EP0627019B1 - Process for the thermochemical-heat treatment of case-hardened steels - Google Patents

Process for the thermochemical-heat treatment of case-hardened steels Download PDF

Info

Publication number
EP0627019B1
EP0627019B1 EP93901704A EP93901704A EP0627019B1 EP 0627019 B1 EP0627019 B1 EP 0627019B1 EP 93901704 A EP93901704 A EP 93901704A EP 93901704 A EP93901704 A EP 93901704A EP 0627019 B1 EP0627019 B1 EP 0627019B1
Authority
EP
European Patent Office
Prior art keywords
temperature
nitrogen
carbon
nitrocarburising
holding time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93901704A
Other languages
German (de)
French (fr)
Other versions
EP0627019A1 (en
Inventor
Wenzel Bina
Dieter Ekkert
Werner Kreiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INA Waelzlager Schaeffler OHG
Original Assignee
INA Waelzlager Schaeffler OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INA Waelzlager Schaeffler OHG filed Critical INA Waelzlager Schaeffler OHG
Publication of EP0627019A1 publication Critical patent/EP0627019A1/en
Application granted granted Critical
Publication of EP0627019B1 publication Critical patent/EP0627019B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces

Definitions

  • the invention relates to a method for thermochemical-thermal Treatment of case-hardened steels in which an edge zone of a workpiece, in particular bucket tappets, roller bearing parts, gear and coupling elements, enriched with carbon and nitrogen and then undergoes a martensitic hardening.
  • One such method is carbonitriding to treat a Workpiece in the austenitic state with the purpose of enrichment the surface layer with carbon and with nitrogen, whereby both elements are then in the austenite in solid solution. In connection this treatment generally takes place immediately Quenching to achieve hardening.
  • carbonitriding the surface hardness and wear resistance of the construction parts improved (technology of heat treatment of steel, p. 169 ff, VEB German publishing house for basic materials industry, Leipzig 1986).
  • the workpieces treated by this method have improved Properties with regard to wear resistance, the however for components that are subject to high tribological stresses such as the contact surfaces of tappets in the valve train of an internal combustion engine are not sufficient in every application. Beyond that due to the required shape accuracy in carbonitrided parts Grinding of these components necessary, so that in the course of this cutting Shaping the highly enriched, wear-resistant outermost surface layer is at least partially ground away.
  • Nitro carburizing This is a thermochemical process for enriching the Surface layer of a workpiece with nitrogen and carbon with formation a connection layer, a below the connection layer especially forms nitrogen-enriched diffusion layer. requirement for The functionality of nitro-carburized parts is next to the existence this sufficiently thick connection layer enriched with nitrogen and carbon a corresponding supporting effect of the diffusion layer the naturally more or less brittle connection layer.
  • thermochemical-thermal treatment of ferrous materials its marginal zones enriched with carbon and nitrogen and subsequently subjected to a martensitic hardening is from FR-A-22 83 244 known. This is done in such a way that the parts to be treated carbonitrided, quenched in oil, nitro carburized, quenched and tempered be cooled down again.
  • the object of the present invention is a thermochemical-thermal To create treatment methods that are highly stressed tribologically Components ensure sufficient wear resistance.
  • a first process step consists of carbonitriding at a temperature from 780 to 1,050 ° C, with carburization and Embroidery of 0.4 to 0.9 weight percent carbon and 0.1 to 0.8 preferably 0.3 to 0.7 weight percent nitrogen is set.
  • the high Temperatures ensure that the austenite in the peripheral zone is a corresponding has high solvency for both carbon and nitrogen.
  • the enrichment of the diffusion elements nitrogen and carbon has to be carried out so that their solubility in austenite is not exceeded, d.
  • the coal potential in the atmosphere is according to the S-E line in the Coordinate iron carbon diagram. The same applies to the nitrogen supply according to the iron-nitrogen state diagram.
  • the hold time during carbonitriding which lasts one to four hours can be based on the desired hardening depth, the The upper limit can be one millimeter.
  • the chemical is reached Composition of the edge zone by diffusion of carbon and Nitrogen at the temperatures mentioned in a known manner Use a working gas that has both carbon-emitting components and also contains nitrogen-donating components.
  • Nitro carburizing is carried out at a temperature of 530 to 570 ° C.
  • these temperatures are below the eutectoid temperature and on the other hand high enough to grow at a sufficiently high rate build the connection layer. Beyond that comes there is no additional structural transformation in this temperature range in the embroidered edge area, so that a quenching and with it associated dimensional and shape changes can be dispensed with.
  • nitro carburizing can also be carried out in plasma or in a salt bath.
  • thermochemical-thermal Treatment will give the material high wear resistance and Load-bearing capacity awarded because the one below the connection layer and this supporting diffusion layer significantly improved Supportive effect, so that even with the highest tribological loads the connection layer is not caused by plastic deformation of the underlying diffusion layer can be damaged.
  • the carbonitriding takes place at one Temperature from 780 to 1050 ° C. Depending on the desired hardening depth carburizing and nitriding take place within 1 to 4 hours the edge zone.
  • This phase is followed by a phase 2, in which the Microstructure at a temperature significantly below the martensite starting point of the Edge zone is quenched.
  • the material Annealed at 20 to 40 ° C above the nitro carburizing temperature for 1 to 2 hours.
  • the material is Protective gas atmosphere cooled before in as shown in dashed lines in a fifth phase the parts of an exciting molding process be subjected to bring them to their final dimension.
  • a sixth phase takes place within 60 to 150 minutes Build a 2 to 20 ⁇ m, preferably 6 to 12 ⁇ m thick, closed Link layer.
  • the ground parts are used for this Temperatures of 500 to 620 ° C in a gas mixture of ammonia, Treated carbon dioxide, nitrogen and endogas or exogas.
  • the last phase 7 closes the cooling of the nitro carburized material under protective gas in the oven or by quenching in oil or aqueous Media. Places that are not subject to wear can be chipping be reworked.
  • Figure 2 shows schematically the layer structure of the edge zone one behind part treating the method according to the invention.
  • the diffusion layer 9 follows, which consists of nitrides, carbides, carbonitrides and ferrite.
  • the Size relationships between connection layer and diffusion layer are such that the thickness of the connection layer is up to 20 ⁇ m while the diffusion layer has a thickness of several tenths Can have millimeters. Connects to the diffusion layer 9 the starting material 10.
  • the supporting effect is that under the connecting layer diffusion layer by carbonitriding and tempering significantly improved compared to an only nitro-carburized part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

Die Erfindung betrifft ein Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen, bei denen eine Randzone eines Werkstükkes, insbesondere Tassenstößel, Wälzlagerteile, Getriebe- und Kupplungselemente, mit Kohlenstoff und Stickstoff angereichert und anschließend einer martensitischen Härtung unterzogen wird.The invention relates to a method for thermochemical-thermal Treatment of case-hardened steels in which an edge zone of a workpiece, in particular bucket tappets, roller bearing parts, gear and coupling elements, enriched with carbon and nitrogen and then undergoes a martensitic hardening.

Ein derartiges Verfahren stellt das Karbonitrieren zum Behandeln eines Werkstückes im austenitischen Zustand mit dem Zweck der Anreicherung der Randschicht mit Kohlenstoff und mit Stickstoff dar, wobei sich beide Elemente danach im Austenit in fester Lösung befinden. Im Anschluß an diese Behandlung erfolgt im allgemeinen unmittelbar ein Abschrecken zur Erzielung einer Härtung. Durch Karbonitrieren werden die Oberflächenhärte und Verschleißfestigkeit der Konstruktionsteile verbessert (Technologie der Wärmebehandlung von Stahl, S. 169 ff, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1986).One such method is carbonitriding to treat a Workpiece in the austenitic state with the purpose of enrichment the surface layer with carbon and with nitrogen, whereby both elements are then in the austenite in solid solution. In connection this treatment generally takes place immediately Quenching to achieve hardening. By carbonitriding the surface hardness and wear resistance of the construction parts improved (technology of heat treatment of steel, p. 169 ff, VEB German publishing house for basic materials industry, Leipzig 1986).

Die nach diesem Verfahren behandelten Werkstücke weisen zwar verbesserte Eigenschaften hinsichtlich der Verschleißfestigkeit auf, die jedoch für tribologisch hoch beanspruchte Bauteile wie beispielsweise die Kontaktflächen von Tassenstößeln im Ventiltrieb einer Brennkraftmaschine nicht in jedem Anwendungsfall ausreichen. Darüberhinaus ist wegen der geforderten Formgenauigkeit bei karbonitrierten Teilen ein Schleifen dieser Bauteile nötig, so daß im Zuge dieser spanenden Formgebung die hoch angereicherte, verschleißfeste äußerste Oberflächenschicht zumindest teilweise weggeschliffen wird.The workpieces treated by this method have improved Properties with regard to wear resistance, the however for components that are subject to high tribological stresses such as the contact surfaces of tappets in the valve train of an internal combustion engine are not sufficient in every application. Beyond that due to the required shape accuracy in carbonitrided parts Grinding of these components necessary, so that in the course of this cutting Shaping the highly enriched, wear-resistant outermost surface layer is at least partially ground away.

Ein anderes Verfahren zur Erhöhung der Verschleißbeständigkeit ist das Nitrokarburieren. Dies ist ein thermochemisches Verfahren zum Anreichern der Randschicht eines Werkstückes mit Stickstoff und Kohlenstoff unter Bildung einer Verbindungsschicht, wobei sich unterhalb der Verbindungsschicht eine vor allem mit Stickstoff angereicherte Diffusionsschicht bildet. Voraussetzung für die Funktionstüchtigkeit nitrokarburierter Teile ist neben dem Vorhandensein dieser mit Stickstoff und Kohlenstoff angereicherten, ausreichend dicken Verbindungsschicht eine entsprechende Stützwirkung der Diffusionsschicht unter der naturgemäß mehr oder weniger spröden Verbindungsschicht.Another method of increasing wear resistance is that Nitro carburizing. This is a thermochemical process for enriching the Surface layer of a workpiece with nitrogen and carbon with formation a connection layer, a below the connection layer especially forms nitrogen-enriched diffusion layer. requirement for The functionality of nitro-carburized parts is next to the existence this sufficiently thick connection layer enriched with nitrogen and carbon a corresponding supporting effect of the diffusion layer the naturally more or less brittle connection layer.

Der Nachteil dieses Verfahrens besteht nun darin, daß die unter der Verbindungsschicht liegende Diffusionsschicht bei tribologisch hohen Beanspruchungen, wie beispielsweise durch Fremdkörper im Ölkreislauf einer Brennkraftmaschine, zu plastischer Verformung neigt und als Folge davon zu Beschädigungen der Verbindungsschicht führen kann.The disadvantage of this method is that it is under the tie layer horizontal diffusion layer with high tribological loads, such as foreign bodies in the oil circuit of an internal combustion engine, tends to plastic deformation and, as a result, damage the connection layer can lead.

Ein anderes Verfahren zur thermochemisch-thermischen Behandlung von Eisenwerkstoffen, dessen Randzonen mit Kohlenstoff und Stickstoff angereichert und anschließend einer martensitischen Härtung unterzogen werden, ist aus der FR-A-22 83 244 bekannt. Dies erfolgt derart, daß die zu behandelnden Teile karbonitriert, in Öl abgeschreckt, nitrokarburiert, abgeschreckt angelassen und wieder abgekühlt werden.Another process for the thermochemical-thermal treatment of ferrous materials, its marginal zones enriched with carbon and nitrogen and subsequently subjected to a martensitic hardening is from FR-A-22 83 244 known. This is done in such a way that the parts to be treated carbonitrided, quenched in oil, nitro carburized, quenched and tempered be cooled down again.

Aufgabe der vorliegenden Erfindung ist es, ein thermochemisch-thermisches Behandlungsverfahren zu schaffen, das bei tribologisch hoch beanspruchten Bauteilen eine ausreichende Verschleißfestigkeit gewährleistet.The object of the present invention is a thermochemical-thermal To create treatment methods that are highly stressed tribologically Components ensure sufficient wear resistance.

Diese Aufgabe wird nach dem Kennzeichen des Anspruchs 1 gelöst durch mehrere aufeinanderfolgende Verfahrensschritte.This object is achieved by the characterizing part of claim 1 several successive process steps.

- Ein erster Verfahrensschritt besteht aus einem Karbonitrieren bei einer Temperatur von 780 bis 1.050 °C, wobei in der Randzone eine Aufkohlung und Aufstickung von 0,4 bis 0,9 Gewichtsprozent Kohlenstoff und 0,1 bis 0,8 vorzugsweise 0,3 bis 0,7 Gewichtsprozent Stickstoff eingestellt wird. Die hohen Temperaturen sorgen dafür, daß der Austenit in der Randzone ein entsprechend hohes Lösungsvermögen sowohl für Kohlenstoff als auch für Stickstoff aufweist. Die Anreicherung der Diffusionselemente Stickstoff und Kohlenstoff hat dabei so zu erfolgen, daß deren Löslichkeit im Austenit nicht überschritten wird, d. h. das Kohlenpotential in der Atmosphäre ist dabei entsprechend der S-E-Linie im Eisenkohlenstoff-Diagramm abzustimmen. Entsprechendes gilt für das Stickstoffangebot gemäß dem Zustandsdiagramm Eisen-Stickstoff. Die Haltezeit während des Karbonitrierens, die ein bis vier Stunden betragen kann, richtet sich nach der gewünschten Einhärtetiefe, deren Obergrenze bei einem Millimeter liegen kann. Erreicht wird die chemische Zusammensetzung der Randzone durch Diffusion von Kohlenstoff und Stickstoff bei den genannten Temperaturen in bekannter Weise unter Verwendung eines Arbeitsgases, das sowohl kohlenstoffabgebende Komponenten als auch stickstoffabgebende Komponenten enthält.- A first process step consists of carbonitriding at a temperature from 780 to 1,050 ° C, with carburization and Embroidery of 0.4 to 0.9 weight percent carbon and 0.1 to 0.8 preferably 0.3 to 0.7 weight percent nitrogen is set. The high Temperatures ensure that the austenite in the peripheral zone is a corresponding has high solvency for both carbon and nitrogen. The enrichment of the diffusion elements nitrogen and carbon has to be carried out so that their solubility in austenite is not exceeded, d. H. the coal potential in the atmosphere is according to the S-E line in the Coordinate iron carbon diagram. The same applies to the nitrogen supply according to the iron-nitrogen state diagram. The hold time during carbonitriding, which lasts one to four hours can be based on the desired hardening depth, the The upper limit can be one millimeter. The chemical is reached Composition of the edge zone by diffusion of carbon and Nitrogen at the temperatures mentioned in a known manner Use a working gas that has both carbon-emitting components and also contains nitrogen-donating components.

An das Karbonitrieren schließt sich als zweiter Verfahrensschritt eine schnelle Unterkühlung des Härtegutes durch Abschrecken in geeigneten Medien an. Die Abschreckung soll, beispielsweise in einem Ölbad, auf Temperaturen deutlich unter dem Martensitstartpunkt der Randzone erfolgen. Dadurch wird der Diffusionsvorgang der Eisenbegleiter Stickstoff und Kohlenstoff unterbrochen und die Zementitausscheidung an den Austenitkorngrenzen unterdrückt und es entsteht ein Gefüge, das sich aus Kohlenstoff und Stickstoff enthaltendem Martensit und einem Restaustenitanteil bis zu 50 % zusammensetzt. Die Oberflächenhärten liegen dabei zwischen 65 und 55 Härte Rockwell. Ziel der gleichzeitigen Anreicherung mit Kohlenstoff und Stickstoff ist im vorliegenden Fall eine Erhöhung der Anlaßbeständigkeit besagten Einsatzstahles gegenüber dem Einsatzhärten.

  • An das Karbonitrieren schließt sich als dritter Verfahrensschritt eine Wärmebehandlung an, im Zuge derer der Werkstoff bei 520 bis 650°, d. h. 20 bis 40° C über der nachfolgenden Nitrocarburiertemperatur, angelassen wird. Die Aufheizgeschwindigkeit liegt dabei zwischen 10 bis 30° pro Minute und die Haltezeit beträgt etwa 1 bis 2 Stunden. Nach dem Anlassen schließt sich als vierter Verfahrensschritt eine Abkühlung auf Raumtemperatur an, wobei die Abkühlgeschwindigkeit so gewählt wird, daß durch die Abkühlung keine neuen Spannungen im Bauteil erzeugt werden. Durch das Anlassen bei einer Temperatur von 20 bis 40° C über der Nitrokarburiertemperatur wird erreicht, daß sich der durch das Karbonitrieren im Randbereich des Werkstückes eingestellte Gefügezustand beim nachfolgenden Nitrokarburieren durch Temperatureinflüsse nicht mehr verändert. Da jede Änderung des Gefügezustandes mit einer Volumenvergrößerung bzw. -verkleinerung verbunden ist, wird eine derartige Volumenänderung beim nachfolgenden Nitrokarburieren ausgeschlossen. Darüberhinaus wird der beim vorhergehenden Karbonitrieren mit nachfolgender Abkühlung mit inneren Spannungen eingefrorene Ungleichgewichtszustand in ein bei der Nitrokarburiertemperatur im Gleichgewicht befindliches Gefüge umgewandelt. Der Abbau von inneren Spannungen beim Anlassen ist ebenfalls mit Maß- und Formänderungen des Werkstückes verbunden.
  • Nach der Anlaßbehandlung werden die durch die vorhergehenden Behandlungsstufen Karbonitrieren und Anlassen eingetretenen Form- und Maßänderungen der Teile durch einen spangebenden Formgebungsprozeß als fünften Verfahrensschritt korrigiert, um die zu nitrokarburierenden Teile auf das Fertigteilendmaß zu bringen. Gegebenenfalls ist dabei ein durch die Stickstoff- und Kohlenstoffaufnahme beim Nitrokarburieren eintretendes Volumenwachstum maßlich zu berücksichtigen.
  • Nach der spanenden Formgebung schließt sich als sechster Schritt des erfindungsgemäßen Verfahrens das Nitrokarburieren an. Ziel ist der Aufbau einer bis zu 20µm dicken, geschlossenen Verbindungsschicht. Hierzu werden die geschliffenen Teile bei Temperaturen von 500 bis 620° C 60 bis 150 Minuten lang behandelt. Das Nitrokarburieren erfolgt im Gasgemisch aus Ammoniak, Kohlendioxid, Stickstoff und Endo- oder Exogas. Die Abkühlung des Nitriergutes als letzter Schritt des Verfahrens kann unter Schutzgas im Ofen oder durch Abschreckung in Öl erfolgen.
The second step in the process of carbonitriding is rapid subcooling of the hardened material by quenching in suitable media. The quenching should take place, for example in an oil bath, at temperatures well below the martensite starting point of the edge zone. As a result, the diffusion process of the iron companions nitrogen and carbon is interrupted and the cementite precipitation at the austenite grain boundaries is suppressed and a structure is formed which is composed of martensite containing carbon and nitrogen and a residual austenite content of up to 50%. The surface hardness is between 65 and 55 Rockwell hardness. The aim of the simultaneous enrichment with carbon and nitrogen in the present case is to increase the temper resistance of said case hardening steel against case hardening.
  • The third step of the carbonitriding is followed by a heat treatment in which the material is tempered at 520 to 650 ° C, ie 20 to 40 ° C above the subsequent nitrocarburizing temperature. The heating rate is between 10 to 30 ° per minute and the holding time is about 1 to 2 hours. After tempering, the fourth process step is followed by cooling to room temperature, the cooling rate being selected so that no new stresses are generated in the component by the cooling. Tempering at a temperature of 20 to 40 ° C above the nitro carburizing temperature means that the structural state set by carbonitriding in the edge area of the workpiece no longer changes during the subsequent nitro carburizing due to temperature influences. Since every change in the microstructure is associated with an increase or decrease in volume, such a change in volume during subsequent nitrocarburization is excluded. In addition, the imbalance state frozen during the previous carbonitriding with subsequent cooling with internal stresses is converted into a structure which is in equilibrium at the nitro carburizing temperature. The reduction of internal stresses during tempering is also associated with dimensional and shape changes of the workpiece.
  • After the tempering treatment, the changes in shape and size of the parts which have occurred as a result of the preceding carbonitriding and tempering treatment steps are corrected by a metal-cutting shaping process as the fifth process step in order to bring the parts to be nitro-carburized to the finished part dimension. If necessary, a volume growth due to the nitrogen and carbon uptake during nitro carburizing has to be taken into account.
  • After machining, the nitro carburizing follows as the sixth step of the method according to the invention. The aim is to build a closed connection layer up to 20 µm thick. For this purpose, the ground parts are treated at temperatures from 500 to 620 ° C for 60 to 150 minutes. Nitro carburizing takes place in a gas mixture of ammonia, carbon dioxide, nitrogen and endogas or exogas. The cooling of the nitrided material as the last step of the process can take place under protective gas in the furnace or by quenching in oil.

Nach einer bevorzugten Ausführungsform der Erfindung nach Anspruch 2 erfolgt das Nitrokarburieren bei einer Temperatur von 530 bis 570°C. Diese Temperaturen liegen einerseits unterhalb der eutektoiden Temperatur und andererseits hoch genug, um mit ausreichend hoher Wachstumsgeschwindigkeit die Verbindungsschicht aufzubauen. Darüberhinaus kommt es in diesem Temperaturbereich zu keiner zusätzlichen Gefügeumwandlung im aufgestickten Randbereich, so daß auf ein Abschrecken und den damit verbundenen Maß- und Formänderungen verzichtet werden kann.According to a preferred embodiment of the invention according to claim 2 Nitro carburizing is carried out at a temperature of 530 to 570 ° C. On the one hand, these temperatures are below the eutectoid temperature and on the other hand high enough to grow at a sufficiently high rate build the connection layer. Beyond that comes there is no additional structural transformation in this temperature range in the embroidered edge area, so that a quenching and with it associated dimensional and shape changes can be dispensed with.

In Weiterbildung der Erfindung nach Anspruch 3 kann das Nitrokarburieren auch im Plasma oder im Salzbad durchgeführt werden.In a development of the invention according to claim 3, nitro carburizing can also be carried out in plasma or in a salt bath.

Nach einer weiteren Ausführungsform der Erfindung nach dem Oberbegriff des unabhängigen Anspruchs 4 ist es auch möglich, daß anstelle der Karbonitrierung eine Einsatzhärtung bei einer Temperatur von 780 bis 1050° C mit einer Aufkohlung der Randzone von 0,4 bis 0,9 Gewichtsprozent Kohlenstoff bei einer Haltezeit von 1 bis 4 Stunden erfolgt. Die sich anschließenden Verfahrensschritte bleiben die gleichen, wie im kennzeichnenden Teil des Anspruchs 1 beschrieben.According to a further embodiment of the invention according to the preamble of independent claim 4, it is also possible that instead of Carbonitriding is case hardening at a temperature of 780 to 1050 ° C with a carburization of the edge zone of 0.4 to 0.9 percent by weight Carbon takes place with a holding time of 1 to 4 hours. The subsequent process steps remain the same as described in the characterizing part of claim 1.

Durch das erfindungsgemäße Verfahren zur thermochemisch-thermischen Behandlung werden dem Werkstoff eine hohe Verschleißfestigkeit und Tragfähigkeit verliehen, da die unter der Verbindungsschicht liegende und diese stützende Diffusionsschicht eine wesentlich verbesserte Stützwirkung erhält, so daß auch bei höchsten tribologischen Beanspruchungen die Verbindungsschicht nicht durch plastische Verformungen der darunter liegenden Diffusionsschicht beschädigt werden kann.The inventive method for thermochemical-thermal Treatment will give the material high wear resistance and Load-bearing capacity awarded because the one below the connection layer and this supporting diffusion layer significantly improved Supportive effect, so that even with the highest tribological loads the connection layer is not caused by plastic deformation of the underlying diffusion layer can be damaged.

Die Erfindung wird an nachstehendem Ausführungsbeispiel näher erläutert. Es zeigen:

Figur 1
die einzelnen Verfahrensschritte des erfindungsgemäßen Verfahrens in Abhängigkeit von Zeit und Temperatur;
Figur 2
einen Querschnitt im Bereich der Funktionsfläche.
The invention is explained in more detail using the following exemplary embodiment. Show it:
Figure 1
the individual process steps of the process according to the invention as a function of time and temperature;
Figure 2
a cross section in the area of the functional surface.

In der mit 1 bezeichneten Phase erfolgt die Karbonitrierung bei einer Temperatur von 780 bis 1050° C. Je nach gewünschter Einhärtetiefe erfolgt innerhalb von 1 bis 4 Stunden eine Aufkohlung und Aufstickung der Randzone. Dieser Phase schließt sich eine Phase 2 an, in der das Gefüge auf eine Temperatur deutlich unter dem Martensitstartpunkt der Randzone abgeschreckt wird. In einer dritten Phase wird der Werkstoff 20 bis 40° C über der Nitrokarburiertemperatur 1 bis 2 Stunden angelassen. In einer vierten Phase wird der Werkstoff unter Ofen- bzw. Schutzgasatmosphäre abgekühlt, bevor wie gestrichelt dargestellt, in einer fünften Phase die Teile einem spannenden Formgebungsprozeß unterworfen werden, um diese auf ihr Fertigteilendmaß zu bringen. In einer sechsten Phase erfolgt innerhalb von 60 bis 150 Minuten der Aufbau einer 2 bis 20µm, vorzugsweise 6 bis 12 µm dicken, geschlossenen Verbindungsschicht. Hierzu werden die geschliffenen Teile bei Temperaturen von 500 bis 620° C in einem Gasgemisch aus Ammoniak, Kohlendioxyd, Stickstoff und Endogas oder Exogas behandelt. Danach schließt sich als letzte Phase 7 die Abkühlung des Nitrokarburiergutes unter Schutzgas im Ofen oder durch Abschreckung in Öl oder wäßrigen Medien an. Nicht auf Verschleiß beanspruchte Stellen können spangebend nachgearbeitet werden.In the phase labeled 1, the carbonitriding takes place at one Temperature from 780 to 1050 ° C. Depending on the desired hardening depth carburizing and nitriding take place within 1 to 4 hours the edge zone. This phase is followed by a phase 2, in which the Microstructure at a temperature significantly below the martensite starting point of the Edge zone is quenched. In a third phase, the material Annealed at 20 to 40 ° C above the nitro carburizing temperature for 1 to 2 hours. In a fourth phase, the material is Protective gas atmosphere cooled before in as shown in dashed lines in a fifth phase the parts of an exciting molding process be subjected to bring them to their final dimension. In A sixth phase takes place within 60 to 150 minutes Build a 2 to 20 µm, preferably 6 to 12 µm thick, closed Link layer. The ground parts are used for this Temperatures of 500 to 620 ° C in a gas mixture of ammonia, Treated carbon dioxide, nitrogen and endogas or exogas. After that the last phase 7 closes the cooling of the nitro carburized material under protective gas in the oven or by quenching in oil or aqueous Media. Places that are not subject to wear can be chipping be reworked.

Figur 2 zeigt schematisch den Schichtenaufbau der Randzone eines nach dem erfindungsgemäßen Verfahren behandelndes Teiles. An die außenliegende Verbindungsschicht 8, die aus ∈-Nitriden, Y'-Nitriden, Karbiden und Karbonitriden besteht, schließt sich die Diffusionsschicht 9 an, die aus Nitriden, Karbiden, Karbonitriden und Ferrit besteht. Die Größenverhältnisse zwischen Verbindungsschicht und Diffusionsschicht sind dabei so, daß die Stärke der Verbindungsschicht bis zu 20µm beträgt, während die Diffusionsschicht eine Stärke von mehreren zehntel Millimetern aufweisen kann. An die Diffusionsschicht 9 schließt sich der Ausgangswerkstoff 10 an.Figure 2 shows schematically the layer structure of the edge zone one behind part treating the method according to the invention. To the outside Compound layer 8, which consists of ∈-nitrides, Y'-nitrides, carbides and carbonitrides, the diffusion layer 9 follows, which consists of nitrides, carbides, carbonitrides and ferrite. The Size relationships between connection layer and diffusion layer are such that the thickness of the connection layer is up to 20 µm while the diffusion layer has a thickness of several tenths Can have millimeters. Connects to the diffusion layer 9 the starting material 10.

Erfindungsgemäß wird die Stützwirkung der unter der Verbindungsschicht befindlichen Diffusionsschicht durch Karbonitrieren und Anlassen gegenüber einem nur nitrokarburiertem Teil entscheidend verbessert. According to the invention, the supporting effect is that under the connecting layer diffusion layer by carbonitriding and tempering significantly improved compared to an only nitro-carburized part.

BezugszahlenlisteList of reference numbers

11
Karbonitrieren oder EinsatzhärtenCarbonitriding or case hardening
22nd
Abkühlencooling down
33rd
AnlassenStart
44th
Abkühlencooling down
55
spanende Formgebungcutting shape
66
NitrokarburierenNitro carburizing
77
Abkühlencooling down
88th
VerbindungsschichtLink layer
99
DiffusionsschichtDiffusion layer
1010th
AusgangswerkstoffStarting material

Claims (4)

  1. A method of thermochemical heat treatment of case hardening steels in which an edge region of a workpiece, in particular cup tappets, rolling bearing parts, transmission and clutch elements, is enriched with carbon and nitrogen and then subjected to martensitic hardening, characterised by
    a first step of carbonitriding (1) at a temperature of 780 to 1050° C whereby the edge region is carburised to 0.4 to 0.9 percent by weight of carbon and nitrided to 0.1 to 0.8 percent by weight of nitrogen with a holding time of of 1 to 4 hours,
    a second step of quenching (2) to a temperature well below the initial martensite point of the edge region,
    a third step of tempering (3) at a temperature higher than a nitrocarburising temperature by 20 to 40° C at a heating rate of 10 to 30° C per minute and a holding time of 1 to 2 hours,
    a fourth step of cooling (4) to ambient temperature,
    a fifth step of shaping the workpieces by machining (5),
    a sixth step of nitrocarburising (6) in a gas mixture of ammonia, carbon dioxide, nitrogen and endothermic or exothermic gas at a temperature of 500 to 620° C with a holding time of 60 to 150 minutes, and
    a last step of cooling to ambient temperature.
  2. A method of thermochemical heat treatment of case hardening steels according to Claim 1, wherein nitrocarburising (6) is performed at a temperature of 530 to 570° C.
  3. A method of thermochemical heat treatment of case hardening steels according to Claim 1, wherein nitrocarburising is performed in plasma or in a salt bath.
  4. A method of thermochemical heat treatment of case hardening steels in which an edge region of a workpiece, in particular cup tappets, rolling bearing parts, transmission and clutch elements, is enriched with carbon and nitrogen and then subjected to martensitic hardening, characterised by
    a first step of carburising (1) at a temperature of 780 to 1050° C whereby the edge region is carburised to 0.4 to 0.9 percent by weight of carbon with a holding time of of 1 to 4 hours,
    a second step of quenching (2) to a temperature well below the initial martensite point of the edge region,
    a third step of tempering (3) at a temperature higher than a nitrocarburising temperature by 20 to 40° C at a heating rate of 10 to 30° C per minute and a holding time of 1 to 2 hours,
    a fourth step of cooling (4) to ambient temperature,
    a fifth step of shaping the workpieces by machining (5),
    a sixth step of nitrocarburising (6) in a gas mixture of ammonia, carbon dioxide, nitrogen and endothermic or exothermic gas at a temperature of 500 to 620° C with a holding time of 60 to 150 minutes, and
    a last step of cooling to ambient temperature.
EP93901704A 1992-02-25 1992-12-18 Process for the thermochemical-heat treatment of case-hardened steels Expired - Lifetime EP0627019B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4205647 1992-02-25
DE4205647A DE4205647C2 (en) 1992-02-25 1992-02-25 Process for the thermochemical-thermal treatment of case-hardening steels
PCT/EP1992/002951 WO1993017146A1 (en) 1992-02-25 1992-12-18 Process for the thermochemical-heat treatment of case-hardened steels

Publications (2)

Publication Number Publication Date
EP0627019A1 EP0627019A1 (en) 1994-12-07
EP0627019B1 true EP0627019B1 (en) 1998-04-01

Family

ID=6452467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93901704A Expired - Lifetime EP0627019B1 (en) 1992-02-25 1992-12-18 Process for the thermochemical-heat treatment of case-hardened steels

Country Status (3)

Country Link
EP (1) EP0627019B1 (en)
DE (2) DE4205647C2 (en)
WO (1) WO1993017146A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326874B2 (en) * 1993-05-31 2002-09-24 日本精工株式会社 Rolling bearing
DE4327440C2 (en) * 1993-08-14 1997-07-03 Schaeffler Waelzlager Kg Process for the thermochemical-thermal treatment of case hardening steels, quenched and tempered steels and rolling bearing steels
DE4418245C2 (en) * 1993-08-14 2003-06-18 Ina Schaeffler Kg Process for the thermochemical-thermal treatment of a sliding surface of a cam and / or a sliding surface of a cam counter-rotor
JP3411637B2 (en) * 1993-10-05 2003-06-03 本田技研工業株式会社 Method of manufacturing rocker arm for internal combustion engine
US5575064A (en) * 1994-12-06 1996-11-19 Honda Giken Kogyo Kabushiki Kaisha Process for producing rocker arm for internal combustion engine
JPH1060619A (en) * 1996-08-13 1998-03-03 Tochigi Fuji Ind Co Ltd Member made of structural steel
US6224266B1 (en) * 1998-09-18 2001-05-01 Ntn Corporation Wheel bearing device
DE102004028221A1 (en) 2004-06-09 2005-12-29 Ina-Schaeffler Kg Highly stressed engine component
DE102004043550B4 (en) * 2004-09-09 2012-02-16 Schaeffler Technologies Gmbh & Co. Kg Wear resistant coating, its use and method of making the same
WO2012081198A1 (en) * 2010-12-13 2012-06-21 川崎重工業株式会社 Drive cam and valve operating device for engine
WO2014031052A1 (en) 2012-08-21 2014-02-27 Aktiebolaget Skf Method for heat treating a steel component and a steel component
DE102015204656A1 (en) * 2015-03-16 2016-09-22 Aktiebolaget Skf Layer formation for rolling bearing components
SE1550958A1 (en) * 2015-07-03 2017-01-04 Scania Cv Ab A rocker arm and a rocker arm assembly
DE102018208283A1 (en) * 2018-05-25 2019-11-28 Robert Bosch Gmbh Method for producing a metallic component
CN111945104A (en) * 2020-08-17 2020-11-17 沈阳飞机工业(集团)有限公司 Thin layer nitrocarburizing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461083A (en) * 1973-12-08 1977-01-13 Bell T Methods of treating metal
SU609771A1 (en) * 1976-12-22 1978-05-10 Предприятие П/Я В-2302 Method of treating steel articles
EP0033403A1 (en) * 1980-01-31 1981-08-12 Ford Motor Company Method of treating the surfaces of high carbon steel bodies and bodies of high carbon steel
US4470854A (en) * 1981-10-01 1984-09-11 Kabushiki Kaisha Komatsu Seisakusho Surface hardening thermal treatment
SE441933B (en) * 1984-02-14 1985-11-18 Ibm Svenska Ab COOLING AND HEATING PROCESS FOR A MACHINE, EXAMPLE A PRESSURE HAMMER
JP2779170B2 (en) * 1988-07-25 1998-07-23 マツダ株式会社 Carburizing and quenching method

Also Published As

Publication number Publication date
DE59209268D1 (en) 1998-05-07
EP0627019A1 (en) 1994-12-07
DE4205647C2 (en) 1996-08-01
DE4205647A1 (en) 1993-08-26
WO1993017146A1 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
EP0627019B1 (en) Process for the thermochemical-heat treatment of case-hardened steels
EP2045339B1 (en) Workpiece for rolling wear stress made of through hardened steel and method of heat treatment
DE2417179A1 (en) PROCESS FOR CARBONIZING HIGH-ALLOY STEELS
DE4419035A1 (en) Rolling
DE3923999A1 (en) METHOD FOR CARBONING AND PAYNING STEEL PARTS
DE1521237B1 (en) Workpieces and components made of ferrous materials with a wear layer and process for their production
DE3311696A1 (en) METHOD FOR THE INTENDED HARDENING OF STEEL PARTS
EP3286344B1 (en) Method for the mechanical-thermal treatment of reduced-carbon steels
DE4204982A1 (en) Thermochemical-thermal treatment of case hardening steels - with deep cooling between hardening and tempering
DE19500576C2 (en) Process for the thermochemical treatment of thin-walled components
DE4327440C2 (en) Process for the thermochemical-thermal treatment of case hardening steels, quenched and tempered steels and rolling bearing steels
DE3910959C2 (en) Process for the production of roller bearing elements from hardening roller bearing steel
EP2791379A1 (en) Roller bearing component
WO2006013055A1 (en) Method for the heat treatment of workpieces made from steel
DE10319297A1 (en) Case hardening process
EP3591081A1 (en) Use of a steel for producing a steel component, namely for a gearwheel, a shaft, an axle or a tool holder to a thermochemically cured edge layer and such steel component having a thermochemically cured edge layer
DE4418245C2 (en) Process for the thermochemical-thermal treatment of a sliding surface of a cam and / or a sliding surface of a cam counter-rotor
DE2527026C3 (en) Process for producing a component with a long service life
DE2018709C3 (en) Process for improving the wear resistance of ferrous materials
DE19852450C2 (en) Process for the surface hardening of moldings made of cast material and moldings produced thereby and their use
EP0812929B1 (en) Process of nitriding and/or carbonitriding metallic workpieces
DE1521237C (en) Workpieces and components made of ferrous materials with a wear layer and process for their production
WO2023134810A1 (en) Steel alloy for a large rolling bearing component, large rolling bearing, and method for thermally treating the large rolling bearing component made of said steel alloy
EP0908530A1 (en) Blade for a saw or a knife and method of manufacturing
DE1476045C (en) Method for producing a poppet valve for internal combustion engines, in particular an inlet valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19970701

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INA WAELZLAGER SCHAEFFLER OHG

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980402

REF Corresponds to:

Ref document number: 59209268

Country of ref document: DE

Date of ref document: 19980507

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101222

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110407 AND 20110413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120105

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120229

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120103

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59209268

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59209268

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59209268

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121217