EP0655512B1 - Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process - Google Patents

Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process Download PDF

Info

Publication number
EP0655512B1
EP0655512B1 EP94116881A EP94116881A EP0655512B1 EP 0655512 B1 EP0655512 B1 EP 0655512B1 EP 94116881 A EP94116881 A EP 94116881A EP 94116881 A EP94116881 A EP 94116881A EP 0655512 B1 EP0655512 B1 EP 0655512B1
Authority
EP
European Patent Office
Prior art keywords
process according
theoretical value
oxidising
oxidation
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94116881A
Other languages
German (de)
French (fr)
Other versions
EP0655512A1 (en
Inventor
B. Dr. Edenhofer
W. Dr. Lerche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Publication of EP0655512A1 publication Critical patent/EP0655512A1/en
Application granted granted Critical
Publication of EP0655512B1 publication Critical patent/EP0655512B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step

Definitions

  • the invention relates to a method for producing uniform oxidation layers on metallic workpieces following a nitriding or Nitrocarburizing process, the workpieces after nitriding or Nitrocarburizing at a given temperature for a given time Oxidation atmosphere are exposed.
  • the generic methods are used to improve the wear or. the corrosion resistance of the surfaces of components made of ferrous materials.
  • the nitrocarburizing process is carried out as a special nitriding process at temperatures between 570 ° C and 700 ° C. This minimizes the delay.
  • the workpieces are exposed to an oxidation atmosphere.
  • the post-oxidation can significantly increase the wear resistance and in particular the corrosion resistance of the nitrocarburized surfaces.
  • the workpieces are oxidized in an oxygen-containing atmosphere in an atmosphere-sphere furnace after the nitriding or nitrocarburizing.
  • This post-oxidation normally takes place at temperatures between 500 ° C and 550 ° C, but is not limited to this range. Air, water vapor, CO 2 , nitrous oxide and mixtures of these gases with nitrogen or ammonia are primarily used for the oxidation.
  • the aim of the post-oxidation is to convert the outer edge layer of the workpieces, which essentially consists of iron nitrides or carbonitrides, into a thin iron oxide layer.
  • an iron oxide layer of the form Fe 3 O 4 is sought, the so-called magnetite. Desired oxidation layer thicknesses are between 0.5 and 2 ⁇ m in the case of predominantly corrosive stress, or between 1 and 3 ⁇ m in the case of predominant wear and tear.
  • the oxide layers are too thick and can flake off. If the oxidation effect of the oxidation atmosphere is set incorrectly, other iron oxide modifications also arise, such as Fe 2 O 3 or FeO. These iron oxide modifications do not improve the corrosion and wear behavior of the workpieces, they can even worsen it. The setting of such iron oxides should therefore be avoided during post-oxidation. Generating Fe 3 O 4 layers that are too thick can also be harmful, particularly in the case of corrosion, as practice has shown. The targeted setting of the desired layer modification and thickness setting during post-oxidation is therefore of particular importance.
  • the object of the invention is to improve a method for producing uniform oxidation layers of the generic type in such a way that defined, uniform oxidation layers and workpiece surface properties are achieved. Furthermore, an apparatus for performing the method is to be provided.
  • the method according to the invention is further developed in that the oxygen potential present in the oxidation atmosphere is continuously determined, the measurement result is compared with a predetermined target value and, in the event of deviations, the oxidation atmosphere is modified until the measurement result matches the target value, the target value being so It is determined that the oxygen potential at the given oxidation temperature is always above the formation limit of Fe 3 O 4 oxide, but below the formation limit of other iron oxides.
  • the oxide layers have a uniform appearance and that Surface properties are defined and can be easily reproduced.
  • the measured oxygen potential is below the specified target value, further oxidizing agent is fed. If the measured oxygen potential value is above of the predetermined target value, then according to a proposal of the invention the supply of the oxidant stopped. Alternatively or additionally, the Oxidation atmosphere can also be supplied with a reducing agent.
  • Combinations of the proposed measures are also part of the Invention possible.
  • the oxidant path connection and the reducing agent connection made both simultaneously and alternately.
  • the oxidant connection is undershot and the reducing agent path circuit also both made simultaneously and alternately.
  • Air, water, CO 2 , N 2 O and the like are advantageously supplied as the oxidizing agent, these oxidizing agents mentioned being able to be supplied individually but also in the context of gas mixtures from these components.
  • H 2 , NH 3 , CH 4 or CO are advantageously proposed as reducing agents. These components can also be used individually or as a gas mixture.
  • a device for post-oxidation after nitrocarburizing comprises or nitriding an atmosphere furnace, which is a heater and has at least one gas supply line.
  • atmosphere furnaces which are a heater and has at least one gas supply line.
  • the device according to the invention for carrying out the method of manufacture uniform oxidation layers on metallic workpieces further developed in that an oxygen probe is arranged in the furnace chamber and that a control device is connected to the oxygen probe which is, depending on the measured value, the gas supply to the atmosphere furnace regulates.
  • the oxygen potential can be determined with this oxygen probe determined at any time and depending on the time evaluate the temperature and the like.
  • the control device acts in the range of Valves in the gas supply lines.
  • a particularly advantageous device-side solution for controlling the Oxygen potential during post-oxidation is through the use of a Endexo retort marked.
  • Such retorts are used to generate Carrier gas in nitrocarburizing furnaces already known.
  • Using the Endexo retort Endogas is usually produced during nitrocarburization.
  • Nitriding agent for example ammonia
  • the Endexo retort is then carried out in such a way that when the target value is undershot of the oxygen potential in the oxidation atmosphere is the natural gas supply switched off, or if the setpoint is exceeded, the natural gas supply is switched on again with constant air supply to the retort.
  • the furnace 1 shows an atmosphere furnace 1 known per se, consisting of a furnace housing 2, which is arranged on a frame 3. Internally the furnace 1 has a furnace chamber 4 which comprises a batch space 5. A circulation fan 6, which is driven by a thermally insulated drive 7 is driven, sucks the atmospheric gas from the batch space and it rolls into the space surrounding the furnace chamber, in which not shown Heating elements are arranged. The gas then comes out with the right one Put the temperature back into batch room 5 from below.
  • the atmospheric furnace 1 comprises a gas supply line 8, into which the gases required in each case are fed into the furnace space via corresponding valves.
  • the regulating valve 9a NH 3 , the regulating valve 9b, the endogas or exogas, the regulating valve 9c, nitrogen and the regulating valve 9d, air, water or another oxidizing agent can be supplied.
  • An oxygen probe is used to determine the oxygen potential in the furnace chamber 4 10 provided with which the oxygen potential is measured becomes. From a control device, not shown, the measured value with compared to a target value. If a discrepancy is found, the Control device 13 controls the respective valves 9a, 9b and 9d to modify the oxidation atmosphere in the furnace chamber 4.
  • FIG. 2 A corresponding embodiment is shown in FIG. 2.
  • the atmosphere furnace 1 is constructed in the manner described.
  • the figure shows the use a so-called endexo retort.
  • Oxygen probe 10 is also possible by means of a gas discharge line 12 to discharge so-called sample gas and outside the atmosphere furnace 1 to be measured using an oxygen probe ( ⁇ probe), not shown.
  • About the Control valve 9a can, for example, ammonia via a separate Feed line 8 are introduced into the furnace. During post-oxidation this valve remains closed. Natural gas is produced via the control valve 9b fed. If the measured oxygen potential value exceeds the setpoint, valve 9b is opened. If the value falls below the setpoint, the Natural gas supply switched off. Via the oxygen source 11 and the valve 9c only oxidant is supplied to the furnace chamber 4.
  • the diagram shown in FIG. 3 shows the control range according to the invention, which is to be maintained by the setpoint determination.
  • the diagram shows the oxygen probe voltage mV over the temperature in ° C.
  • the desired range in which in the oxidation atmosphere at the given oxidation temperature the oxidation is always just above the formation limit of Fe 3 O 4 oxide, but regularly below the formation limit of the other iron oxides, can be shown, for example, in FIG specify the temperature range from approximately 450 ° C to approximately 650 ° C with an oxygen probe voltage between approximately 1100 mV and 800 mV (hatched area).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemically Coating (AREA)

Abstract

To achieve unitary (uniform) oxidic (oxidation) layers and defined surface properties, a process is provided for producing oxidic layers on metallic substrates subsequent to a nitridation (nitriding) or nitrocarburation process, in which the oxygen potential present in the oxidising atmosphere is continually determined, the measurement result is compared with a predetermined set value and, in the case of deviations, the oxidising atmosphere is modified until the measurement result agrees with the set value. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einheitlicher Oxidationsschichten auf metallischen Werkstücken im Anschluß an ein Nitrier- oder Nitrocarburierverfahren, wobei die Werkstücke nach dem Nitrieren oder Nitrocarburieren bei gegebener Temperatur für eine vorgegebene Zeit einer Oxidationsatmosphäre ausgesetzt werden.The invention relates to a method for producing uniform oxidation layers on metallic workpieces following a nitriding or Nitrocarburizing process, the workpieces after nitriding or Nitrocarburizing at a given temperature for a given time Oxidation atmosphere are exposed.

Die gattungsgemäßen Verfahren werden zur Verbesserung des Verschleiß-bzw. des Korrosionswiderstandes der Oberflächen von Bauteilen aus Eisenwerkstoffen eingesetzt. Dabei wird das Nitrocarburierverfahren als besonderes Nitrierverfahren bei Temperaturen zwischen 570°C und 700°C durchgeführt. Dadurch wird der Verzug geringgehalten. Im Anschluß an das Nitrieren oder Nitrocarburieren werden die Werkstücke einer Oxidationsatmosphäre ausgesetzt. Man spricht von der sogenannten Nachoxidation. Durch die Nachoxidation können der Verschleißwiderstand und insbesondere der Korrosionswiderstand der nitrocarburierten Oberflächen noch erheblich gesteigert werden. Hierzu werden in Atomsphärenöfen die Werkstücke im Anschluß an das Nitrieren bzw. Nitrocarburieren in einer sauerstoffhaltigen Atmosphäre oxidiert. Diese Nachoxidation findet normalerweise bei Temperaturen zwischen 500°C und 550°C statt, ist jedoch auf diesen Bereich nicht festgelegt. Zur Oxidation werden in erster Linie Luft, Wasserdampf, CO2, Lachgas und Gemische aus diesen Gasen mit Stickstoff oder auch Ammoniak verwendet. Das Ziel der Nachoxidation ist es, die äußere Randschicht der Werkstücke, die im wesentlichen aus Eisennitriden bzw. Carbonitriden besteht, in eine dünne Eisenoxidschicht umzuwandeln. Im Idealfall wird eine Eisenoxidschicht der Form Fe3O4 angestrebt, das sogenannte Magnetit. Gewünschte Oxidationsschichtdicken liegen zwischen 0,5 und 2µm bei einer vorwiegend korrosiven Beanspruchung, bzw. zwischen 1 und 3µm im Falle einer vorwiegenden Verschleißbeanspruchung.The generic methods are used to improve the wear or. the corrosion resistance of the surfaces of components made of ferrous materials. The nitrocarburizing process is carried out as a special nitriding process at temperatures between 570 ° C and 700 ° C. This minimizes the delay. After nitriding or nitrocarburizing, the workpieces are exposed to an oxidation atmosphere. One speaks of the so-called post-oxidation. The post-oxidation can significantly increase the wear resistance and in particular the corrosion resistance of the nitrocarburized surfaces. For this purpose, the workpieces are oxidized in an oxygen-containing atmosphere in an atmosphere-sphere furnace after the nitriding or nitrocarburizing. This post-oxidation normally takes place at temperatures between 500 ° C and 550 ° C, but is not limited to this range. Air, water vapor, CO 2 , nitrous oxide and mixtures of these gases with nitrogen or ammonia are primarily used for the oxidation. The aim of the post-oxidation is to convert the outer edge layer of the workpieces, which essentially consists of iron nitrides or carbonitrides, into a thin iron oxide layer. Ideally, an iron oxide layer of the form Fe 3 O 4 is sought, the so-called magnetite. Desired oxidation layer thicknesses are between 0.5 and 2 µm in the case of predominantly corrosive stress, or between 1 and 3 µm in the case of predominant wear and tear.

Wird zu lang, zu stark oder bei zu hohen Temperaturen oxidiert, so bilden sich zu dicke Oxidschichten, die abplatzen können. Bei falsch eingestellter Oxidationswirkung der Oxidationsatmosphäre entstehen auch andere Eisenoxidmodifikationen, wie beispielsweise das Fe2O3 oder das FeO. Diese Eisenoxidmodifikationen verbessern das Korrosions- und Verschleißverhalten der Werkstücke nicht, sondern sie können es sogar verschlechtern. Die Einstellung solcher Eisenoxide ist daher bei der Nachoxidation zu vermeiden. Auch das Erzeugen zu dicker Fe3O4-Schichten kann gerade im Fall von Korrosionsbeanspruchung schädlich sein, wie die Praxis gezeigt hat. Die gezielte Einstellung der angestrebten Schichtmodifikation und Dickeneinstellung bei der Nachoxidation ist daher von besonderer Bedeutung.If the oxidation is too long, too strong or at too high temperatures, the oxide layers are too thick and can flake off. If the oxidation effect of the oxidation atmosphere is set incorrectly, other iron oxide modifications also arise, such as Fe 2 O 3 or FeO. These iron oxide modifications do not improve the corrosion and wear behavior of the workpieces, they can even worsen it. The setting of such iron oxides should therefore be avoided during post-oxidation. Generating Fe 3 O 4 layers that are too thick can also be harmful, particularly in the case of corrosion, as practice has shown. The targeted setting of the desired layer modification and thickness setting during post-oxidation is therefore of particular importance.

Es ist im Stand der Technik bekannt, diese Schichtsteuerung über die Oxidationstemperatur und/oder die Oxidationsdauer vorzunehmen. Im HTM 43, 1988, Heft 6, Seite 365 bis 372, ist "NIOX - ein modifiziertes Nitrocarburierverfahren mit anschließender Oxidation" von S. Pakrasi beschrieben. Hier wird eine einzuhaltende Temperatur von 520°C angegeben, in welcher die Werkstücke für eine Stunde lang in Wasserdampf behandelt werden. Gemäß einem anderen Verfahren, dem sogenannten "NITROTEC"-Randschichtbehandlungsverfahren, veröffentlicht von C. Dawes in TZ für Metallbearbeitung, Heft 6, 1984, wird eine Nachoxidation bei 570°C bis 580°C für 30 sec. beschrieben, wobei die Nachoxidation an Luft durchgeführt wird.It is known in the prior art that this shift control over the Oxidation temperature and / or to carry out the oxidation duration. In the HTM 43, 1988, Issue 6, pages 365 to 372, is "NIOX - a modified one Nitrocarburizing process with subsequent oxidation "by S. Pakrasi described. A temperature of 520 ° C to be maintained is specified here, in which the workpieces are steamed for one hour become. According to another process, the so-called "NITROTEC" edge layer treatment process, published by C. Dawes in TZ for Metalworking, Issue 6, 1984, is a post-oxidation at 570 ° C to 580 ° C for 30 seconds. The post-oxidation is carried out in air becomes.

In der Praxis hat sich gezeigt, daß die Steuerung der Schichtmodifikation und Schichtdicke allein durch die Einstellung der Oxidationstemperatur und/oder der Oxidationsdauer sowie des gewählten Oxidationsmediums, d.h. beispielsweise Luft oder Wasser, nicht ausreicht, um einheitliche Oxidationsschichten und Oberflächeneigenschaften zu garantieren. Je nach Ofen, Werkstückoberflächenzustand und weiteren Faktoren werden unterschiedliche Nachoxidationsergebnisse erzielt. So hat sich gezeigt, daß die Nachoxidation an Luft nicht immer zu einheitlich gefärbten Oberflächen führt. Es können fleckig ausgebildete gebildete Oberflächen entstehen, obwohl vorgegebene Oxidationstemperaturen und Oxidationszeiträume eingehalten werden.In practice it has been shown that the control of the layer modification and Layer thickness solely by setting the oxidation temperature and / or the duration of the oxidation and the chosen oxidation medium, i.e. for example Air or water, not enough to create uniform layers of oxidation and guarantee surface properties. Depending on the furnace, workpiece surface condition and other factors will have different post-oxidation results achieved. It has been shown that post-oxidation in air does not always lead to uniformly colored surfaces. It can be spotty trained Formed surfaces arise, although given oxidation temperatures and oxidation periods are observed.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung einheitlicher Oxidationsschichten der gattungsgemäßen Art dahingehend zu verbessern, daß definierte, einheitliche Oxidationsschichten und Werkstückoberflächeneigenschaften erzielt werden. Weiterhin soll eine Vorrichtung zur Durchführung des Verfahrens bereitgestellt werden.Proceeding from this, the object of the invention is to improve a method for producing uniform oxidation layers of the generic type in such a way that defined, uniform oxidation layers and workpiece surface properties are achieved. Furthermore, an apparatus for performing the method is to be provided.

Als technische Lösung dieser Aufgabe wird das erfindungsgemäße Verfahren dadurch weiterentwickelt, daß das in der Oxidationsatmosphäre vorhandene Sauerstoffpotential ständig bestimmt wird, das Meßergebnis mit einem vorgegebenen Sollwert verglichen und bei Abweichungen die Oxidationsatmosphäre modifiziert wird, bis das Meßergebnis mit dem Sollwert übereinstimmt, wobei der Sollwert so festgelegt wird, daß das Sauerstoffpotential bei der gegebenen Oxidationstemperatur immer oberhalb der Entstehungsgrenze von Fe3O4-Oxid, aber unterhalb der Entstehungsgrenze anderer Eisenoxide liegt.As a technical solution to this problem, the method according to the invention is further developed in that the oxygen potential present in the oxidation atmosphere is continuously determined, the measurement result is compared with a predetermined target value and, in the event of deviations, the oxidation atmosphere is modified until the measurement result matches the target value, the target value being so It is determined that the oxygen potential at the given oxidation temperature is always above the formation limit of Fe 3 O 4 oxide, but below the formation limit of other iron oxides.

Durch die Regelung des Sauerstoffpotentials in der Oxidationsatmosphäre kann sichergestellt werden, daß keine unerwünschten Eisenoxidmodifikationen gebildet werden. Darüber hinaus sind die erzielten Ergebnisse immer einheitlich. Die Oxidschichten haben eine einheitliche Erscheinungsform und die Oberflächeneigenschaften sind definiert und problemlos nachbildbar.By regulating the oxygen potential in the oxidation atmosphere can be ensured that no undesirable iron oxide modifications be formed. In addition, the results achieved are always uniform. The oxide layers have a uniform appearance and that Surface properties are defined and can be easily reproduced.

Für die Einstellung des Sollwertes des Sauerstoffpotentials hat sich ein Bereich zwischen 1100 mV und 800 mV bei Temperaturen von 450°C bis 650°C als geeignet erwiesen.There is a range for setting the target value of the oxygen potential between 1100 mV and 800 mV at temperatures from 450 ° C to 650 ° C as proven suitable.

Mit Vorteil wird angegeben, daß dann, wenn das gemessene Sauerstoffpotential unterhalb des vorgegebenen Sollwertes liegt, weiteres Oxidationsmittel zugeführt wird. Liegt der gemessene Sauerstoffpotentialwert oberhalb des vorgegebenen Sollwertes, so wird gemäß einem Vorschlag der Erfindung die Zufuhr des Oxidationsmittels gestoppt. Alternativ oder zusätzlich kann der Oxidationsatmosphäre auch ein Reduktionsmittel zugeführt werden.It is advantageously stated that when the measured oxygen potential is below the specified target value, further oxidizing agent is fed. If the measured oxygen potential value is above of the predetermined target value, then according to a proposal of the invention the supply of the oxidant stopped. Alternatively or additionally, the Oxidation atmosphere can also be supplied with a reducing agent.

Auch sind Kombinationen der vorgeschlagenen Maßnahmen im Rahmen der Erfindung möglich. Gemäß einem Vorschlag der Erfindung wird bei Sollwertüberschreitungen die Oxidationsmittelwegschaltung und die Reduktionsmittelzuschaltung sowohl gleichzeitig als auch im Wechsel vorgenommen. Bei einer Sollwertunterschreitung wird gemäß einem Vorschlag der Erfindung die Oxidationsmittelzuschaltung und die Reduktionsmittelwegschaltung ebenfalls sowohl gleichzeitig als auch im Wechsel vorgenommen.Combinations of the proposed measures are also part of the Invention possible. According to a proposal of the invention, when the setpoint is exceeded the oxidant path connection and the reducing agent connection made both simultaneously and alternately. At a According to a proposal of the invention, the oxidant connection is undershot and the reducing agent path circuit also both made simultaneously and alternately.

Als Oxidationsmittel wird in vorteilhafter Weise Luft, Wasser, CO2, N2O und dergleichen zugeführt, wobei diese genannten Oxidationsmittel einzeln aber auch im Rahmen von Gasmischungen aus diesen Komponenten zugeführt werden können.Air, water, CO 2 , N 2 O and the like are advantageously supplied as the oxidizing agent, these oxidizing agents mentioned being able to be supplied individually but also in the context of gas mixtures from these components.

Als Reduktionsmittel wird in vorteilhafter Weise H2, NH3, CH4 oder CO vorgeschlagen. Auch diese Komponenten können einzeln oder als Gasmischung verwendet werden.H 2 , NH 3 , CH 4 or CO are advantageously proposed as reducing agents. These components can also be used individually or as a gas mixture.

Vorrichtungsseitig umfaßt eine Vorrichtung zur Nachoxidation nach dem Nitrocarburieren bzw. Nitrieren einen Atmosphärenofen, der eine Heizvorrichtung und wenigstens eine Gaszuführleitung aufweist. Üblicherweise weisen bekannte Atmosphärenöfen Umwälzvorrichtungen auf, welche das die Atmosphäre bildende Gas aus einem Chargenraum heraus, und entlang von Heizeinrichtungen oder Wärmetauschern wieder in den Chargenraum zurückführen.On the device side, a device for post-oxidation after nitrocarburizing comprises or nitriding an atmosphere furnace, which is a heater and has at least one gas supply line. Usually point known atmosphere furnaces on circulating devices, which the the atmosphere forming gas from a batch room and along heaters or return heat exchangers to the batch room.

Die erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens zur Herstellung einheitlicher Oxidationsschichten auf metallischen Werkstücken ist dadurch weiterentwickelt, daß in der Ofenkammer eine Sauerstoffsonde angeordnet ist und daß eine Steuereinrichtung mit der Sauerstoffsonde verbunden ist, welche in Abhängigkeit von dem Meßwert die Gaszufuhr zum Atmosphärenofen regelt.The device according to the invention for carrying out the method of manufacture uniform oxidation layers on metallic workpieces further developed in that an oxygen probe is arranged in the furnace chamber and that a control device is connected to the oxygen probe which is, depending on the measured value, the gas supply to the atmosphere furnace regulates.

Mit dieser Sauerstoffsonde läßt sich verfahrensgemäß das Sauerstoffpotential zu jedem beliebigen Zeitpunkt bestimmten und in Abhängigkeit von der Zeit, der Temperatur und dgl. auswerten. Gemäß einer vorteilhaften Ausgestaltung der Erfindung wirkt die Steuereinrichtung auf im Bereich von Gaszuführungsleitungen liegende Ventile ein.According to the method, the oxygen potential can be determined with this oxygen probe determined at any time and depending on the time evaluate the temperature and the like. According to an advantageous embodiment According to the invention, the control device acts in the range of Valves in the gas supply lines.

Eine besonders vorteilhafte vorrichtungsseitige Lösung zur Regelung des Sauerstoffpotentials während der Nachoxidation ist durch den Einsatz einer Endexo-Retorte gekennzeichnet. Derartige Retorten sind zur Erzeugung von Trägergas bei Nitrocarburieröfen bereits bekannt. Mittels der Endexo-Retorte wird üblicherweise während der Nitrocarburierung Endogas hergestellt. Um die Endexo-Retorte für die Nachoxidation zu verwenden, braucht dann nur das Nitriermittel, beispielsweise das Ammoniak, abgeschaltet zu werden. Die Endexo-Retorte wird dann so geführt, daß bei Unterschreiten des Sollwertes des Sauerstoffpotentials in der Oxidationsatmosphäre die Erdgaszufuhr weggeschaltet, bzw. bei Überschreiten des Sollwertes die Erdgaszufuhr wieder zugeschaltet wird bei konstant bleibender Luftzuführung zur Retorte.A particularly advantageous device-side solution for controlling the Oxygen potential during post-oxidation is through the use of a Endexo retort marked. Such retorts are used to generate Carrier gas in nitrocarburizing furnaces already known. Using the Endexo retort Endogas is usually produced during nitrocarburization. To the Using Endexo retort for post-oxidation then only needs that Nitriding agent, for example ammonia, to be switched off. The Endexo retort is then carried out in such a way that when the target value is undershot of the oxygen potential in the oxidation atmosphere is the natural gas supply switched off, or if the setpoint is exceeded, the natural gas supply is switched on again with constant air supply to the retort.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung anhand der Figuren. Dabei zeigen:

  • Fig. 1 eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Nachoxidationsverfahrens;
  • Fig. 2 eine schematische Darstellung eines weiteren Ausführungsbeispieles einer Vorrichtung zur Durchführung des erfindungsgemäßen Nachoxidationsverfahrens und
  • Fig. 3 ein Schaubild zur Darstellung des angestrebten Regelbereiches.
  • Further advantages and features of the invention result from the following description with reference to the figures. Show:
  • 1 shows a schematic representation of a device according to the invention for carrying out the postoxidation process according to the invention;
  • Fig. 2 is a schematic representation of a further embodiment of a device for performing the post-oxidation process according to the invention and
  • Fig. 3 is a graph showing the desired control range.
  • In Fig. 1 ist ein an sich bekannter Atmosphärenofen 1 gezeigt, bestehend aus einem Ofengehäuse 2, welches auf einem Gestell 3 angeordnet ist. Im Inneren weist der Ofen 1 eine Ofenkammer 4 auf, welche einen Chargenraum 5 umfaßt. Ein Umwälzgebläse 6, welches von einem thermisch isolierten Antrieb 7 angetrieben wird, saugt aus dem Chargenraum das Atmosphärengas ab und wälzt es in den die Ofenkammer umgebenden Raum, in welchem nicht gezeigte Heizelemente angeordnet sind. Das Gas tritt dann mit der richtigen Temperatur wieder von unten in den Chargenraum 5 ein.1 shows an atmosphere furnace 1 known per se, consisting of a furnace housing 2, which is arranged on a frame 3. Internally the furnace 1 has a furnace chamber 4 which comprises a batch space 5. A circulation fan 6, which is driven by a thermally insulated drive 7 is driven, sucks the atmospheric gas from the batch space and it rolls into the space surrounding the furnace chamber, in which not shown Heating elements are arranged. The gas then comes out with the right one Put the temperature back into batch room 5 from below.

    Der Atmosphärenofen 1 umfaßt eine Gaszufuhrleitung 8, in welche über entsprechende Ventile die jeweils erforderlichen Gase in den Ofenraum geführt werden. So kann beispielsweise über das Regelventil 9a NH3, über das Regelventil 9b das Endo- bzw. Exogas, über das Regelventil 9c Stickstoff und über das Regelventil 9d Luft, Wasser oder ein sonstiges Oxidationsmittel zugeführt werden.The atmospheric furnace 1 comprises a gas supply line 8, into which the gases required in each case are fed into the furnace space via corresponding valves. For example, the regulating valve 9a NH 3 , the regulating valve 9b, the endogas or exogas, the regulating valve 9c, nitrogen and the regulating valve 9d, air, water or another oxidizing agent can be supplied.

    Zur Ermittlung des Sauerstoffpotentiales in der Ofenkammer 4 ist eine Sauerstoffsonde 10 vorgesehen, mit welcher das Sauerstoffpotential gemessen wird. Von einer nicht gezeigten Steuervorrichtung wird der Meßwert mit einem Sollwert verglichen. Wird eine Abweichung festgestellt, können von der Steuervorrichtung 13 die jeweiligen Ventile 9a, 9b und 9d angesteuert werden, um die Oxidationsatmosphäre in der Ofenkammer 4 zu modifizieren.An oxygen probe is used to determine the oxygen potential in the furnace chamber 4 10 provided with which the oxygen potential is measured becomes. From a control device, not shown, the measured value with compared to a target value. If a discrepancy is found, the Control device 13 controls the respective valves 9a, 9b and 9d to modify the oxidation atmosphere in the furnace chamber 4.

    Eine entsprechende Ausführungsform ist in Fig. 2 gezeigt. Der Atmosphärenofen 1 ist in der beschriebenen Weise aufgebaut. Die Figur zeigt die Verwendung einer sogenannten Endexo-Retorte. Anstelle der gezeigten Sauerstoffsonde 10 ist auch möglich, mittels einer Gasabführleitung 12 ein sogenanntes Probegas abzuführen und außerhalb des Atmosphärenofens 1 mittels einer nicht gezeigten Sauerstoffsonde (λ-Sonde) zu messen. Über das Regelventil 9a kann beispielsweise Ammoniak über eine gesonderte Zuführleitung 8 in den Ofen eingebracht werden. Während der Nachoxidation bleibt dieses Ventil geschlossen. Über das Stellventil 9b wird Erdgas zugeführt. Überschreitet der gemessene Sauerstoffpotentialwert den Sollwert, wird das Ventil 9b geöffnet. Bei Unterschreiten des Sollwertes wird die Erdgaszufuhr weggeschaltet. Über die Sauerstoffquelle 11 und das Ventil 9c wird nur Oxidationsmittel der Ofenkammer 4 zugeführt. A corresponding embodiment is shown in FIG. 2. The atmosphere furnace 1 is constructed in the manner described. The figure shows the use a so-called endexo retort. Instead of the shown Oxygen probe 10 is also possible by means of a gas discharge line 12 to discharge so-called sample gas and outside the atmosphere furnace 1 to be measured using an oxygen probe (λ probe), not shown. About the Control valve 9a can, for example, ammonia via a separate Feed line 8 are introduced into the furnace. During post-oxidation this valve remains closed. Natural gas is produced via the control valve 9b fed. If the measured oxygen potential value exceeds the setpoint, valve 9b is opened. If the value falls below the setpoint, the Natural gas supply switched off. Via the oxygen source 11 and the valve 9c only oxidant is supplied to the furnace chamber 4.

    Das in der Figur 3 gezeigte Schaubild zeigt den erfindungsgemäßen Regelbereich, welcher durch die Sollwertfestlegung eingehalten werden soll. Das Schaubild zeigt die Sauerstoffsondenspannung mV über der Temperatur in °C. Der gewünschte Bereich, bei welchem in der Oxidationsatmosphäre bei der gegebenen Oxidationstemperatur die Oxidation immer gerade oberhalb der Enstehungsgrenze von Fe3O4-Oxid, aber regelmäßig unterhalb der Entstehungsgrenze der anderen Eisenoxide liegt, läßt sich, wie in Fig. 3 gezeigt, beispielsweise in dem Temperaturbereich von etwa 450°C bis etwa 650°C mit einer Sauerstoffsondenspannung zwischen etwa 1100 mV und 800 mV (schraffierter Bereich) angeben. The diagram shown in FIG. 3 shows the control range according to the invention, which is to be maintained by the setpoint determination. The diagram shows the oxygen probe voltage mV over the temperature in ° C. The desired range, in which in the oxidation atmosphere at the given oxidation temperature the oxidation is always just above the formation limit of Fe 3 O 4 oxide, but regularly below the formation limit of the other iron oxides, can be shown, for example, in FIG specify the temperature range from approximately 450 ° C to approximately 650 ° C with an oxygen probe voltage between approximately 1100 mV and 800 mV (hatched area).

    BezugszeichenlisteReference list

    11
    AtmosphärenofenAtmospheric furnace
    22nd
    Gehäusecasing
    33rd
    Gestellframe
    44th
    OfenkammerFurnace chamber
    55
    ChargenraumBatch room
    66
    UmwälzgebläseCirculation blowers
    77
    Antriebdrive
    88th
    GaszufuhrleitungGas supply line
    9a9a
    VentilValve
    9b9b
    VentilValve
    9c9c
    VentilValve
    9d9d
    VentilValve
    1010th
    SauerstoffsondeOxygen probe
    1111
    SauerstoffquelleOxygen source
    1212th
    GasabführleitungGas discharge line
    1313
    SteuervorrichtungControl device

    Claims (13)

    1. Process for producing uniform oxide layers on metallic workpieces following a nitration or nitrocarburisation process, wherein the workpieces are exposed to an oxidising atmosphere at given temperature for a preset time after nitration or nitrocarburisation, characterised in that the oxygen potential existing in the oxidising atmosphere is determined continuously, the measured result is compared with a preset theoretical value and in the case of deviations the oxidising atmosphere is modified until the measured result agrees with the theoretical value, wherein the theoretical value is fixed so that the oxygen potential at the given oxidising temperature always lies above the formation limit of Fe3O4 oxide, but below the formation limit of other iron oxides.
    2. Process according to claim 1, characterised in that the theoretical value for the oxygen potential is set between 1,100 mV and 800 mV at temperatures between 450°C and 650°C.
    3. Process according to claim 1 or 2, characterised in that oxidising agent is supplied when the theoretical value is not reached.
    4. Process according to one of the preceding claims, characterised in that the supply of oxidising agent is stopped when the theoretical value is exceeded.
    5. Process according to one of the preceding claims, characterised in that a reducing agent is supplied when the theoretical value is exceeded.
    6. Process according to one of the preceding claims, characterised in that the supply of reducing agent is stopped when the theoretical value is not reached.
    7. Process according to one of the preceding claims, characterised in that when the theoretical value is exceeded the oxidising agent is disconnected and the reducing agent connected at the same time or alternately.
    8. Process according to one of the preceding claims, characterised in that when the theoretical value is not reached the oxidising agent is connected and the reducing disconnected at the same time or alternately.
    9. Process according to one of the preceding claims, characterised in that the oxidising agent contains air H2O, CO2 and/or N2O.
    10. Process according to one of the preceding claims, characterised in that the reducing agent contains H2, NH3, CH4 and/or CO.
    11. Device for carrying out the process according to one of claims 1 to 10, wherein the nitration or nitrocarburisation and the subsequent oxidisation is carried out in an atmospheric furnace (1) which has at least one gas supply line (8), characterised in that an oxygen probe (10) is arranged in the furnace chamber (4) and in that a control device is connected to the oxygen probe and controls the gas supply to the atmospheric furnace (1) as a function of the measured value.
    12. Device according to claim 11, characterised in that the control device controls the gas supply via valves (9a, 9b, 9d).
    13. Device according to one of claims 11 or 12, characterised in that an endexo retort is arranged in the region of the gas supply (8).
    EP94116881A 1993-11-18 1994-10-26 Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process Expired - Lifetime EP0655512B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4339404 1993-11-18
    DE4339404A DE4339404A1 (en) 1993-11-18 1993-11-18 Process for producing uniform oxidation layers on metallic workpieces and device for carrying out the process

    Publications (2)

    Publication Number Publication Date
    EP0655512A1 EP0655512A1 (en) 1995-05-31
    EP0655512B1 true EP0655512B1 (en) 2000-07-19

    Family

    ID=6502908

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94116881A Expired - Lifetime EP0655512B1 (en) 1993-11-18 1994-10-26 Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process

    Country Status (4)

    Country Link
    EP (1) EP0655512B1 (en)
    AT (1) ATE194855T1 (en)
    DE (2) DE4339404A1 (en)
    ES (1) ES2149835T3 (en)

    Families Citing this family (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19938009C1 (en) * 1999-08-11 2000-10-26 Ipsen Ind Int Gmbh Device for heat treating metallic workpieces comprises a heat-resistant lined furnace chamber that is divided into a region of reduced cross-section leading into first treatment zone
    DE50001540D1 (en) * 2000-02-04 2003-04-30 Ipsen Int Gmbh Process for nitriding and / or nitrocarburizing higher alloy steels
    DE10162339A1 (en) * 2001-12-18 2003-07-10 Messer Griesheim Gmbh Process for producing an oxide layer on metal parts
    DE10235131A1 (en) 2002-08-01 2004-02-19 Ipsen International Gmbh Method and device for blackening components
    DE202005011573U1 (en) * 2005-07-22 2006-11-23 JOH. WINKLHOFER & SÖHNE GMBH & Co. KG Articulated chain with nitrided bearing surface with oxidation layer
    ITMI20110366A1 (en) * 2011-03-10 2012-09-11 Sol Spa PROCEDURE FOR STEEL TREATMENT.
    DE102015204656A1 (en) * 2015-03-16 2016-09-22 Aktiebolaget Skf Layer formation for rolling bearing components
    DE102021213888A1 (en) * 2021-12-07 2023-06-07 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for localized nitriding or nitrocarburizing of the surface of a component

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4439248A (en) * 1982-02-02 1984-03-27 Cabot Corporation Method of heat treating NICRALY alloys for use as ceramic kiln and furnace hardware
    GB8310102D0 (en) * 1983-04-14 1983-05-18 Lucas Ind Plc Corrosion resistant steel components
    DE3419638C2 (en) * 1984-05-25 1987-02-26 MAN Technologie GmbH, 8000 München Process for the oxidative production of protective layers on an alloy
    DD278365A1 (en) * 1988-12-22 1990-05-02 Thaelmann Schwermaschbau Veb METHOD FOR GAS OXYNITRATION OF COMPONENTS OF IRON MATERIALS

    Also Published As

    Publication number Publication date
    DE59409455D1 (en) 2000-08-24
    EP0655512A1 (en) 1995-05-31
    ES2149835T3 (en) 2000-11-16
    ATE194855T1 (en) 2000-08-15
    DE4339404A1 (en) 1995-05-24

    Similar Documents

    Publication Publication Date Title
    DE2824171A1 (en) METHOD OF CARBURIZING STEEL
    DE2522485C3 (en) Process for hot-metallizing strips or sheets made of low-alloy steels
    DE2710748B2 (en) Process for carburizing workpieces made of iron
    EP1816219A1 (en) Process for the heat treatment of metal strips by direct flame impingement
    DE3411605C2 (en) Process and device for gas carburizing of steel
    EP0655512B1 (en) Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process
    DE2909978A1 (en) METHOD AND DEVICE FOR REGULATING THE CARBON LEVEL OF A GAS MIXTURE REACTING IN A FURNACE
    DE3042469A1 (en) NITRIDE USE TREATMENT AND THE PRODUCT OBTAINED THROUGH IT
    EP1019561A1 (en) Method and device for joint oxydation and heat treatment of workpieces
    DE3139622C2 (en) Process for gas carburizing of steel and device for its implementation
    EP1786935B1 (en) Method for the heat treatment of bearing parts made of steel
    WO2024017440A1 (en) Method for setting an oven atmosphere in a heat-treatment oven
    EP1015647B1 (en) Method for thermal treatment of parts
    DE69107931T2 (en) Continuous annealing line with a carburizing or nitriding furnace.
    DE954607C (en) Process for decarburizing the surface layers of workpieces made of iron or steel
    DE2501050C3 (en) Deformation process for a workpiece made of structural steel
    DE2539722B2 (en) Process for the thermal treatment of steel in a reducing and non-decarburizing atmosphere
    DE3129939C2 (en) Process for the two-stage nitriding of parts made of iron
    DE10325795B4 (en) Method for producing carburized steel strips
    DE3623105C1 (en) Process for the heat treatment of steel parts
    DE2152440A1 (en) Soot free steel carburizing system - with automatic control of carbon potential of gas and soot threshold
    DE3231699A1 (en) Process and apparatus for producing a blackening or bluing oxide layer on the surface of iron-containing parts produced by powder metallurgy
    DE10255590A1 (en) Process for glue-free annealing of metal parts
    EP1456422B1 (en) Method for avoiding adhesions and scratches during recrystallization annealing of cold rolled strips
    DE102004016975B4 (en) Process for the heat treatment of metals

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE ES FR GB IT LI SE

    17P Request for examination filed

    Effective date: 19951125

    17Q First examination report despatched

    Effective date: 19961004

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: IPSEN INTERNATIONAL GMBH

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE ES FR GB IT LI SE

    REF Corresponds to:

    Ref document number: 194855

    Country of ref document: AT

    Date of ref document: 20000815

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59409455

    Country of ref document: DE

    Date of ref document: 20000824

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000821

    ITF It: translation for a ep patent filed
    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2149835

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20010917

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20011001

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021027

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021031

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021031

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20121023

    Year of fee payment: 19

    Ref country code: FR

    Payment date: 20121031

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20121026

    Year of fee payment: 19

    Ref country code: ES

    Payment date: 20121026

    Year of fee payment: 19

    Ref country code: GB

    Payment date: 20121019

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20121011

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 194855

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20131026

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20131026

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131026

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59409455

    Country of ref document: DE

    Effective date: 20140501

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131031

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131026

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131026

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140501

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20141107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131027