur abkühlen.Cool steels to hardening temperature.
8. Schritt:Step 8:
Während der Abkühlung auf Härtetemperatur wird der C-Pegel auf dem gewünschten Wert konstantgehalten.During the cooling to hardening temperature, the C level is kept constant at the desired value.
9. Schritt:Step 9:
Stähle härten.Harden steels.

Die Ofengaszusammensetzung wurde bei beiden Verfahrensvarianten während des gesamten Prozesses auf ihre Gehalte an H2, CH4, CO, CO2 und H2O stetig analysiert. Der Temperaturverlauf wurde ebenfalls gemessen und registriert. Kohlenstoff- und Sauerstoffaktivität wurden ständig bestimmt und auf ihre Sollwerte hin korrigiert.The furnace gas composition was continuously analyzed for H 2 , CH 4 , CO, CO 2 and H 2 O in both process variants throughout the entire process. The temperature profile was also measured and registered. Carbon and oxygen activity were continuously determined and corrected for their target values.

Claims (7)

  1. Process for avoiding surface oxidation in the carburization of steels with alloy elements which are present in a low concentration under a carbon-containing gas mixture at the carburization temperature, characterized in that the steels are heated to the carburization temperature under a nitrogen/hydrogen gas mixture or with pure hydrogen and the nitrogen/hydrogen gas mixture or the hydrogen is replaced during the carburization by a carbon-containing gas mixture having an oxygen activity smaller than that required for the formation of manganese(II) oxide or chromium(III) oxide, and the carbon-containing gas mixture yields carbon which diffuses into the steel in dissolved form.
  2. Process according to Claim 1, characterized in that the carbon-containing gas mixture is a hydrogen/hydrocarbon gas mixture, preferably a hydrogen/propane gas mixture.
  3. Process according to Claim 1 or 2, characterized in that the carbon-containing gas mixture is replaced towards the end of the carburization by a cracked nitrogen/ methanol gas.
  4. Process according to one of Claims 1 to 3, characterized in that the composition of the gas mixture or of the cracked gas is detected during the heating and carburization and, as a function of the detected actual values, the carbon content is adjusted to a desired surface carbon content by adding hydrocarbons.
  5. Process according to one of Claims 1 to 4, characterized in that the carbon-containing gas mixture or the cracked gas is replaced by nitrogen after the carburization and the hydrogen dissolved in the steel is thereby reduced.
  6. Process according to Claim 4, characterized in that the steel is held at the carburization temperature for between 5 and 15 minutes in the nitrogen atmosphere.
  7. Process according to Claim 4, characterized in that the steel is cooled in the nitrogen atmosphere to a temperature below the carburization temperature.
EP94202796A 1994-01-08 1994-09-27 Process for preventing surface oxidation during steel carburizing Expired - Lifetime EP0662525B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4400391 1994-01-08
DE4400391A DE4400391A1 (en) 1994-01-08 1994-01-08 Process to avoid edge oxidation when carburizing steels

Publications (2)

Publication Number Publication Date
EP0662525A1 EP0662525A1 (en) 1995-07-12
EP0662525B1 true EP0662525B1 (en) 1997-06-25

Family

ID=6507609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94202796A Expired - Lifetime EP0662525B1 (en) 1994-01-08 1994-09-27 Process for preventing surface oxidation during steel carburizing

Country Status (4)

Country Link
US (1) US5498299A (en)
EP (1) EP0662525B1 (en)
AT (1) ATE154832T1 (en)
DE (2) DE4400391A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321414A1 (en) * 2003-05-13 2004-12-09 Robert Bosch Gmbh Process for the heat treatment of metallic workpieces in chamber furnaces

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795410A (en) * 1997-01-23 1998-08-18 Usx Corporation Control of surface carbides in steel strip
US6612154B1 (en) 1998-12-22 2003-09-02 Furnace Control Corp. Systems and methods for monitoring or controlling the ratio of hydrogen to water vapor in metal heat treating atmospheres
US6591215B1 (en) * 1999-02-18 2003-07-08 Furnace Control Corp. Systems and methods for controlling the activity of carbon in heat treating atmospheres
FR2826376B1 (en) * 2001-06-25 2003-09-26 Serthel CARBONITRURATION AND CARBONITRURATION PROCESS OF STEELS WITH CARBON OXIDE
DE10254846B4 (en) * 2002-11-25 2011-06-16 Robert Bosch Gmbh Method for case-hardening components made of hot-work steels by means of vacuum carburizing
US20060151334A1 (en) * 2002-12-03 2006-07-13 Jean-Jacque Duruz Method of conditioning iron alloy-based anodes for aluminium electrowinning
US20080149226A1 (en) * 2006-12-26 2008-06-26 Karen Anne Connery Method of optimizing an oxygen free heat treating process
US20080149227A1 (en) * 2006-12-26 2008-06-26 Karen Anne Connery Method for oxygen free carburization in atmospheric pressure furnaces
US20080149225A1 (en) * 2006-12-26 2008-06-26 Karen Anne Connery Method for oxygen free carburization in atmospheric pressure furnaces
US20080187850A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Tunable electrophotographic imaging member and method of making same
US9109277B2 (en) * 2011-01-10 2015-08-18 Air Products And Chemicals, Inc. Method and apparatus for heat treating a metal
EP3168314A1 (en) 2015-11-13 2017-05-17 Air Liquide Deutschland GmbH Method for heat treating metallic work pieces
AU2017268409B2 (en) 2016-05-20 2021-12-16 Ideapaint, Inc. Dry-erase compositions and methods of making and using thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049473A (en) * 1976-03-11 1977-09-20 Airco, Inc. Methods for carburizing steel parts
US4152177A (en) * 1977-02-03 1979-05-01 General Motors Corporation Method of gas carburizing
CH641840A5 (en) * 1977-06-16 1984-03-15 Standardgraph Filler & Fiebig Process for increasing the abrasion resistance of workpieces of stainless steel or nickel metal alloys
US4175986A (en) * 1978-10-19 1979-11-27 Trw Inc. Inert carrier gas heat treating control process
US4935073A (en) * 1981-11-27 1990-06-19 Sri International Process for applying coatings of zirconium and/or titantuim and a less noble metal to metal substrates and for converting the zirconium and/or titanium to an oxide, nitride, carbide, boride or silicide
SU1204642A1 (en) * 1982-04-09 1986-01-15 Центральное Производственно-Техническое Предприятие По Ремонту,Наладке И Проектированию Энергетических Установок Предприятий Черной Металлургии Method of manufacturing thin-walled articles from high-carbon steel
US4643402A (en) * 1985-07-24 1987-02-17 Mg Industries System for producing a regulated atmosphere for a high-temperature process
FR2586259B1 (en) * 1985-08-14 1987-10-30 Air Liquide QUICK CEMENTATION PROCESS IN A CONTINUOUS OVEN
FR2640646B1 (en) * 1988-12-20 1993-02-05 Air Liquide METHOD AND INSTALLATION FOR HEAT TREATMENT OF CEMENTATION, CARBONITRURATION OR HEATING BEFORE TEMPERING OF METAL PARTS
SE466755B (en) * 1989-06-30 1992-03-30 Aga Ab PROCEDURE FOR COOLING OF STEEL WITH REDUCTION OF WATER CONTENT IN THE COATING LAYER
EP0480924A1 (en) * 1989-07-07 1992-04-22 Aga Aktiebolag Process for case-hardening roller bearing components of low-alloy nickel steel
US5143558A (en) * 1991-03-11 1992-09-01 Thermo Process Systems Inc. Method of heat treating metal parts in an integrated continuous and batch furnace system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321414A1 (en) * 2003-05-13 2004-12-09 Robert Bosch Gmbh Process for the heat treatment of metallic workpieces in chamber furnaces
DE10321414B4 (en) * 2003-05-13 2008-12-18 Robert Bosch Gmbh Process for the heat treatment of metallic workpieces in chamber furnaces

Also Published As

Publication number Publication date
EP0662525A1 (en) 1995-07-12
ATE154832T1 (en) 1997-07-15
US5498299A (en) 1996-03-12
DE4400391A1 (en) 1995-07-13
DE59403219D1 (en) 1997-07-31

Similar Documents

Publication Publication Date Title
EP0662525B1 (en) Process for preventing surface oxidation during steel carburizing
DE4033706C2 (en)
US3891474A (en) Method for the case carburizing of steel
DE2450879A1 (en) METHOD FOR HEAT TREATMENT OF FERROUS METALS
EP0627019B1 (en) Process for the thermochemical-heat treatment of case-hardened steels
DE10319297A1 (en) Case hardening process
DE10322255A1 (en) Carburizing steel parts with a carbon dispenser gas within an evacuated chamber comprises feeding a nitrogen-releasing gas, e.g. ammonia, into the treatment chamber during the heating-up phase and during the diffusion phase
EP1122331B1 (en) Process of nitriding and/or carbonitriding of high-alloyed steel
EP0655512B1 (en) Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process
DE3143566C2 (en) Process for the continuous heat treatment of zirconium and titanium metals and their alloys
EP3168314A1 (en) Method for heat treating metallic work pieces
EP0545069B1 (en) Method of treating steel and refractory metals
EP0779376B2 (en) Plasma carburizing of metallic workpieces
EP0890656B1 (en) Process for surface nitriding of metallic workpieces
EP0393137B1 (en) Carburized low silicon steel article and process
DE3935486A1 (en) Gas carbonitriding ferrous components - by controlling amount of gas components to obtain required nitriding and carburising characteristic values
EP0049532B1 (en) Process for the carbonization and heat-treatment of steels in a non-carbon-affecting atmosphere
DE10255590A1 (en) Process for glue-free annealing of metal parts
DE19920297A1 (en) Process for the heat treatment of metallic workpieces
EP0760396A1 (en) Process for preventing adhesion of steel band during annealing
DE3120509C2 (en) Process for gas nitriding of workpieces made of steel
DE19946327B4 (en) Method for reducing the core hardness during case-hardening of martensitic stainless steels with nitrogen
US5194096A (en) Carburizing treatment of a steel with reduction of the hydrogen content in the carburized layer
WO2005098056A1 (en) Method for the thermal treatment of metals
DE2801235A1 (en) CARBONITRATION PROCESS FOR ALLOY CHROME-MOLYBDAEN STEELS WITH INCREASED CARBON CONTENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT

17P Request for examination filed

Effective date: 19960112

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960731

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19970625

Ref country code: BE

Effective date: 19970625

REF Corresponds to:

Ref document number: 154832

Country of ref document: AT

Date of ref document: 19970715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970709

REF Corresponds to:

Ref document number: 59403219

Country of ref document: DE

Date of ref document: 19970731

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970927

BERE Be: lapsed

Owner name: MESSER GRIESHEIM G.M.B.H.

Effective date: 19970930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050823

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130919

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130919

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59403219

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140926