RU1836484C - Method of application of nitride layers on parts made of titanium and titanium alloys - Google Patents

Method of application of nitride layers on parts made of titanium and titanium alloys

Info

Publication number
RU1836484C
RU1836484C SU915001026A SU5001026A RU1836484C RU 1836484 C RU1836484 C RU 1836484C SU 915001026 A SU915001026 A SU 915001026A SU 5001026 A SU5001026 A SU 5001026A RU 1836484 C RU1836484 C RU 1836484C
Authority
RU
Russia
Prior art keywords
titanium
pressure
nitride layers
mpa
ammonia
Prior art date
Application number
SU915001026A
Other languages
Russian (ru)
Inventor
Прайсер Фридрих
Original Assignee
Дегусса Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дегусса Аг filed Critical Дегусса Аг
Application granted granted Critical
Publication of RU1836484C publication Critical patent/RU1836484C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemically Coating (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Revetment (AREA)
  • Road Paving Structures (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

An economical method for applying nitride layers to titanium and titanium alloys. In a short time, layer thicknesses of 20 mu m are achieved by nitriding under pressure in an ammonia atmosphere. Temperatures of 500 to 1000 DEG C and pressures of 0.2 to 10 Mpa are required for this purpose.

Description

Изобретение относитс  к способам нанесени  нитридных слоев на детали из титана и из титановых сплавов посредством термохимической обработки деталей аммиаком или газовой смесью, содержащей аммиак , под давлением и при температуре выше 500°С.The invention relates to methods for depositing nitride layers on parts of titanium and titanium alloys by thermochemical treatment of parts with ammonia or a gas mixture containing ammonia, under pressure and at a temperature above 500 ° C.

Титан как конструктивный материал имеет некоторые преимущества перед сталью: меньший удельный вес, коррозион- ноустойчивость и повышенный предел прочности. Этим преимуществам противостоит относительно мала  твердость, котора  обуславливает необходимость поверхностной обработки, если должна быть увеличена износостойкость. Как правило , така  поверхностна  обработка состоит в нанесении слоев, состо щих из карбида титана или нитрида титана. В.известных способах азотировани  деталей из титана и из сплавов титана обработка осуществл лась посредством высокоэнергетических га&Titanium as a structural material has some advantages over steel: lower specific gravity, corrosion resistance and increased tensile strength. These advantages are opposed by a relatively low hardness, which necessitates surface treatment if wear resistance is to be increased. Typically, such a surface treatment consists in applying layers consisting of titanium carbide or titanium nitride. In known methods of nitriding parts from titanium and from titanium alloys, the treatment was carried out by means of high-energy ga &

зов или посредством электромагнитных полей . Эти способы очень дороги и могут использоватьс  только при простой геометрии обрабатываемых деталей,call or through electromagnetic fields. These methods are very expensive and can only be used with simple geometry of the workpieces.

Целью предлагаемого изобретени  было создание такого способа нанесени  нитридных слоев на детали из титана и из титановых сплавов посредством термохимической обработки деталей в аммиаке или в газовой смеси, содержащей аммиак, под давлением и при температуре свыше 500°С, который бы обеспечивал умеренные затраты и возможность получени  слоев толщиной 20 мкм и более за относительно короткие периоды времени.The aim of the invention was the creation of such a method of applying nitride layers on parts made of titanium and titanium alloys by thermochemical processing of parts in ammonia or in a gas mixture containing ammonia, under pressure and at a temperature above 500 ° C, which would provide moderate costs and the possibility of obtaining layers with a thickness of 20 microns or more in relatively short periods of time.

Эта задача решаетс  благодар  тому, что обработка осуществл етс  при температуре 500-1000°С и при давлении 0,2-10 МПа, причем парциальное давление аммиака составл ет минимум 0,2 МПа.This problem is solved due to the fact that the treatment is carried out at a temperature of 500-1000 ° C and at a pressure of 0.2-10 MPa, and the partial pressure of ammonia is at least 0.2 MPa.

Особенно целесообразными оказались температура в диапазоне 700-950°С ft дав00The temperature in the range of 700–950 ° C ft dw00 turned out to be especially expedient

GOGO

оabout

Јь 0000 b 00

ЈЈ

t+t +

UU

ление в диапазоне 0,5-7 МПа, причем тре- буетс  парциальное давление аммиака минимум 0,2 МПа,a pressure in the range of 0.5-7 MPa, moreover, a partial pressure of ammonia of at least 0.2 MPa is required,

При таком способе под давлением на детал х из титана и титановых сплавов, имеющих любую геометрию и габариты, при соответствующих размерах камерных печей , можно получать достаточно толстые покрыти  нитридных слоев (до 20 мкм и более). Исключительное значение имеет тот факт, что не требуютс  газы высокой степенью частоты, достаточно использовать аммиак обычного промышленного качества. Кроме того, имеетс  возможность подмешивать к аммиаку азот, причем дл  способа азотировани  требуетс  только парциальное давление аммиака, равное минимум 0,2 МПа.With this method, under pressure on parts made of titanium and titanium alloys having any geometry and dimensions, with the appropriate dimensions of chamber furnaces, it is possible to obtain sufficiently thick coatings of nitride layers (up to 20 microns or more). Of exceptional importance is the fact that gases with a high degree of frequency are not required; it is sufficient to use ammonia of ordinary industrial quality. In addition, it is possible to mix nitrogen with ammonia, wherein only a partial ammonia pressure of at least 0.2 MPa is required for the nitriding process.

Толщина сло  наносимого нитрида титана в большом диапазоне давлений зависит от температуры и от времени обработки. Поверхность получаетс  гл нцево-золотой и твердость ее существенно повышаетс . При давлени х в диапазоне выше 6 МПа толщина сло  почти не зависит от давлени .The thickness of the applied titanium nitride layer over a wide pressure range depends on the temperature and on the processing time. The surface is glossy gold and its hardness is substantially increased. At pressures in the range above 6 MPa, the layer thickness is almost independent of pressure.

На чертеже показана зависимость толщины сло  нитрида титана на детал х из чистого титана от давлени  и температуры атмосферы, содержащей аммиак.The drawing shows the dependence of the thickness of the titanium nitride layer on parts of pure titanium on the pressure and temperature of the atmosphere containing ammonia.

Уже при температуре, например, 500°С и при абсолютном давлении 2 МПа (20 бар) через 1 ч можно получить толщину сло  нитрида титана, равную 10 мкм. При температуре 880°С за этот же период наноситс  слой чистого нитрида титана толщиной 20 мкм.Already at a temperature of, for example, 500 ° C and at an absolute pressure of 2 MPa (20 bar), after 1 h, it is possible to obtain a titanium nitride layer thickness of 10 μm. At a temperature of 880 ° C, a layer of pure titanium nitride with a thickness of 20 µm is applied over the same period.

При давлении 6 МПа (60 бар) образуетс , например, слой нитрида титана толщиной 30 мкм, если образцы выдерживаютс  в течение 1 ч при температуре 880°С.At a pressure of 6 MPa (60 bar), for example, a titanium nitride layer with a thickness of 30 µm is formed if the samples are kept for 1 hour at a temperature of 880 ° C.

При дальнейшем увеличении давлени With a further increase in pressure

до 9 МПа (90 бар) вли ние давлени  на толщину сло  нитридов уменьшаетс . Приращение уже больше не  вл етс  линейным. При более высоких давлени х вследствиеup to 9 MPa (90 bar), the effect of pressure on the thickness of the nitride layer is reduced. The increment is no longer linear. At higher pressures due to

быстрого образовани  плотных слоев нитридов только диффузи  азота через нанесенный слой определ ет фактор времени.of the rapid formation of dense nitride layers, only nitrogen diffusion through the deposited layer determines the time factor.

Аналогично чистому титану могут азотироватьс  также сплавы титана, напримерSimilarly to pure titanium, titanium alloys can also be nitrided, for example

TIAI16V4.TIAI16V4.

Дл  нанесени  таких покрытий не трь буетс  автоклава, а обработка может осуществл тьс  в обычной камерной печи.An autoclave is not required for the application of such coatings, and processing can be carried out in a conventional chamber furnace.

20twenty

Фор м у ла изобретени Formula of the invention

1,Способ нанесени  нитридных слоев на детали из титана и его сплавов, включающий азотирование при повышенном давлении в атмосфере азотсодержащего газа при температуре выше 500°С, отличающийс  тем, что процесс ведут в атмосфере аммиака или газовой смеси, содержащей аммиак и азот, при температуре 500ЮОО°С , давлении 0,2-10 МПа, причем парциальное давление аммиака составл ет минимум 0,2 МПа.1, A method of applying nitride layers to parts of titanium and its alloys, comprising nitriding at elevated pressure in an atmosphere of nitrogen-containing gas at a temperature above 500 ° C, characterized in that the process is conducted in an atmosphere of ammonia or a gas mixture containing ammonia and nitrogen at a temperature 500 ° C ° C, a pressure of 0.2-10 MPa, with a partial ammonia pressure of at least 0.2 MPa.

2.Способ п.1, о т л и ч а ю щ и и с   тем, что процесс ведут при 700-950°С и давлении 0,5-7 МПа.2. The method of claim 1, on the basis of which the process is conducted at 700-950 ° C and a pressure of 0.5-7 MPa.

WW

yew , yew

JOJo

9 tO. 40 fO 40 40d lfep 9 tO. 40 fO 40 40d lfep

J A5. J A5.

SU915001026A 1990-07-04 1991-07-03 Method of application of nitride layers on parts made of titanium and titanium alloys RU1836484C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4021286A DE4021286C1 (en) 1990-07-04 1990-07-04

Publications (1)

Publication Number Publication Date
RU1836484C true RU1836484C (en) 1993-08-23

Family

ID=6409636

Family Applications (1)

Application Number Title Priority Date Filing Date
SU915001026A RU1836484C (en) 1990-07-04 1991-07-03 Method of application of nitride layers on parts made of titanium and titanium alloys

Country Status (14)

Country Link
EP (1) EP0464265B1 (en)
JP (1) JPH0649924B2 (en)
CN (1) CN1020476C (en)
AT (1) ATE135058T1 (en)
AU (1) AU627960B2 (en)
BR (1) BR9101899A (en)
CZ (1) CZ279472B6 (en)
DE (2) DE4021286C1 (en)
ES (1) ES2085320T3 (en)
NO (1) NO905209L (en)
PL (1) PL166281B1 (en)
PT (1) PT98195A (en)
RU (1) RU1836484C (en)
TW (1) TW208721B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1169487A1 (en) * 1999-04-15 2002-01-09 Vacuumschmelze GmbH Corrosion-free iron-nickel alloy for residual-current circuit-breakers and clockworks
JP4684383B2 (en) * 2000-04-03 2011-05-18 株式会社アライドマテリアル Refractory metal material having oxidation resistant layer and method for producing the same
JP2001295023A (en) * 2000-04-06 2001-10-26 Allied Material Corp High melting point metallic material having surface hardened layer and its producing method
US9580790B2 (en) 2006-12-22 2017-02-28 Iap Research, Inc. System and method for surface hardening of refractory metals
CN102699516B (en) * 2007-02-28 2015-03-18 沃特世科技公司 Liquid-chromatography apparatus having diffusion-bonded titanium components
CN100537805C (en) * 2007-10-30 2009-09-09 沈阳宝鼎化工设备制造有限公司 Wear-resistant and corrosion-resistant spare part and surface treatment process thereof
JP5977669B2 (en) * 2012-12-28 2016-08-24 株式会社セブン・セブン Method for manufacturing vacuum insulated double container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2804410A (en) * 1953-10-27 1957-08-27 Nat Lead Co Method for nitriding titanium surfaces
CH650532A5 (en) * 1982-09-07 1985-07-31 Ver Drahtwerke Ag METHOD FOR FORMING A HARD COATING IN THE COMPONENT FROM ELEMENTS OF THE FOURTH, FIFTH OR SIX SUB-GROUPS OF THE PERIODIC SYSTEM OR ITS ALLOYS.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЕП № 0105835, кл. С 23 С 8/24, 1987. *

Also Published As

Publication number Publication date
BR9101899A (en) 1992-01-14
CS198891A3 (en) 1992-02-19
AU627960B2 (en) 1992-09-03
PL290931A1 (en) 1992-10-05
PT98195A (en) 1992-04-30
TW208721B (en) 1993-07-01
CN1020476C (en) 1993-05-05
ES2085320T3 (en) 1996-06-01
JPH04232247A (en) 1992-08-20
EP0464265B1 (en) 1996-03-06
EP0464265A1 (en) 1992-01-08
CZ279472B6 (en) 1995-05-17
ATE135058T1 (en) 1996-03-15
AU6760290A (en) 1992-01-09
DE59010178D1 (en) 1996-04-11
NO905209D0 (en) 1990-11-30
NO905209L (en) 1992-01-06
PL166281B1 (en) 1995-04-28
JPH0649924B2 (en) 1994-06-29
CN1057866A (en) 1992-01-15
DE4021286C1 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
Leyland et al. Low temperature plasma diffusion treatment of stainless steels for improved wear resistance
Chicco et al. Experimental study of vanadium carbide and carbonitride coatings
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
Höck et al. Wear resistance of prenitrided hardcoated steels for tools and machine components
US3748195A (en) Method for forming a soft nitride layer in a metal surface
JPH0120219B2 (en)
Zlatanović Deposition of (Ti, Al) N coatings on plasma nitrided steel
RU1836484C (en) Method of application of nitride layers on parts made of titanium and titanium alloys
US2804410A (en) Method for nitriding titanium surfaces
EP1518002A1 (en) Surface modified stainless steel
US5228929A (en) Thermochemical treatment of machinery components for improved corrosion resistance
Caliari et al. An investigation into the effects of different oxy-nitrocarburizing conditions on hardness profiles and corrosion behavior of 16MnCr5 steels
Michalski et al. Controlled gas nitriding of 40HM and 38HMJ steel grades with the formation of nitrided cases with and without the surface compound layer, composed of iron nitrides
US4357182A (en) Chromization of steels by gas process
RU2052535C1 (en) Method for thermochemical treatment of hollow steel products
RU2015197C1 (en) Method of nitriding of steel blanks
US5292555A (en) Process for applying nitride layers to titanium
KR100862217B1 (en) Method for manufacturing high corrosion-resistant and high wear- resistant steel materials by 2 step gas nitriding or gas nitrocarburizing
Maleque et al. Nitride alloy layer formation of duplex stainless steel using nitriding process
JPS6169957A (en) Posttreatment in nitriding
GB2109009A (en) Application of wear-resistant titanium carbide coatings to sintered hard alloys
Lanagan et al. Surface engineering of titanium with glow discharge plasma
WO2002053793A1 (en) Duplex process of diffusion forming of hard carbide layers on metallic materials
Cho et al. The influence of treatment time on plasma nitrocarburised compound layers for pure iron
SU1087566A1 (en) Method for improving products of structural steels