EP0655512B1 - Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process - Google Patents
Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process Download PDFInfo
- Publication number
- EP0655512B1 EP0655512B1 EP94116881A EP94116881A EP0655512B1 EP 0655512 B1 EP0655512 B1 EP 0655512B1 EP 94116881 A EP94116881 A EP 94116881A EP 94116881 A EP94116881 A EP 94116881A EP 0655512 B1 EP0655512 B1 EP 0655512B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- process according
- theoretical value
- oxidising
- oxidation
- gas supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000000758 substrate Substances 0.000 title abstract 2
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000001301 oxygen Substances 0.000 claims abstract description 30
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000007789 gas Substances 0.000 claims description 19
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 16
- 239000007800 oxidant agent Substances 0.000 claims description 13
- 239000000523 sample Substances 0.000 claims description 13
- 235000013980 iron oxide Nutrition 0.000 claims description 9
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 claims description 4
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 3
- 238000006396 nitration reaction Methods 0.000 claims 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 46
- 230000003647 oxidation Effects 0.000 abstract description 31
- 238000005121 nitriding Methods 0.000 abstract description 8
- 238000005259 measurement Methods 0.000 abstract description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- -1 CO 2 Chemical compound 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001337 iron nitride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/34—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
Definitions
- the invention relates to a method for producing uniform oxidation layers on metallic workpieces following a nitriding or Nitrocarburizing process, the workpieces after nitriding or Nitrocarburizing at a given temperature for a given time Oxidation atmosphere are exposed.
- the generic methods are used to improve the wear or. the corrosion resistance of the surfaces of components made of ferrous materials.
- the nitrocarburizing process is carried out as a special nitriding process at temperatures between 570 ° C and 700 ° C. This minimizes the delay.
- the workpieces are exposed to an oxidation atmosphere.
- the post-oxidation can significantly increase the wear resistance and in particular the corrosion resistance of the nitrocarburized surfaces.
- the workpieces are oxidized in an oxygen-containing atmosphere in an atmosphere-sphere furnace after the nitriding or nitrocarburizing.
- This post-oxidation normally takes place at temperatures between 500 ° C and 550 ° C, but is not limited to this range. Air, water vapor, CO 2 , nitrous oxide and mixtures of these gases with nitrogen or ammonia are primarily used for the oxidation.
- the aim of the post-oxidation is to convert the outer edge layer of the workpieces, which essentially consists of iron nitrides or carbonitrides, into a thin iron oxide layer.
- an iron oxide layer of the form Fe 3 O 4 is sought, the so-called magnetite. Desired oxidation layer thicknesses are between 0.5 and 2 ⁇ m in the case of predominantly corrosive stress, or between 1 and 3 ⁇ m in the case of predominant wear and tear.
- the oxide layers are too thick and can flake off. If the oxidation effect of the oxidation atmosphere is set incorrectly, other iron oxide modifications also arise, such as Fe 2 O 3 or FeO. These iron oxide modifications do not improve the corrosion and wear behavior of the workpieces, they can even worsen it. The setting of such iron oxides should therefore be avoided during post-oxidation. Generating Fe 3 O 4 layers that are too thick can also be harmful, particularly in the case of corrosion, as practice has shown. The targeted setting of the desired layer modification and thickness setting during post-oxidation is therefore of particular importance.
- the object of the invention is to improve a method for producing uniform oxidation layers of the generic type in such a way that defined, uniform oxidation layers and workpiece surface properties are achieved. Furthermore, an apparatus for performing the method is to be provided.
- the method according to the invention is further developed in that the oxygen potential present in the oxidation atmosphere is continuously determined, the measurement result is compared with a predetermined target value and, in the event of deviations, the oxidation atmosphere is modified until the measurement result matches the target value, the target value being so It is determined that the oxygen potential at the given oxidation temperature is always above the formation limit of Fe 3 O 4 oxide, but below the formation limit of other iron oxides.
- the oxide layers have a uniform appearance and that Surface properties are defined and can be easily reproduced.
- the measured oxygen potential is below the specified target value, further oxidizing agent is fed. If the measured oxygen potential value is above of the predetermined target value, then according to a proposal of the invention the supply of the oxidant stopped. Alternatively or additionally, the Oxidation atmosphere can also be supplied with a reducing agent.
- Combinations of the proposed measures are also part of the Invention possible.
- the oxidant path connection and the reducing agent connection made both simultaneously and alternately.
- the oxidant connection is undershot and the reducing agent path circuit also both made simultaneously and alternately.
- Air, water, CO 2 , N 2 O and the like are advantageously supplied as the oxidizing agent, these oxidizing agents mentioned being able to be supplied individually but also in the context of gas mixtures from these components.
- H 2 , NH 3 , CH 4 or CO are advantageously proposed as reducing agents. These components can also be used individually or as a gas mixture.
- a device for post-oxidation after nitrocarburizing comprises or nitriding an atmosphere furnace, which is a heater and has at least one gas supply line.
- atmosphere furnaces which are a heater and has at least one gas supply line.
- the device according to the invention for carrying out the method of manufacture uniform oxidation layers on metallic workpieces further developed in that an oxygen probe is arranged in the furnace chamber and that a control device is connected to the oxygen probe which is, depending on the measured value, the gas supply to the atmosphere furnace regulates.
- the oxygen potential can be determined with this oxygen probe determined at any time and depending on the time evaluate the temperature and the like.
- the control device acts in the range of Valves in the gas supply lines.
- a particularly advantageous device-side solution for controlling the Oxygen potential during post-oxidation is through the use of a Endexo retort marked.
- Such retorts are used to generate Carrier gas in nitrocarburizing furnaces already known.
- Using the Endexo retort Endogas is usually produced during nitrocarburization.
- Nitriding agent for example ammonia
- the Endexo retort is then carried out in such a way that when the target value is undershot of the oxygen potential in the oxidation atmosphere is the natural gas supply switched off, or if the setpoint is exceeded, the natural gas supply is switched on again with constant air supply to the retort.
- the furnace 1 shows an atmosphere furnace 1 known per se, consisting of a furnace housing 2, which is arranged on a frame 3. Internally the furnace 1 has a furnace chamber 4 which comprises a batch space 5. A circulation fan 6, which is driven by a thermally insulated drive 7 is driven, sucks the atmospheric gas from the batch space and it rolls into the space surrounding the furnace chamber, in which not shown Heating elements are arranged. The gas then comes out with the right one Put the temperature back into batch room 5 from below.
- the atmospheric furnace 1 comprises a gas supply line 8, into which the gases required in each case are fed into the furnace space via corresponding valves.
- the regulating valve 9a NH 3 , the regulating valve 9b, the endogas or exogas, the regulating valve 9c, nitrogen and the regulating valve 9d, air, water or another oxidizing agent can be supplied.
- An oxygen probe is used to determine the oxygen potential in the furnace chamber 4 10 provided with which the oxygen potential is measured becomes. From a control device, not shown, the measured value with compared to a target value. If a discrepancy is found, the Control device 13 controls the respective valves 9a, 9b and 9d to modify the oxidation atmosphere in the furnace chamber 4.
- FIG. 2 A corresponding embodiment is shown in FIG. 2.
- the atmosphere furnace 1 is constructed in the manner described.
- the figure shows the use a so-called endexo retort.
- Oxygen probe 10 is also possible by means of a gas discharge line 12 to discharge so-called sample gas and outside the atmosphere furnace 1 to be measured using an oxygen probe ( ⁇ probe), not shown.
- About the Control valve 9a can, for example, ammonia via a separate Feed line 8 are introduced into the furnace. During post-oxidation this valve remains closed. Natural gas is produced via the control valve 9b fed. If the measured oxygen potential value exceeds the setpoint, valve 9b is opened. If the value falls below the setpoint, the Natural gas supply switched off. Via the oxygen source 11 and the valve 9c only oxidant is supplied to the furnace chamber 4.
- the diagram shown in FIG. 3 shows the control range according to the invention, which is to be maintained by the setpoint determination.
- the diagram shows the oxygen probe voltage mV over the temperature in ° C.
- the desired range in which in the oxidation atmosphere at the given oxidation temperature the oxidation is always just above the formation limit of Fe 3 O 4 oxide, but regularly below the formation limit of the other iron oxides, can be shown, for example, in FIG specify the temperature range from approximately 450 ° C to approximately 650 ° C with an oxygen probe voltage between approximately 1100 mV and 800 mV (hatched area).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Chemically Coating (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung einheitlicher Oxidationsschichten auf metallischen Werkstücken im Anschluß an ein Nitrier- oder Nitrocarburierverfahren, wobei die Werkstücke nach dem Nitrieren oder Nitrocarburieren bei gegebener Temperatur für eine vorgegebene Zeit einer Oxidationsatmosphäre ausgesetzt werden.The invention relates to a method for producing uniform oxidation layers on metallic workpieces following a nitriding or Nitrocarburizing process, the workpieces after nitriding or Nitrocarburizing at a given temperature for a given time Oxidation atmosphere are exposed.
Die gattungsgemäßen Verfahren werden zur Verbesserung des Verschleiß-bzw. des Korrosionswiderstandes der Oberflächen von Bauteilen aus Eisenwerkstoffen eingesetzt. Dabei wird das Nitrocarburierverfahren als besonderes Nitrierverfahren bei Temperaturen zwischen 570°C und 700°C durchgeführt. Dadurch wird der Verzug geringgehalten. Im Anschluß an das Nitrieren oder Nitrocarburieren werden die Werkstücke einer Oxidationsatmosphäre ausgesetzt. Man spricht von der sogenannten Nachoxidation. Durch die Nachoxidation können der Verschleißwiderstand und insbesondere der Korrosionswiderstand der nitrocarburierten Oberflächen noch erheblich gesteigert werden. Hierzu werden in Atomsphärenöfen die Werkstücke im Anschluß an das Nitrieren bzw. Nitrocarburieren in einer sauerstoffhaltigen Atmosphäre oxidiert. Diese Nachoxidation findet normalerweise bei Temperaturen zwischen 500°C und 550°C statt, ist jedoch auf diesen Bereich nicht festgelegt. Zur Oxidation werden in erster Linie Luft, Wasserdampf, CO2, Lachgas und Gemische aus diesen Gasen mit Stickstoff oder auch Ammoniak verwendet. Das Ziel der Nachoxidation ist es, die äußere Randschicht der Werkstücke, die im wesentlichen aus Eisennitriden bzw. Carbonitriden besteht, in eine dünne Eisenoxidschicht umzuwandeln. Im Idealfall wird eine Eisenoxidschicht der Form Fe3O4 angestrebt, das sogenannte Magnetit. Gewünschte Oxidationsschichtdicken liegen zwischen 0,5 und 2µm bei einer vorwiegend korrosiven Beanspruchung, bzw. zwischen 1 und 3µm im Falle einer vorwiegenden Verschleißbeanspruchung.The generic methods are used to improve the wear or. the corrosion resistance of the surfaces of components made of ferrous materials. The nitrocarburizing process is carried out as a special nitriding process at temperatures between 570 ° C and 700 ° C. This minimizes the delay. After nitriding or nitrocarburizing, the workpieces are exposed to an oxidation atmosphere. One speaks of the so-called post-oxidation. The post-oxidation can significantly increase the wear resistance and in particular the corrosion resistance of the nitrocarburized surfaces. For this purpose, the workpieces are oxidized in an oxygen-containing atmosphere in an atmosphere-sphere furnace after the nitriding or nitrocarburizing. This post-oxidation normally takes place at temperatures between 500 ° C and 550 ° C, but is not limited to this range. Air, water vapor, CO 2 , nitrous oxide and mixtures of these gases with nitrogen or ammonia are primarily used for the oxidation. The aim of the post-oxidation is to convert the outer edge layer of the workpieces, which essentially consists of iron nitrides or carbonitrides, into a thin iron oxide layer. Ideally, an iron oxide layer of the form Fe 3 O 4 is sought, the so-called magnetite. Desired oxidation layer thicknesses are between 0.5 and 2 µm in the case of predominantly corrosive stress, or between 1 and 3 µm in the case of predominant wear and tear.
Wird zu lang, zu stark oder bei zu hohen Temperaturen oxidiert, so bilden sich zu dicke Oxidschichten, die abplatzen können. Bei falsch eingestellter Oxidationswirkung der Oxidationsatmosphäre entstehen auch andere Eisenoxidmodifikationen, wie beispielsweise das Fe2O3 oder das FeO. Diese Eisenoxidmodifikationen verbessern das Korrosions- und Verschleißverhalten der Werkstücke nicht, sondern sie können es sogar verschlechtern. Die Einstellung solcher Eisenoxide ist daher bei der Nachoxidation zu vermeiden. Auch das Erzeugen zu dicker Fe3O4-Schichten kann gerade im Fall von Korrosionsbeanspruchung schädlich sein, wie die Praxis gezeigt hat. Die gezielte Einstellung der angestrebten Schichtmodifikation und Dickeneinstellung bei der Nachoxidation ist daher von besonderer Bedeutung.If the oxidation is too long, too strong or at too high temperatures, the oxide layers are too thick and can flake off. If the oxidation effect of the oxidation atmosphere is set incorrectly, other iron oxide modifications also arise, such as Fe 2 O 3 or FeO. These iron oxide modifications do not improve the corrosion and wear behavior of the workpieces, they can even worsen it. The setting of such iron oxides should therefore be avoided during post-oxidation. Generating Fe 3 O 4 layers that are too thick can also be harmful, particularly in the case of corrosion, as practice has shown. The targeted setting of the desired layer modification and thickness setting during post-oxidation is therefore of particular importance.
Es ist im Stand der Technik bekannt, diese Schichtsteuerung über die
Oxidationstemperatur und/oder die Oxidationsdauer vorzunehmen. Im HTM
43, 1988, Heft 6, Seite 365 bis 372, ist "NIOX - ein modifiziertes
Nitrocarburierverfahren mit anschließender Oxidation" von S. Pakrasi
beschrieben. Hier wird eine einzuhaltende Temperatur von 520°C angegeben,
in welcher die Werkstücke für eine Stunde lang in Wasserdampf behandelt
werden. Gemäß einem anderen Verfahren, dem sogenannten "NITROTEC"-Randschichtbehandlungsverfahren,
veröffentlicht von C. Dawes in TZ für
Metallbearbeitung, Heft 6, 1984, wird eine Nachoxidation bei 570°C bis
580°C für 30 sec. beschrieben, wobei die Nachoxidation an Luft durchgeführt
wird.It is known in the prior art that this shift control over the
Oxidation temperature and / or to carry out the oxidation duration. In the HTM
43, 1988,
In der Praxis hat sich gezeigt, daß die Steuerung der Schichtmodifikation und Schichtdicke allein durch die Einstellung der Oxidationstemperatur und/oder der Oxidationsdauer sowie des gewählten Oxidationsmediums, d.h. beispielsweise Luft oder Wasser, nicht ausreicht, um einheitliche Oxidationsschichten und Oberflächeneigenschaften zu garantieren. Je nach Ofen, Werkstückoberflächenzustand und weiteren Faktoren werden unterschiedliche Nachoxidationsergebnisse erzielt. So hat sich gezeigt, daß die Nachoxidation an Luft nicht immer zu einheitlich gefärbten Oberflächen führt. Es können fleckig ausgebildete gebildete Oberflächen entstehen, obwohl vorgegebene Oxidationstemperaturen und Oxidationszeiträume eingehalten werden.In practice it has been shown that the control of the layer modification and Layer thickness solely by setting the oxidation temperature and / or the duration of the oxidation and the chosen oxidation medium, i.e. for example Air or water, not enough to create uniform layers of oxidation and guarantee surface properties. Depending on the furnace, workpiece surface condition and other factors will have different post-oxidation results achieved. It has been shown that post-oxidation in air does not always lead to uniformly colored surfaces. It can be spotty trained Formed surfaces arise, although given oxidation temperatures and oxidation periods are observed.
Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung einheitlicher Oxidationsschichten der gattungsgemäßen Art dahingehend zu verbessern, daß definierte, einheitliche Oxidationsschichten und Werkstückoberflächeneigenschaften erzielt werden. Weiterhin soll eine Vorrichtung zur Durchführung des Verfahrens bereitgestellt werden.Proceeding from this, the object of the invention is to improve a method for producing uniform oxidation layers of the generic type in such a way that defined, uniform oxidation layers and workpiece surface properties are achieved. Furthermore, an apparatus for performing the method is to be provided.
Als technische Lösung dieser Aufgabe wird das erfindungsgemäße Verfahren dadurch weiterentwickelt, daß das in der Oxidationsatmosphäre vorhandene Sauerstoffpotential ständig bestimmt wird, das Meßergebnis mit einem vorgegebenen Sollwert verglichen und bei Abweichungen die Oxidationsatmosphäre modifiziert wird, bis das Meßergebnis mit dem Sollwert übereinstimmt, wobei der Sollwert so festgelegt wird, daß das Sauerstoffpotential bei der gegebenen Oxidationstemperatur immer oberhalb der Entstehungsgrenze von Fe3O4-Oxid, aber unterhalb der Entstehungsgrenze anderer Eisenoxide liegt.As a technical solution to this problem, the method according to the invention is further developed in that the oxygen potential present in the oxidation atmosphere is continuously determined, the measurement result is compared with a predetermined target value and, in the event of deviations, the oxidation atmosphere is modified until the measurement result matches the target value, the target value being so It is determined that the oxygen potential at the given oxidation temperature is always above the formation limit of Fe 3 O 4 oxide, but below the formation limit of other iron oxides.
Durch die Regelung des Sauerstoffpotentials in der Oxidationsatmosphäre kann sichergestellt werden, daß keine unerwünschten Eisenoxidmodifikationen gebildet werden. Darüber hinaus sind die erzielten Ergebnisse immer einheitlich. Die Oxidschichten haben eine einheitliche Erscheinungsform und die Oberflächeneigenschaften sind definiert und problemlos nachbildbar.By regulating the oxygen potential in the oxidation atmosphere can be ensured that no undesirable iron oxide modifications be formed. In addition, the results achieved are always uniform. The oxide layers have a uniform appearance and that Surface properties are defined and can be easily reproduced.
Für die Einstellung des Sollwertes des Sauerstoffpotentials hat sich ein Bereich zwischen 1100 mV und 800 mV bei Temperaturen von 450°C bis 650°C als geeignet erwiesen.There is a range for setting the target value of the oxygen potential between 1100 mV and 800 mV at temperatures from 450 ° C to 650 ° C as proven suitable.
Mit Vorteil wird angegeben, daß dann, wenn das gemessene Sauerstoffpotential unterhalb des vorgegebenen Sollwertes liegt, weiteres Oxidationsmittel zugeführt wird. Liegt der gemessene Sauerstoffpotentialwert oberhalb des vorgegebenen Sollwertes, so wird gemäß einem Vorschlag der Erfindung die Zufuhr des Oxidationsmittels gestoppt. Alternativ oder zusätzlich kann der Oxidationsatmosphäre auch ein Reduktionsmittel zugeführt werden.It is advantageously stated that when the measured oxygen potential is below the specified target value, further oxidizing agent is fed. If the measured oxygen potential value is above of the predetermined target value, then according to a proposal of the invention the supply of the oxidant stopped. Alternatively or additionally, the Oxidation atmosphere can also be supplied with a reducing agent.
Auch sind Kombinationen der vorgeschlagenen Maßnahmen im Rahmen der Erfindung möglich. Gemäß einem Vorschlag der Erfindung wird bei Sollwertüberschreitungen die Oxidationsmittelwegschaltung und die Reduktionsmittelzuschaltung sowohl gleichzeitig als auch im Wechsel vorgenommen. Bei einer Sollwertunterschreitung wird gemäß einem Vorschlag der Erfindung die Oxidationsmittelzuschaltung und die Reduktionsmittelwegschaltung ebenfalls sowohl gleichzeitig als auch im Wechsel vorgenommen.Combinations of the proposed measures are also part of the Invention possible. According to a proposal of the invention, when the setpoint is exceeded the oxidant path connection and the reducing agent connection made both simultaneously and alternately. At a According to a proposal of the invention, the oxidant connection is undershot and the reducing agent path circuit also both made simultaneously and alternately.
Als Oxidationsmittel wird in vorteilhafter Weise Luft, Wasser, CO2, N2O und dergleichen zugeführt, wobei diese genannten Oxidationsmittel einzeln aber auch im Rahmen von Gasmischungen aus diesen Komponenten zugeführt werden können.Air, water, CO 2 , N 2 O and the like are advantageously supplied as the oxidizing agent, these oxidizing agents mentioned being able to be supplied individually but also in the context of gas mixtures from these components.
Als Reduktionsmittel wird in vorteilhafter Weise H2, NH3, CH4 oder CO vorgeschlagen. Auch diese Komponenten können einzeln oder als Gasmischung verwendet werden.H 2 , NH 3 , CH 4 or CO are advantageously proposed as reducing agents. These components can also be used individually or as a gas mixture.
Vorrichtungsseitig umfaßt eine Vorrichtung zur Nachoxidation nach dem Nitrocarburieren bzw. Nitrieren einen Atmosphärenofen, der eine Heizvorrichtung und wenigstens eine Gaszuführleitung aufweist. Üblicherweise weisen bekannte Atmosphärenöfen Umwälzvorrichtungen auf, welche das die Atmosphäre bildende Gas aus einem Chargenraum heraus, und entlang von Heizeinrichtungen oder Wärmetauschern wieder in den Chargenraum zurückführen.On the device side, a device for post-oxidation after nitrocarburizing comprises or nitriding an atmosphere furnace, which is a heater and has at least one gas supply line. Usually point known atmosphere furnaces on circulating devices, which the the atmosphere forming gas from a batch room and along heaters or return heat exchangers to the batch room.
Die erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens zur Herstellung einheitlicher Oxidationsschichten auf metallischen Werkstücken ist dadurch weiterentwickelt, daß in der Ofenkammer eine Sauerstoffsonde angeordnet ist und daß eine Steuereinrichtung mit der Sauerstoffsonde verbunden ist, welche in Abhängigkeit von dem Meßwert die Gaszufuhr zum Atmosphärenofen regelt.The device according to the invention for carrying out the method of manufacture uniform oxidation layers on metallic workpieces further developed in that an oxygen probe is arranged in the furnace chamber and that a control device is connected to the oxygen probe which is, depending on the measured value, the gas supply to the atmosphere furnace regulates.
Mit dieser Sauerstoffsonde läßt sich verfahrensgemäß das Sauerstoffpotential zu jedem beliebigen Zeitpunkt bestimmten und in Abhängigkeit von der Zeit, der Temperatur und dgl. auswerten. Gemäß einer vorteilhaften Ausgestaltung der Erfindung wirkt die Steuereinrichtung auf im Bereich von Gaszuführungsleitungen liegende Ventile ein.According to the method, the oxygen potential can be determined with this oxygen probe determined at any time and depending on the time evaluate the temperature and the like. According to an advantageous embodiment According to the invention, the control device acts in the range of Valves in the gas supply lines.
Eine besonders vorteilhafte vorrichtungsseitige Lösung zur Regelung des Sauerstoffpotentials während der Nachoxidation ist durch den Einsatz einer Endexo-Retorte gekennzeichnet. Derartige Retorten sind zur Erzeugung von Trägergas bei Nitrocarburieröfen bereits bekannt. Mittels der Endexo-Retorte wird üblicherweise während der Nitrocarburierung Endogas hergestellt. Um die Endexo-Retorte für die Nachoxidation zu verwenden, braucht dann nur das Nitriermittel, beispielsweise das Ammoniak, abgeschaltet zu werden. Die Endexo-Retorte wird dann so geführt, daß bei Unterschreiten des Sollwertes des Sauerstoffpotentials in der Oxidationsatmosphäre die Erdgaszufuhr weggeschaltet, bzw. bei Überschreiten des Sollwertes die Erdgaszufuhr wieder zugeschaltet wird bei konstant bleibender Luftzuführung zur Retorte.A particularly advantageous device-side solution for controlling the Oxygen potential during post-oxidation is through the use of a Endexo retort marked. Such retorts are used to generate Carrier gas in nitrocarburizing furnaces already known. Using the Endexo retort Endogas is usually produced during nitrocarburization. To the Using Endexo retort for post-oxidation then only needs that Nitriding agent, for example ammonia, to be switched off. The Endexo retort is then carried out in such a way that when the target value is undershot of the oxygen potential in the oxidation atmosphere is the natural gas supply switched off, or if the setpoint is exceeded, the natural gas supply is switched on again with constant air supply to the retort.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der folgenden
Beschreibung anhand der Figuren. Dabei zeigen:
In Fig. 1 ist ein an sich bekannter Atmosphärenofen 1 gezeigt, bestehend aus
einem Ofengehäuse 2, welches auf einem Gestell 3 angeordnet ist. Im Inneren
weist der Ofen 1 eine Ofenkammer 4 auf, welche einen Chargenraum 5 umfaßt.
Ein Umwälzgebläse 6, welches von einem thermisch isolierten Antrieb 7
angetrieben wird, saugt aus dem Chargenraum das Atmosphärengas ab und
wälzt es in den die Ofenkammer umgebenden Raum, in welchem nicht gezeigte
Heizelemente angeordnet sind. Das Gas tritt dann mit der richtigen
Temperatur wieder von unten in den Chargenraum 5 ein.1 shows an
Der Atmosphärenofen 1 umfaßt eine Gaszufuhrleitung 8, in welche über entsprechende
Ventile die jeweils erforderlichen Gase in den Ofenraum geführt
werden. So kann beispielsweise über das Regelventil 9a NH3, über das Regelventil
9b das Endo- bzw. Exogas, über das Regelventil 9c Stickstoff und über
das Regelventil 9d Luft, Wasser oder ein sonstiges Oxidationsmittel zugeführt
werden.The
Zur Ermittlung des Sauerstoffpotentiales in der Ofenkammer 4 ist eine Sauerstoffsonde
10 vorgesehen, mit welcher das Sauerstoffpotential gemessen
wird. Von einer nicht gezeigten Steuervorrichtung wird der Meßwert mit
einem Sollwert verglichen. Wird eine Abweichung festgestellt, können von der
Steuervorrichtung 13 die jeweiligen Ventile 9a, 9b und 9d angesteuert
werden, um die Oxidationsatmosphäre in der Ofenkammer 4 zu modifizieren.An oxygen probe is used to determine the oxygen potential in the
Eine entsprechende Ausführungsform ist in Fig. 2 gezeigt. Der Atmosphärenofen
1 ist in der beschriebenen Weise aufgebaut. Die Figur zeigt die Verwendung
einer sogenannten Endexo-Retorte. Anstelle der gezeigten
Sauerstoffsonde 10 ist auch möglich, mittels einer Gasabführleitung 12 ein
sogenanntes Probegas abzuführen und außerhalb des Atmosphärenofens 1
mittels einer nicht gezeigten Sauerstoffsonde (λ-Sonde) zu messen. Über das
Regelventil 9a kann beispielsweise Ammoniak über eine gesonderte
Zuführleitung 8 in den Ofen eingebracht werden. Während der Nachoxidation
bleibt dieses Ventil geschlossen. Über das Stellventil 9b wird Erdgas
zugeführt. Überschreitet der gemessene Sauerstoffpotentialwert den Sollwert,
wird das Ventil 9b geöffnet. Bei Unterschreiten des Sollwertes wird die
Erdgaszufuhr weggeschaltet. Über die Sauerstoffquelle 11 und das Ventil 9c
wird nur Oxidationsmittel der Ofenkammer 4 zugeführt. A corresponding embodiment is shown in FIG. 2. The
Das in der Figur 3 gezeigte Schaubild zeigt den erfindungsgemäßen Regelbereich, welcher durch die Sollwertfestlegung eingehalten werden soll. Das Schaubild zeigt die Sauerstoffsondenspannung mV über der Temperatur in °C. Der gewünschte Bereich, bei welchem in der Oxidationsatmosphäre bei der gegebenen Oxidationstemperatur die Oxidation immer gerade oberhalb der Enstehungsgrenze von Fe3O4-Oxid, aber regelmäßig unterhalb der Entstehungsgrenze der anderen Eisenoxide liegt, läßt sich, wie in Fig. 3 gezeigt, beispielsweise in dem Temperaturbereich von etwa 450°C bis etwa 650°C mit einer Sauerstoffsondenspannung zwischen etwa 1100 mV und 800 mV (schraffierter Bereich) angeben. The diagram shown in FIG. 3 shows the control range according to the invention, which is to be maintained by the setpoint determination. The diagram shows the oxygen probe voltage mV over the temperature in ° C. The desired range, in which in the oxidation atmosphere at the given oxidation temperature the oxidation is always just above the formation limit of Fe 3 O 4 oxide, but regularly below the formation limit of the other iron oxides, can be shown, for example, in FIG specify the temperature range from approximately 450 ° C to approximately 650 ° C with an oxygen probe voltage between approximately 1100 mV and 800 mV (hatched area).
- 11
- AtmosphärenofenAtmospheric furnace
- 22nd
- Gehäusecasing
- 33rd
- Gestellframe
- 44th
- OfenkammerFurnace chamber
- 55
- ChargenraumBatch room
- 66
- UmwälzgebläseCirculation blowers
- 77
- Antriebdrive
- 88th
- GaszufuhrleitungGas supply line
- 9a9a
- VentilValve
- 9b9b
- VentilValve
- 9c9c
- VentilValve
- 9d9d
- VentilValve
- 1010th
- SauerstoffsondeOxygen probe
- 1111
- SauerstoffquelleOxygen source
- 1212th
- GasabführleitungGas discharge line
- 1313
- SteuervorrichtungControl device
Claims (13)
- Process for producing uniform oxide layers on metallic workpieces following a nitration or nitrocarburisation process, wherein the workpieces are exposed to an oxidising atmosphere at given temperature for a preset time after nitration or nitrocarburisation, characterised in that the oxygen potential existing in the oxidising atmosphere is determined continuously, the measured result is compared with a preset theoretical value and in the case of deviations the oxidising atmosphere is modified until the measured result agrees with the theoretical value, wherein the theoretical value is fixed so that the oxygen potential at the given oxidising temperature always lies above the formation limit of Fe3O4 oxide, but below the formation limit of other iron oxides.
- Process according to claim 1, characterised in that the theoretical value for the oxygen potential is set between 1,100 mV and 800 mV at temperatures between 450°C and 650°C.
- Process according to claim 1 or 2, characterised in that oxidising agent is supplied when the theoretical value is not reached.
- Process according to one of the preceding claims, characterised in that the supply of oxidising agent is stopped when the theoretical value is exceeded.
- Process according to one of the preceding claims, characterised in that a reducing agent is supplied when the theoretical value is exceeded.
- Process according to one of the preceding claims, characterised in that the supply of reducing agent is stopped when the theoretical value is not reached.
- Process according to one of the preceding claims, characterised in that when the theoretical value is exceeded the oxidising agent is disconnected and the reducing agent connected at the same time or alternately.
- Process according to one of the preceding claims, characterised in that when the theoretical value is not reached the oxidising agent is connected and the reducing disconnected at the same time or alternately.
- Process according to one of the preceding claims, characterised in that the oxidising agent contains air H2O, CO2 and/or N2O.
- Process according to one of the preceding claims, characterised in that the reducing agent contains H2, NH3, CH4 and/or CO.
- Device for carrying out the process according to one of claims 1 to 10, wherein the nitration or nitrocarburisation and the subsequent oxidisation is carried out in an atmospheric furnace (1) which has at least one gas supply line (8), characterised in that an oxygen probe (10) is arranged in the furnace chamber (4) and in that a control device is connected to the oxygen probe and controls the gas supply to the atmospheric furnace (1) as a function of the measured value.
- Device according to claim 11, characterised in that the control device controls the gas supply via valves (9a, 9b, 9d).
- Device according to one of claims 11 or 12, characterised in that an endexo retort is arranged in the region of the gas supply (8).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4339404 | 1993-11-18 | ||
DE4339404A DE4339404A1 (en) | 1993-11-18 | 1993-11-18 | Process for producing uniform oxidation layers on metallic workpieces and device for carrying out the process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0655512A1 EP0655512A1 (en) | 1995-05-31 |
EP0655512B1 true EP0655512B1 (en) | 2000-07-19 |
Family
ID=6502908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94116881A Expired - Lifetime EP0655512B1 (en) | 1993-11-18 | 1994-10-26 | Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0655512B1 (en) |
AT (1) | ATE194855T1 (en) |
DE (2) | DE4339404A1 (en) |
ES (1) | ES2149835T3 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19938009C1 (en) * | 1999-08-11 | 2000-10-26 | Ipsen Ind Int Gmbh | Device for heat treating metallic workpieces comprises a heat-resistant lined furnace chamber that is divided into a region of reduced cross-section leading into first treatment zone |
DE50001540D1 (en) * | 2000-02-04 | 2003-04-30 | Ipsen Int Gmbh | Process for nitriding and / or nitrocarburizing higher alloy steels |
DE10162339A1 (en) * | 2001-12-18 | 2003-07-10 | Messer Griesheim Gmbh | Process for producing an oxide layer on metal parts |
DE10235131A1 (en) | 2002-08-01 | 2004-02-19 | Ipsen International Gmbh | Method and device for blackening components |
DE202005011573U1 (en) * | 2005-07-22 | 2006-11-23 | JOH. WINKLHOFER & SÖHNE GMBH & Co. KG | Articulated chain with nitrided bearing surface with oxidation layer |
ITMI20110366A1 (en) * | 2011-03-10 | 2012-09-11 | Sol Spa | PROCEDURE FOR STEEL TREATMENT. |
DE102015204656A1 (en) * | 2015-03-16 | 2016-09-22 | Aktiebolaget Skf | Layer formation for rolling bearing components |
DE102021213888A1 (en) * | 2021-12-07 | 2023-06-07 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method and device for localized nitriding or nitrocarburizing of the surface of a component |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4439248A (en) * | 1982-02-02 | 1984-03-27 | Cabot Corporation | Method of heat treating NICRALY alloys for use as ceramic kiln and furnace hardware |
GB8310102D0 (en) * | 1983-04-14 | 1983-05-18 | Lucas Ind Plc | Corrosion resistant steel components |
DE3419638C2 (en) * | 1984-05-25 | 1987-02-26 | MAN Technologie GmbH, 8000 München | Process for the oxidative production of protective layers on an alloy |
DD278365A1 (en) * | 1988-12-22 | 1990-05-02 | Thaelmann Schwermaschbau Veb | METHOD FOR GAS OXYNITRATION OF COMPONENTS OF IRON MATERIALS |
-
1993
- 1993-11-18 DE DE4339404A patent/DE4339404A1/en not_active Withdrawn
-
1994
- 1994-10-26 DE DE59409455T patent/DE59409455D1/en not_active Expired - Lifetime
- 1994-10-26 EP EP94116881A patent/EP0655512B1/en not_active Expired - Lifetime
- 1994-10-26 AT AT94116881T patent/ATE194855T1/en active
- 1994-10-26 ES ES94116881T patent/ES2149835T3/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59409455D1 (en) | 2000-08-24 |
EP0655512A1 (en) | 1995-05-31 |
ES2149835T3 (en) | 2000-11-16 |
ATE194855T1 (en) | 2000-08-15 |
DE4339404A1 (en) | 1995-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2824171A1 (en) | METHOD OF CARBURIZING STEEL | |
DE2522485C3 (en) | Process for hot-metallizing strips or sheets made of low-alloy steels | |
DE2710748B2 (en) | Process for carburizing workpieces made of iron | |
EP1816219A1 (en) | Process for the heat treatment of metal strips by direct flame impingement | |
DE3411605C2 (en) | Process and device for gas carburizing of steel | |
EP0655512B1 (en) | Method for producing unitary oxidic layers on metallic substrates and apparatus for carrying out the process | |
DE2909978A1 (en) | METHOD AND DEVICE FOR REGULATING THE CARBON LEVEL OF A GAS MIXTURE REACTING IN A FURNACE | |
DE3042469A1 (en) | NITRIDE USE TREATMENT AND THE PRODUCT OBTAINED THROUGH IT | |
EP1019561A1 (en) | Method and device for joint oxydation and heat treatment of workpieces | |
DE3139622C2 (en) | Process for gas carburizing of steel and device for its implementation | |
EP1786935B1 (en) | Method for the heat treatment of bearing parts made of steel | |
WO2024017440A1 (en) | Method for setting an oven atmosphere in a heat-treatment oven | |
EP1015647B1 (en) | Method for thermal treatment of parts | |
DE69107931T2 (en) | Continuous annealing line with a carburizing or nitriding furnace. | |
DE954607C (en) | Process for decarburizing the surface layers of workpieces made of iron or steel | |
DE2501050C3 (en) | Deformation process for a workpiece made of structural steel | |
DE2539722B2 (en) | Process for the thermal treatment of steel in a reducing and non-decarburizing atmosphere | |
DE3129939C2 (en) | Process for the two-stage nitriding of parts made of iron | |
DE10325795B4 (en) | Method for producing carburized steel strips | |
DE3623105C1 (en) | Process for the heat treatment of steel parts | |
DE2152440A1 (en) | Soot free steel carburizing system - with automatic control of carbon potential of gas and soot threshold | |
DE3231699A1 (en) | Process and apparatus for producing a blackening or bluing oxide layer on the surface of iron-containing parts produced by powder metallurgy | |
DE10255590A1 (en) | Process for glue-free annealing of metal parts | |
EP1456422B1 (en) | Method for avoiding adhesions and scratches during recrystallization annealing of cold rolled strips | |
DE102004016975B4 (en) | Process for the heat treatment of metals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19951125 |
|
17Q | First examination report despatched |
Effective date: 19961004 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IPSEN INTERNATIONAL GMBH |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 194855 Country of ref document: AT Date of ref document: 20000815 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59409455 Country of ref document: DE Date of ref document: 20000824 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000821 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2149835 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010917 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20011001 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021031 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121023 Year of fee payment: 19 Ref country code: FR Payment date: 20121031 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20121026 Year of fee payment: 19 Ref country code: ES Payment date: 20121026 Year of fee payment: 19 Ref country code: GB Payment date: 20121019 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20121011 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 194855 Country of ref document: AT Kind code of ref document: T Effective date: 20131026 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131026 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59409455 Country of ref document: DE Effective date: 20140501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131026 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131026 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140501 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20141107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131027 |