EP0544987A1 - Method of treating steel alloys and refractory metals - Google Patents

Method of treating steel alloys and refractory metals Download PDF

Info

Publication number
EP0544987A1
EP0544987A1 EP19920111673 EP92111673A EP0544987A1 EP 0544987 A1 EP0544987 A1 EP 0544987A1 EP 19920111673 EP19920111673 EP 19920111673 EP 92111673 A EP92111673 A EP 92111673A EP 0544987 A1 EP0544987 A1 EP 0544987A1
Authority
EP
European Patent Office
Prior art keywords
chamber
pressure
treatment
process chamber
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP19920111673
Other languages
German (de)
French (fr)
Inventor
Friedrich Dr. Preisser
Albrecht Dr. Melber
Peter Dr. Minarski
Klaus Dr. Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold Durferrit GmbH
Original Assignee
Leybold Durferrit GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Durferrit GmbH filed Critical Leybold Durferrit GmbH
Publication of EP0544987A1 publication Critical patent/EP0544987A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the invention relates to a method for the treatment of alloyed steels and refractory metals such as Ti, Zr and Nb, in particular for the de-passivation and for the subsequent thermochemical surface treatment in a process chamber under the action of pressure and temperature.
  • thermochemical surface treatment e.g. nitriding, nitro-carburizing or boriding
  • refractory metals e.g. Ti, Zr, Mo, W, Nb, Ta, V
  • the passive layers exist namely mostly made of oxides and form a thin protective skin that prevents undisturbed diffusion of non-metals such as Prevent N, C, and B during surface treatment with disadvantage. This will e.g. A complete diffusion in the refractory metals, partially prevented in the case of high-alloy steels, which leads to uneven treatment results.
  • pre-oxidation is carried out to achieve a uniform treatment result. This means that impurities on the surfaces are oxidized and the already existing oxide layer is influenced. In some cases, this can influence the uniformity of the layer formation.
  • the layers produced are very thin and contain ever larger amounts of oxygen.
  • This object is achieved in that a treatment process is carried out with several process steps.
  • a first gas or gas mixture from the group N2, H2 or NH3 is let into a process chamber for de-passivation, a pressure greater than 1 bar a and a temperature between 100 ° C and 1,000 ° C independently of one another in the chamber and in a second process step, a second gas or gas mixture from the group of N-, C- or B-containing gases for thermochemical surface treatment is let into a process chamber and a temperature between 100 ° C and 1,000 ° C at a pressure greater than and equal to 1 bar a set.
  • the de-passivation of alloyed steels and refractory metals is advantageously carried out by heat treatment in gas mixtures containing, for example, NH3 and / or H2, at temperatures between 100 and 1,000 ° C and pressures greater than 1 bar, whereby the disruptive oxide skin is reduced and the pure metal or the alloy is coated with a thin nitride layer as protection against renewed oxidation.
  • gas mixtures containing, for example, NH3 and / or H2
  • the disruptive oxide skin is reduced and the pure metal or the alloy is coated with a thin nitride layer as protection against renewed oxidation.
  • a refractory metal for example Ti
  • a treatment chamber 1 FIG. 1
  • NH 3 is let into the chamber and the passivated titanium is reduced at a pressure of 10 bar a.
  • the passivation takes place
  • a gas change in the chamber takes place.
  • NH3 is exchanged for N2 and the second process step, namely the thermochemical treatment begins at a constant temperature.
  • This nitriding process is carried out at 30 bar a process pressure.
  • the treatment time is usually two to four hours and is of the desired nitriding layer thickness
  • the desired TiN coating is obtained as the end product after the second process step.
  • a second system configuration is also conceivable, which consists of a combination of two different treatment chambers 1 and 2 (FIG. 2). This is used e.g. in the treatment of bulk steels, such as a high-alloy steel X 20 CrMoV 12 1.
  • the steel After the steel has been introduced into the treatment chamber 1, it is heated to 580 ° C and at a pressure of e.g. 10 bar a H2 and / or NH3 is let in.
  • a pressure of e.g. 10 bar a H2 and / or NH3 is let in.
  • the steel used is de-passivated and at the same time provided with a thin nitride layer as protection against further oxidation.
  • the steel which is protected against oxidation, is then brought into a second treatment chamber 2.
  • a material-specific nitriding temperature of 550 ° C is set and a gas mixture of NH3, H2 is let in at a pressure of 1 bar a.
  • a nitrided X 20 CrMo V 12 1 steel is obtained as the end product.
  • carbon-containing gases such as C02 or C0 can be used for coal at temperatures between 800 ° C and 1,000 ° C.
  • thermochemical treatment process for example nitriding
  • a pressure chamber which, as shown in FIG. 1, must be designed, for example, for 30 bar a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Method for treating alloyed steels and refractory metals, such as, e.g., Ti, Zr and Nb, especially for depassivating and subsequent thermochemical surface treatment in a process chamber (1,2) under the influence of pressure and temperature, wherein, in a first process step, a first gas or gas mixture selected from the group N2, H2 or NH3 is introduced in a process chamber (1) for the purpose of depassivation, a pressure greater than 1 bar absolute and a temperature between 100 DEG C and 1,000 DEG C being settable in the chamber (1), and in a second process step a second gas or gas mixture selected from the group of N-, C- or B-containing gases is introduced into a process chamber (1,2) for the purpose of thermochemical surface treatment, and a temperature between 100 DEG C and 1,000 DEG C at a pressure greater than or equal to 1 bar absolute being settable. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Behandlung von legierten Stählen und Refraktärmetalle wie beispielsweise Ti, Zr und Nb, insbesondere zur Entpassivierung und zur anschliessenden thermochemischen Oberflächenbehandlung in einer Prozeßkammer unter Einwirkung von Druck und Temperatur.The invention relates to a method for the treatment of alloyed steels and refractory metals such as Ti, Zr and Nb, in particular for the de-passivation and for the subsequent thermochemical surface treatment in a process chamber under the action of pressure and temperature.

Bei der thermochemischen Oberflächenbehandlung (z.B. Nitrieren, Nitrokarburieren oder Borieren) von legierten Stählen und Refraktärmetallen (z.B. Ti, Zr, Mo, W, Nb, Ta, V) kommt es bislang durch die oberflächenbedeckenden Passivschichten auf den Materialien zu folgenden Schwierigkeiten: Die Passivschichten bestehen nämlich meist aus Oxiden und bilden eine dünne Schutzhaut, die das ungestörte Eindiffundieren von Nichtmetallen wie z.B. N, C, und B bei der Oberflächenbehandlung mit Nachteil verhindern. Dadurch wird z.B. bei den Refraktärmetallen eine Eindiffusion völlig, bei hochlegierten Stählen teilweise verhindert, was zu ungleichmäßigen Behandlungsergebnissen führt.In thermochemical surface treatment (e.g. nitriding, nitro-carburizing or boriding) of alloyed steels and refractory metals (e.g. Ti, Zr, Mo, W, Nb, Ta, V), the surface-covering passive layers on the materials have hitherto caused the following difficulties: The passive layers exist namely mostly made of oxides and form a thin protective skin that prevents undisturbed diffusion of non-metals such as Prevent N, C, and B during surface treatment with disadvantage. This will e.g. A complete diffusion in the refractory metals, partially prevented in the case of high-alloy steels, which leads to uneven treatment results.

Bei bestimmten Sorten legierter Stähle wird zur Erzielung eines gleichmäßigen Behandlungsergebnisses eine Voroxidation vorgenommen. Damit werden Verunreinigungen an den Oberflächen oxidiert und die bereits bestehende Oxidschicht beeinflußt. Dadurch kann in manchen Fällen Einfluß auf die Gleichmäßigkeit der Schichtausbildung genommen werden. Die erzeugten Schichten sind sehr dünn und enthalten immer größere Mengen Sauerstoff.For certain types of alloyed steel, pre-oxidation is carried out to achieve a uniform treatment result. This means that impurities on the surfaces are oxidized and the already existing oxide layer is influenced. In some cases, this can influence the uniformity of the layer formation. The layers produced are very thin and contain ever larger amounts of oxygen.

Aufgabe der vorliegenden Erfindung ist es nun, durch eine Vorbehandlung die Oberflächen der genannten Materialien so zu konditionieren, daß eine störungsfreie Aufnahme von diffusionsfähigen Atomen bei der thermochemischen Wärmebehandlung möglich ist.It is an object of the present invention to condition the surfaces of the materials mentioned by pretreatment in such a way that trouble-free absorption of diffusible atoms is possible during the thermochemical heat treatment.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein Behandlungsverfahren mit mehreren Verfahrensschritten durchgeführt wird.This object is achieved in that a treatment process is carried out with several process steps.

In einem ersten Verfahrensschritt wird ein erstes Gas oder Gasgemisch aus der Gruppe N₂, H₂ oder NH₃ zur Entpassivierung in eine Prozeßkammer eingelassen, ein Druck größer 1 bar a und eine Temperatur zwischen 100 °C und 1.000 °C voneinander unabhängig in der Kammer eingestellt und in einem zweiten Verfahrensschritt wird ein zweites Gas- oder Gasgemisch aus der Gruppe N-, C- oder B-haltiger Gase zur thermochemischen Oberflächenbehandlung in eine Prozeßkammer eingelassen und eine Temperatur zwischen 100 °C und 1.000 °C bei einem Druck größer und gleich 1 bar a eingestellt.In a first process step, a first gas or gas mixture from the group N₂, H₂ or NH₃ is let into a process chamber for de-passivation, a pressure greater than 1 bar a and a temperature between 100 ° C and 1,000 ° C independently of one another in the chamber and in a second process step, a second gas or gas mixture from the group of N-, C- or B-containing gases for thermochemical surface treatment is let into a process chamber and a temperature between 100 ° C and 1,000 ° C at a pressure greater than and equal to 1 bar a set.

Die Entpassivierung von legierten Stählen und Refraktärmetallen erfolgt mit Vorteil durch eine Wärmebehandlung in Gasgemischen, die z.B. NH₃ und/oder H₂ enthalten, bei Temperaturen zwischen 100 und 1.000 °C und Drücken größer 1 bar, wobei die störende Oxidhaut reduziert wird und das reine Metall bzw. die Legierung als Schutz vor einer erneuten Oxidation mit einer dünnen Nitridschicht überzogen wird. Mit solchermaßen vorbehandelten Teilen können gleichmäßige Behandlungsergebnisse erzielt werden und diese Teile können vorteilhafterweise entweder in der gleichen Anlage weiter behandelt werden oder zur Weiterbehandlung in eine andere Anlage umgesetzt werden, wobei die aufgebrachte dünne Nitridschicht einen Schutz gegen die erneute Oxidation bewirkt. Findet die weitere Behandlung bei höheren Temperaturen statt, z.B. Aufkohlen oder Borieren, so wird die Nitridschicht schnell aufgelöst und stellt kein Hindernis für die eindiffundierenden Elemente dar.The de-passivation of alloyed steels and refractory metals is advantageously carried out by heat treatment in gas mixtures containing, for example, NH₃ and / or H₂, at temperatures between 100 and 1,000 ° C and pressures greater than 1 bar, whereby the disruptive oxide skin is reduced and the pure metal or the alloy is coated with a thin nitride layer as protection against renewed oxidation. With parts pretreated in this way, uniform treatment results can be achieved, and these parts can advantageously either be treated further in the same plant or be converted to another plant for further treatment, the thin nitride layer applied providing protection against renewed oxidation. If the further treatment takes place at higher temperatures, e.g. carburizing or boronizing, the nitride layer is quickly dissolved and does not represent an obstacle for the elements that diffuse in.

Weitere Ausführungsmöglichkeiten und Merkmale sind in den Unteransprüchen näher beschrieben und gekennzeichnet.Further design options and features are described and characterized in more detail in the dependent claims.

Die Erfindung läßt die verschiedensten Ausführungsmöglichkeiten zu; zwei davon sind in den anhängenden Zeichnungen beispielhaft dargestellt, und zwar zeigen:

Figur 1
eine Entpassivierung und eine thermochemische Behandlung in einer Behandlungskammer als Prinzipskizze, und
Figur 2
eine Entpassivierung und eine thermochemische Behandlung in zwei getrennten Behandlungskammern als Prinzipskizze.
The invention allows a wide variety of design options; two of these are shown by way of example in the accompanying drawings, namely:
Figure 1
a de-passivation and a thermochemical treatment in a treatment chamber as a schematic diagram, and
Figure 2
a de-passivation and a thermochemical treatment in two separate treatment chambers as a schematic diagram.

In eine Behandlungskammer 1 (Figur 1) wird ein Refraktärmetall (z.B. Ti eingebracht und auf 800 °C aufgeheizt. Anschließend wird NH₃ in die Kammer eingelassen und bei einem Druck von 10 bar a wird das passivierte Titan reduziert. Nach diesem ersten Verfahrensschritt der Entpassivierung findet ein Gaswechsel in der Kammer statt. NH₃ wird gegen N₂ ausgetauscht und bei gleichbleibender Temperatur beginnt der zweite Verfahrensschritt, nämlich die thermochemische Behandlung. Dieser Nitriervorgang wird bei 30 bar a Verfahrensdruck durchgeführt. Die Behandlungszeit beträgt üblicherweise zwei bis vier Stunden und ist von der gewünschten Nitrierschichtdicke abhängig. Als Endprodukt erhält man nach dem zweiten Verfahrensschritt die gewünschte TiN-Beschichtung.A refractory metal (for example Ti) is introduced into a treatment chamber 1 (FIG. 1) and heated to 800 ° C. Then NH 3 is let into the chamber and the passivated titanium is reduced at a pressure of 10 bar a. After this first process step the passivation takes place A gas change in the chamber takes place. NH₃ is exchanged for N₂ and the second process step, namely the thermochemical treatment begins at a constant temperature. This nitriding process is carried out at 30 bar a process pressure. The treatment time is usually two to four hours and is of the desired nitriding layer thickness The desired TiN coating is obtained as the end product after the second process step.

Es ist auch eine zweite Anlagenkonstellation denkbar, die aus einer Kombination von zwei unterschiedlichen Behandlungskammern 1 und 2 besteht (Figur 2). Diese findet ihre Anwendung z.B. bei der Behandlung von Massenstählen, wie beispielsweise einem hochlegierten Stahl X 20 CrMoV 12 1.A second system configuration is also conceivable, which consists of a combination of two different treatment chambers 1 and 2 (FIG. 2). This is used e.g. in the treatment of bulk steels, such as a high-alloy steel X 20 CrMoV 12 1.

Nachdem der Stahl in die Behandlungskammer 1 eingebracht ist, wird diese auf 580 °C aufgeheizt und mit einem Druck von z.B. 10 bar a wird H₂ und/oder NH₃ eingelassen. In diesem ersten Verfahrensschritt wird der eingesetzte Stahl entpassiviert und gleichzeitig mit einer dünnen Nitridschicht als Schutz vor weiterer Oxidation versehen.After the steel has been introduced into the treatment chamber 1, it is heated to 580 ° C and at a pressure of e.g. 10 bar a H₂ and / or NH₃ is let in. In this first process step, the steel used is de-passivated and at the same time provided with a thin nitride layer as protection against further oxidation.

Anschließend wird der vor Oxidation geschützte Stahl in eine zweite Behandlungskammer 2 verbracht. Hier wird eine werkstoffspezifische Nitriertemperatur von 550 °C eingestellt und bei einem Druck von 1 bar a ein Gasgemisch aus NH₃, H₂ eingelassen. Nach Abschluß dieses zweiten Behandlungsschrittes erhält man als Endprodukt einen nitrierten X 20 CrMo V 12 1- Stahl. Statt stickstoffhaltiger Gase können zum Kohlen auch kohlenstoffhaltige Gase wie C0₂ oder C0 bei Temperaturen zwischen 800 °C und 1.000 °C eingesetzt werden.The steel, which is protected against oxidation, is then brought into a second treatment chamber 2. Here a material-specific nitriding temperature of 550 ° C is set and a gas mixture of NH₃, H₂ is let in at a pressure of 1 bar a. After completion of this second treatment step, a nitrided X 20 CrMo V 12 1 steel is obtained as the end product. Instead of nitrogen-containing gases, carbon-containing gases such as C0₂ or C0 can be used for coal at temperatures between 800 ° C and 1,000 ° C.

Ein wesentlicher Vorteil einer zweiteiligen Behandlungsanlage nach Figur 2 gegenüber einer Anlage nach Figur 1 ist, daß der eigentliche thermochemische Behandlungsvorgang, beispielsweise das Nitrieren in einer konventionellen Nitrieranlage unter Atmosphärendruck durchgeführt werden kann. Somit entfällt die Notwendigkeit eine Druckkammer einzusetzen, die wie in Figur 1 dargestellt, beispielsweise für 30 bar a ausgelegt sein muß.An essential advantage of a two-part treatment plant according to FIG. 2 compared to a plant according to FIG. 1 is that the actual thermochemical treatment process, for example nitriding, can be carried out in a conventional nitriding plant under atmospheric pressure. This eliminates the need to use a pressure chamber which, as shown in FIG. 1, must be designed, for example, for 30 bar a.

Claims (7)

Verfahren zur Behandlung von legierten Stählen und Refraktärmetallen, insbesondere zur Entpassivierung und zur anschließenden thermochemischen Oberflächenbehandlung in einer Prozeßkammer (1, 2) unter Einwirkung von Druck und Temperatur, dadurch gekennzeichnet , daß in einem ersten Verfahrensschritt ein erstes Gas oder Gasgemisch aus der Gruppe N₂, H₂ oder NH₃ zur Entpassivierung in eine Prozeßkammer (1) eingelassen wird, ein Druck größer 1 bar a und eine Temperatur zwischen 100 °C und 1.000 °C voneinander unabhängig in der Kammer (1) einstellbar sind und daß in einem zweiten Verfahrensschritt ein zweites Gas- oder Gasgemisch aus der Gruppe N-, C- oder B-haltiger Gase zur thermochemischen Oberflächenbehandlung in eine Prozeßkammer (1, 2) eingelassen wird und eine Temperatur zwischen 100 °C und 1.000 °C bei einem Druck größer und gleich 1 bar a einstellbar sind.Process for the treatment of alloyed steels and refractory metals, in particular for the passivation and subsequent thermochemical surface treatment in a process chamber (1, 2) under the action of pressure and temperature, characterized in that in a first process step a first gas or gas mixture from the group N₂, H₂ or NH₃ for passivation in a process chamber (1) is admitted, a pressure greater than 1 bar a and a temperature between 100 ° C and 1000 ° C independently of one another in the chamber (1) and that in a second process step, a second gas - Or gas mixture from the group of N-, C- or B-containing gases for thermochemical surface treatment in a process chamber (1, 2) is admitted and a temperature between 100 ° C and 1,000 ° C at a pressure greater than and equal to 1 bar a adjustable are. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß in dem ersten Verfahrensschritt ein Druck von typischerweise 10 bar a eingestellt ist.A method according to claim 1, characterized in that a pressure of typically 10 bar a is set in the first process step. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet , daß in dem zweiten Verfahrensschritt in der Kammer (1) ein Druck von typischerweise 30 bar a eingestellt ist.Process according to claims 1 or 2, characterized in that in the second process step a pressure of typically 30 bar a is set in the chamber (1). Vorrichtung zur Durchführung eines Verfahrens nach den Ansprüchen 1, 2 oder 3, dadurch gekennzeichnet , daß der erste und der zweite Verfahrensschritt in ein und derselben Prozeßkammer (1) durchgeführt werden.Device for carrying out a method according to Claims 1, 2 or 3, characterized in that the first and the second method step are carried out in one and the same process chamber (1). Vorrichtung nach den Ansprüchen 1, 2 oder 3, dadurch gekennzeichnet , daß der erste Verfahrensschritt in einer ersten Prozeßkammer (1) und der zweite Verfahrensschritt in einer zweiten Prozeßkammer (2) durchgeführt werden.Device according to claims 1, 2 or 3, characterized in that the first process step is carried out in a first process chamber (1) and the second process step in a second process chamber (2). Vorrichtung nach Anspruch 5, dadurch gekennzeichnet , daß die erste Prozeßkammer (1) für einen Druck größer 1 bar a ausgelegt ist.Apparatus according to claim 5, characterized in that the first process chamber (1) is designed for a pressure greater than 1 bar a. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet , daß die zweite Prozeßkammer (2) für Atmosphärendruck ausgelegt ist.Apparatus according to claim 5, characterized in that the second process chamber (2) is designed for atmospheric pressure.
EP19920111673 1991-12-04 1992-07-09 Method of treating steel alloys and refractory metals Ceased EP0544987A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4139975 1991-12-04
DE4139975A DE4139975C2 (en) 1991-12-04 1991-12-04 Process for the treatment of alloyed steels and refractory metals and application of the process

Publications (1)

Publication Number Publication Date
EP0544987A1 true EP0544987A1 (en) 1993-06-09

Family

ID=6446253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920111673 Ceased EP0544987A1 (en) 1991-12-04 1992-07-09 Method of treating steel alloys and refractory metals

Country Status (4)

Country Link
US (1) US5372655A (en)
EP (1) EP0544987A1 (en)
JP (1) JPH0649619A (en)
DE (1) DE4139975C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545069B1 (en) * 1991-12-04 1995-12-06 Leybold Durferrit GmbH Method of treating steel and refractory metals
CN106555156A (en) * 2016-12-02 2017-04-05 哈尔滨东安发动机(集团)有限公司 A kind of nitriding method of niobium alloy

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599404A (en) * 1992-11-27 1997-02-04 Alger; Donald L. Process for forming nitride protective coatings
WO1997014820A1 (en) * 1995-10-18 1997-04-24 Sturm, Ruger & Company, Inc. Method of treating titanium parts
JP3909902B2 (en) * 1996-12-17 2007-04-25 株式会社小松製作所 Steel parts for high surface pressure resistance and method for producing the same
JP4307649B2 (en) * 1999-09-06 2009-08-05 独立行政法人科学技術振興機構 High toughness / high strength refractory metal alloy material and method for producing the same
US6197125B1 (en) * 1999-12-13 2001-03-06 Mcdermott Technology, Inc. Modification of diffusion coating grain structure by nitriding
US6547888B1 (en) 2000-01-28 2003-04-15 Swagelok Company Modified low temperature case hardening processes
US6599636B1 (en) * 2000-10-31 2003-07-29 Donald L. Alger α-Al2O3 and Ti2O3 protective coatings on aluminide substrates
DE10062431A1 (en) * 2000-12-18 2002-06-20 Continental Teves Ag & Co Ohg Hydraulic piston and method for its surface treatment
FR2826376B1 (en) * 2001-06-25 2003-09-26 Serthel CARBONITRURATION AND CARBONITRURATION PROCESS OF STEELS WITH CARBON OXIDE
US20070059501A1 (en) * 2003-08-01 2007-03-15 The New Industry Research Organization Tantalum carbide, method for producing tantalum carbide, tantalum carbide wiring and tantalum carbide electrode
US7247403B2 (en) * 2004-04-21 2007-07-24 Ut-Battelle, Llc Surface modified stainless steels for PEM fuel cell bipolar plates
JP4481075B2 (en) * 2004-04-30 2010-06-16 独立行政法人科学技術振興機構 High-strength and high-toughness refractory metal alloy material by carbonization and its manufacturing method
WO2015171698A1 (en) 2014-05-06 2015-11-12 Case Western Reserve University Alloy surface activation by immersion in aqueous acid solution
US10351944B2 (en) 2014-06-20 2019-07-16 Arvinmeritor Technology, Llc Ferrous alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851387A (en) * 1957-05-08 1958-09-09 Chapman Valve Mfg Co Method of depassifying high chromium steels prior to nitriding
DE1933439A1 (en) * 1968-07-01 1970-01-15 Gen Electric Nitriding process for surface hardening stainless steels - without the use of activators
EP0105835A1 (en) * 1982-09-07 1984-04-18 Vereinigte Drahtwerke AG Method of producing a hard layer on articles of Ti or Ti-alloys
EP0242089A1 (en) * 1986-04-10 1987-10-21 LUCAS INDUSTRIES public limited company Method of improving surface wear resistance of a metal component
EP0408168A1 (en) * 1989-07-10 1991-01-16 Daidousanso Co., Ltd. Method of pretreating metallic works and method of nitriding steel

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596981A (en) * 1949-10-05 1952-05-20 United States Steel Corp Method for nitriding metallic surfaces
SU121247A1 (en) * 1955-11-17 1958-11-30 Ю.С. Павленко Device for measuring skin area
SU1014986A1 (en) * 1981-09-15 1983-04-30 Экспериментальный научно-исследовательский институт кузнечно-прессового машиностроения Method for two-stage gaseous nitriding of steel products
SU1081239A1 (en) * 1983-01-06 1984-03-23 Московский автомобильный завод им.И.А.Лихачева Method for nitriding steel products
SU1201345A1 (en) * 1984-01-05 1985-12-30 Предприятие П/Я А-3869 Method of chemical and heat treatment of high-chromium steel components
SU1216247A1 (en) * 1984-09-18 1986-03-07 Предприятие П/Я А-1278 Method of hardening steel parts
US4822642A (en) * 1985-12-11 1989-04-18 Air Products And Chemicals, Inc. Method of producing silicon diffusion coatings on metal articles
JPS62270761A (en) * 1986-05-19 1987-11-25 Ishikawajima Harima Heavy Ind Co Ltd Nitriding method for steel
JP2732403B2 (en) * 1988-10-27 1998-03-30 財団法人応用科学研究所 Ammonia gas nitriding method for non-nitridable metal materials
JPH089766B2 (en) * 1989-07-10 1996-01-31 大同ほくさん株式会社 Steel nitriding method
JP2501925B2 (en) * 1989-12-22 1996-05-29 大同ほくさん株式会社 Pretreatment method for metal materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851387A (en) * 1957-05-08 1958-09-09 Chapman Valve Mfg Co Method of depassifying high chromium steels prior to nitriding
DE1933439A1 (en) * 1968-07-01 1970-01-15 Gen Electric Nitriding process for surface hardening stainless steels - without the use of activators
EP0105835A1 (en) * 1982-09-07 1984-04-18 Vereinigte Drahtwerke AG Method of producing a hard layer on articles of Ti or Ti-alloys
EP0242089A1 (en) * 1986-04-10 1987-10-21 LUCAS INDUSTRIES public limited company Method of improving surface wear resistance of a metal component
EP0408168A1 (en) * 1989-07-10 1991-01-16 Daidousanso Co., Ltd. Method of pretreating metallic works and method of nitriding steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545069B1 (en) * 1991-12-04 1995-12-06 Leybold Durferrit GmbH Method of treating steel and refractory metals
CN106555156A (en) * 2016-12-02 2017-04-05 哈尔滨东安发动机(集团)有限公司 A kind of nitriding method of niobium alloy

Also Published As

Publication number Publication date
US5372655A (en) 1994-12-13
DE4139975A1 (en) 1993-06-09
JPH0649619A (en) 1994-02-22
DE4139975C2 (en) 2001-02-22

Similar Documents

Publication Publication Date Title
EP0544987A1 (en) Method of treating steel alloys and refractory metals
DE69009603T2 (en) Process for the pretreatment of metallic workpieces and the nitriding hardening of steel.
DE2135763C3 (en) 31 08 70 Japan 45 76202 Process for the treatment of iron and steel objects to form a nitride layer
EP1011884A1 (en) Extrusion die, production and use
DE3042469C2 (en) Process for two-stage nitriding of iron alloys that may contain chromium
DE102007023820A1 (en) Process for the nitriding-oxidation treatment of metal
EP2881492B1 (en) Method for carburising metal deep drawn article or a bent pressed article made of austenitic stainless steel
EP0320706B1 (en) Process for producing layers resistant against corrosion, wear and compaction
EP0545069A1 (en) Method of treating steel and refractory metals
EP1122331B1 (en) Process of nitriding and/or carbonitriding of high-alloyed steel
DE3810892A1 (en) METHOD FOR NITROCARBURIZING AND NITRATING NON-IRONED SURFACES
EP3538676B1 (en) Method for the heat treatment of a workpiece consisting of a high-alloy steel
EP0464265B1 (en) Method for nitriding titanium
DE2943585C2 (en) Process for coating the surface of a steel workpiece
EP1745158B1 (en) Method for treating surfaces
DE3143566C2 (en) Process for the continuous heat treatment of zirconium and titanium metals and their alloys
EP2055801B1 (en) Method for hardening stainless steel surfaces on workpieces and fused salt for performing the method
DE2303756A1 (en) PROCESS FOR GENERATING AN EXTREMELY HARD MIXED CARBIDE LAYER ON FERROUS MATERIALS TO INCREASE THE WEAR RESISTANCE
EP0779376A1 (en) Plasma carburizing of metallic workpieces
DE10118029C1 (en) Process for the thermo-chemical pre-treatment of metallic workpieces, especially case hardening steel is carried out in an atmosphere containing hydrogen and hydrogen-containing gases to which oxygen and air are added
DE1796212B1 (en) PROCESS FOR BORING TITANIUM AND ITS ALLOYS
DE102018222387A1 (en) Process for carbonitriding a metal part and metal part
DD236950A1 (en) METHOD FOR PRODUCING HARD SURFACES ON TEMPERATURE-SENSITIVE MATERIALS
DE29807800U1 (en) Extrusion tool
DE10235131A1 (en) Method and device for blackening components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19930624

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD DURFERRIT GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD DURFERRIT GMBH

17Q First examination report despatched

Effective date: 19940524

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19950309