EP0462056A1 - Superplastisches Blech aus einer Aluminiumlegierung - Google Patents

Superplastisches Blech aus einer Aluminiumlegierung Download PDF

Info

Publication number
EP0462056A1
EP0462056A1 EP91810411A EP91810411A EP0462056A1 EP 0462056 A1 EP0462056 A1 EP 0462056A1 EP 91810411 A EP91810411 A EP 91810411A EP 91810411 A EP91810411 A EP 91810411A EP 0462056 A1 EP0462056 A1 EP 0462056A1
Authority
EP
European Patent Office
Prior art keywords
aluminum alloy
hours
cold
strip
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91810411A
Other languages
English (en)
French (fr)
Inventor
Philippe Fernandez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd filed Critical Alusuisse Lonza Services Ltd
Publication of EP0462056A1 publication Critical patent/EP0462056A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/902Superplastic

Definitions

  • the invention relates to a method for producing a fine-grained recrystallized sheet suitable for superplastic forming from a cold-hardenable, hardenable aluminum alloy.
  • the plastic elongation of a superplastic aluminum alloy is usually in the range of 400-800%, i.e. far above the values of conventional alloys. This allows a wide range of design options in terms of function and design with economical one-piece production.
  • the diverse shapes are reproducible with high dimensional accuracy, there is no "spring-back".
  • the simple tools that can be used have a particularly advantageous effect, since they also allow small and medium-sized production series to be produced cost-effectively and can be produced in short delivery times. Shape changes can be made quickly at affordable costs.
  • the present invention has for its object to provide a method of the type mentioned, which allows a cost-effective production of an air-cooled, hardenable, non-corrosion-prone aluminum sheet with superplastic properties.
  • the object is achieved according to the invention in that an alloy with 3-5.5% magnesium, 2-8% zinc, 0-4% copper, 0-1% manganese, 0-0.5% iron, 0-0.4 % Chromium, 0-0.4% molybdenum, 0-0.4% zircon, 0-0.3% silicon and 0-0.05% titanium, rest of aluminum of commercial purity, homogenized after continuous casting, hot rolled, with high Cold rolling degree cold rolled to the final thickness and annealed and cooled in a final heat treatment with rapid heating for recrystallization.
  • An alloy with 4-5% magnesium and 2-6%, preferably 3-4% zinc is particularly suitable as the cold-hardenable, hardenable AlMgZn alloy. Here and for the rest, percentages by weight are always used.
  • the preferred proportions are 0-0.1% copper, 0.2-0.4% manganese, 0.15-0.25% chromium, 0-0.2% iron, 0-0.2 % Molybdenum, 0-0.1% zircon and 0-0.1% silicon, although the chromium content can also be 0-0.1% and the zirconium content can also be 0.15-0.25%.
  • the cast aluminum alloy blocks are freed from the cast skin and cut to length. These formats can be heated to a metal temperature of 420-450 ° C in a first homogenization stage for 2-12 hours, kept at this temperature for 4-12 hours and in a second homogenization stage to 480-530 ° C for 0.5-4 hours heated and kept at this temperature for 2-12 hours.
  • the formats can be heated to a metal temperature of 420-480 ° C. in a continuous homogenization for 4-12 hours and kept at this temperature for 10-30 hours.
  • the hot rolling is expediently carried out immediately after the homogenization annealing or after cooling and reheating to 350-500 ° C.
  • the homogenized formats are rolled onto a 4-30 mm thick band, especially around 6-10 mm.
  • the metal temperature is preferably between 325 and 345 ° C.
  • the hot-rolled strip is preferably intermediate annealed at 300-400 ° C. for 6-36 hours before cold rolling.
  • the hot-rolled strip which can be hardened due to the alloy composition, is additionally strengthened by cold working, in which it is preferably rolled with a degree of cold deformation of 60-95%, in particular 70-90%.
  • the final thickness is e.g. between 1.5 and 3 mm, especially around 2 mm.
  • the homogenization annealing serves to reduce the structural non-uniformities, such as segregations and precipitations, which arise when casting rolled ingots.
  • the cold deformation increases the mechanical strength, the 0.2% proof stress, tensile strength and hardness increase.
  • the recrystallization of the cold-rolled strip serves for extensive softening and is accompanied by a complete recrystallization of the aluminum alloy.
  • rapid heating is essential, which is preferably carried out in a salt bath at 490-510 ° C or in a continuous temperature furnace.
  • the recrystallization annealing should take place with a heating time of at most 8 minutes, in particular at most 3 minutes.
  • the softened belts are cooled in air or in water.
  • the softened aluminum strips have superplastic properties. In addition to the great elasticity with relatively high mechanical strength, they are particularly characterized by their extraordinarily low susceptibility to corrosion, also in relation to stress corrosion.
  • An aluminum alloy with 4.4% magnesium, 3.7% zinc, 0.5% copper, 0.7% manganese, 0.12% iron, 0.19% zircon and 0.07% silicon is produced in a vertical continuous casting process with electromagnetic molds cast into bars of 70x200x800 mm, using the usual Tib2 grain refining technique.
  • the casting temperature is around 720 ° C.
  • the cast skin is removed, the bar head and bar base are separated and the bar divided. These are heated to 440 ° C. for 3 hours in a first homogenization stage, kept at this temperature for 8 hours, heated to 500 ° C. for 1 hour in a second homogenization stage and kept at this temperature for 3 hours.
  • the ingots are rolled in several passes at 9 mm, the final temperature of the metal being between 325 and 345 ° C.
  • the recrystallization annealing is carried out with a heating time of 5 minutes in a liquid mixture of potassium and sodium nitrate at 500 ° C. After cooling in water, the tapes are cleaned and dried.
  • Example 1 In a method corresponding to Example 1 for producing a fine-grain recrystallized sheet suitable for superplastic deformation, an aluminum alloy is used with 4.3% magnesium, 3.6% zinc, 0.3% manganese, 0.11% iron, 0.20% zircon and 0.07% silicon.
  • the sheets of both examples show superplastic properties, they are checked for their expansion at 500 ° C, 520 ° C and 540 ° C.
  • Metallographic examinations show finely divided, globulitic grains of less than 10 ⁇ m, which are regularly distributed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)

Abstract

Das feinkörnig rekristallisierte Blech mit superplastischen Eigenschaften besteht aus einer kaltverfestigbaren, aushärtbaren AlMgZn-Legierung. Die Legierung mit 3-5,5% Magnesium, 2-8% Zink, 0-4% Kupfer, 0-1% Mangan, 0-0,5% Eisen, 0-0,4% Chrom, 0-0,4% Molybdän, 0-0,4% Zirkon, 0-0,% Silizium und 0-0,05% Titan, Rest Aluminium handelsüblicher Reinheit, wird nach dem Stranggiessen homogenisiert und warm abgewalzt. Nach einer allfälligen Zwischenglühung wird das Band mit hohem Kaltwalzgrad kalt an die Enddicke abgewalzt, mit rascher Erwärmung zur Entfestigung rekristallisiert und abgekühlt.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines feinkörnig rekristallisierten, zur superplastischen Umformung geeigneten bleches aus einer kaltverfestigbaren, aushärtbaren Aluminiumlegierung.
  • Bei aushärtbaren Aluminiumlegierungen kann eine Festigkeitserhöhung ausser durch Kaltumformen auch durch Wärmebehandlung herbeigeführt werden. Diese Legierungen, beispielsweise vom Typus AlZnMg und AlZnMgCu, neigen zur Kornbildung, falls die zur Ausscheidungshärtung notwendige Lösungsglühung mit einer Rekristallisation verbunden ist. Für zahlreiche Anwendungen, vor allem für die superplastische Umformung, ist jedoch Feinkörnigkeit erwünscht oder Voraussetzung. Bei blechen beispielsweise, welche superplastisch umgeformt werden sollen, liegt die Korngrösse unterhalb 25 µm, bevorzugt unter 10 µm. Die Körner sollen zudem nahezu globulitisch vorliegen. Ueberdies darf sich während der superplastischen Umformung, welche bei oder knapp oberhalb 500°C durchgeführt wird, auch keine wesentliche Vergröberung der regelmässig verteilten Körner oder Subkörner einstellen.
  • Die plastische Dehnung einer superplastischen Aluminiumlegierung liegt meist im bereich von 400-800%, also weit über den Werten üblicher Legierungen. Dies erlaubt bei wirtschaftlicher Fertigung aus einem Stück vielfältige Gestaltungsmöglichkeiten in bezug auf Funktion und Design. Die vielfältigen Formen sind mit hoher Massgenauigkeit reproduzierbar, es tritt kein "Spring-back" ein. besonders vorteilhaft wirken sich die einsetzbaren, einfachen Werkzeuge aus, welche kostengünstig auch kleine und mittlere Fabrikationsserien erlauben und in kurzen Lieferzeiten herstellbar sind. Formänderungen können rasch zu tragbaren Kosten durchgeführt werden.
  • Es sindzahl reiche binäre und ternäre Aluminiumlegierungen mit superplastischen Eigenschaften beschrieben worden, insbesondere auch des Typus AlMg, beispielsweise in der EP,A1 0297035.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, welches eine kostengünstige Herstellung eines auch luftabkühlbaren, aushärtbaren, nicht korrosionsanfälligen Aluminiumblechs mit superplastischen Eigenschaften erlaubt.
  • Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass eine Legierung mit 3-5,5% Magnesium, 2-8% Zink, 0-4% Kupfer, 0-1% Mangan, 0-0,5% Eisen, 0-0,4% Chrom, 0-0,4% Molybdän, 0-0,4% Zirkon, 0-0,3% Silizium und 0-0,05% Titan, Rest Aluminium handelsüblicher Reinheit, nach dem Stranggiessen homogenisiert, warm abgewalzt, mit hohem Kaltwalzgrad kalt an die Enddicke abgewalzt und in einer abschliessenden Wärmebehandlung mit schneller Erwärmung zur Rekristallisation geglüht und abgekühlt wird.
  • Als kaltverfestigbare, aushärtbare AlMgZn-Legierung eignet sich insbesondere eine Legierung mit 4-5% Magnesium und 2-6%, vorzugsweise 3-4% Zink. Hier und im übrigen werden mit den prozentualen Angaben stets Gewichtsanteile bezeichnet.
  • Für die übrigen Legierungskomponenten liegen die bevorzugten Anteile bei 0-0,1% Kupfer, 0,2-0,4% Mangan, 0,15-0,25% Chrom, 0-0,2% Eisen, 0-0,2% Molybdän, 0-0,1% Zirkon und 0-0,1% Silizium, wobei jedoch auch der Chromgehalt bei 0-0,1% und gleichzeitig der Zirkongehalt bei 0,15-0,25% liegen können.
  • Bemerkenswert ist der gegenüber der EP,A1,0297035 sehr geringe Eisengehalt.
  • Der Einsatz von zwei besonderen, im Rahmen der Erfindung liegenden Legierungstypen ist erfolgreich geprüft worden.
    • Eine-Aluminiumlegierung mit 4-5% Magnesium, 3-4% Zink, 0,4-0,6% Kupfer, 0,6-0,8% Mangan, 0,1-0,15% Eisen, 0,1-0,2% Zirkon und 0,05-0,1% Silizium.
    • Eine Aluminiumlegierung mit 4,1-4,5% Magnesium, 3,5-3,7% Zink, 0,2-0,4% Mangan, 0,05-0,15% Eisen, 0,1-0,3% Zirkon und 0,05-0,1% Silizium.
  • Die stranggegossenen Blöcke der Aluminiumlegierung werden von der Gusshaut befreit und abgelängt. Diese Formate können in einer ersten Homogenisierungsstufe während 2-12 Stunden auf eine Metalltemperatur von 420-450°C erwärmt, während 4-12 Stunden auf dieser Temperatur gehalten und in einer zweiten Homogenisierungsstufe während 0,5-4 Stunden auf 480-530°C erwärmt und während 2-12 Stunden auf dieser Temperatur gehalten werden.
  • Anstelle einer zweistufigen Homogenisierungsglühung können jedoch die Formate in einer stufenlosen Homogenisierung während 4-12 Stunden auf eine Metalltemperatur von 420-480°C erwärmt und während 10-30 Stunden auf dieser Temperatur gehalten werden.
  • Das Warmwalzen erfolgt zweckmässig unmittelbar nach dem Homogenisierungsglühen oder nach dem Abkühlen und dem Wiedererwärmen auf 350-500°C. In mehreren Stichen werden die homogenisierten Formate an ein 4-30 mm dickes band abgewalzt, insbesondere an etwa 6-10 mm. Am Ende des Warmwalzens liegt die Metalltemperatur bevorzugt zwischen 325 und 345°C.
  • Vorzugsweise wird das warm abgewalzte Band vor dem Kaltwalzen während 6-36 Stunden bei 300-400 °C zwischengeglüht.
  • Das aufgrund der Legierungszusammensetzung aushärtbare Warmwalzband wird zusätzlich durch Kaltverfornen verfestigt, indem es bevorzugt mit einem Kaltverformungsgrad von 60-95%, insbesondere 70-90%, abgewalzt wird. Die Enddicke liegt z.B. zwischen 1,5 und 3 mm, insbesondere bei etwa 2 mm.
  • Das Homogenisierungsglühen dient einer Verminderung der beim Giessen von Walzbarren entstehenden Gefügeungleichmässigkeiten, wie Seigerungen und Ausscheidungen. Durch die Kaltverformung nimmt die mechanische Festigkeit zu, die 0,2%-Dehngrenze, Zugfestigkeit und Härte steigen an. Die Rekristallisation des kaltgewalzten Bandes dient der weitgehenden Entfestigung und ist von einer vollständigen Umkristallisation der Aluminiumlegierung begleitet.
  • Von wesentlicher Bedeutung ist neben dem hohen Kaltwalzgrad ein schnelles Erwärmen, das vorzugsweise in einem Salzbad von 490-510°C oder in einem banddurchlaufofen entsprechender Temperatur erfolgt. Das Rekristallisationsglühen soll, je nach Legierungszusammensetzung und beschaffenheit des kaltgewalzten bandes, mit einer Anwärmungszeit von höchstens 8 Minuten, insbesondere von höchstens 3 Minuten, erfolgen. Die entfestigten bänder werden an der Luft oder im Wasser abgekühlt.
  • Die entfestigten Alumimumbänder haben superplastische Eigenschaften. Neben der grossen Dehnbarkeit bei verhältnismässig hoher mechanischer Festigkeit zeichnen sie sich insbesondere durch ihre ausserordentlich geringe Korrosionsanfälligkeit, auch in bezug auf Spannungskorrosion, aus.
  • Je nach spezifischer Anwendung wirken sich noch weitere Eigenschaften, wie geringe Dichte, Anodisierbarkeit, Lackierbarkeit, Hygiene, Masshaltigkeit, elektrische und thermische Leitfähigkeit und/oder Antistatik vorteilhaft aus.
  • Das erfindungsgemässe Verfahren wird anhand der nachfolgenden Ausführungsbeispiele näher erläutert.
  • Beispiel 1
  • Eine Aluminiumlegierung mit 4,4% Magnesium, 3,7% Zink, 0,5% Kupfer, 0,7% Mangan, 0,12% Eisen, 0,19% Zirkon und 0,07% Silizium wird im Vertikalstranggiessverfahren mit elektromagnetischen Kokillen zu barren von 70x200x800 mm vergossen, unter Anwendung der üblichen Tib₂-Kornfeinungstechnik. Die Giesstemperatur liegt bei etwa 720°C. Nach dem Giessen wird die Gusshaut entfernt, barrenkopf und barrenfuss werden abgetrennt und der barren aufgeteilt. Diese werden in einer ersten Homogenisierungsstufe während 3 Stunden auf 440°C erwärmt, während 8 Stunden auf dieser Temperatur gehalten, in einer zweiten Homogenisierungsstufe während 1 Stunde auf 500°C erwärmt und während 3 Stunden auf dieser Temperatur gehalten.
  • Unmittelbar nach der Homogenisierung werden die Barren in mehreren Stichen an 9 mm abgewalzt, wobei die Endtemperatur des Metalls zwischen 325 und 345°C liegt.
  • Das Kaltwalzen erfolgt mit einem Kaltverformungsgrad von etwa 78% an 2 mm. Das Rekristallisationsglühen erfolgt mit einer Anwärmungszeit von 5 Minuten in einem flüssigen Gemisch von Kalium- und Natriumnitrat bei 500°C. Nach dem Abkühlen im Wasser werden die Bänder gereinigt und getrocknet.
  • Beispiel 2
  • In einem Beispiel 1 entsprechenden Verfahren zur Herstellung eines feinkörnig rekristallisierten, zur superplastischen Verformung geeigneten Bleches wird eine Aluminiumlegierung mit 4,3% Magnesium, 3,6% Zink, 0,3% Mangan, 0,11°% Eisen, 0,20% Zirkon und 0,07% Silizium eingesetzt.
  • Die Bleche beider Beispiele zeigen superplastische Eigenschaften, sie werden bei 500°C, 520°C und 540°C bezüglich ihrer Dehnung kontrolliert.
  • Metallographische Untersuchungen zeigen feinverteilte, globulitische Körner von weniger als 10 µm, welche regelmässig verteilt sind.

Claims (12)

  1. Verfahren zur Herstellung eines feinkörnig rekristallisierten, zur superplastischen Umformung geeigneten Bleches aus einer kaltverfestigbaren, aushärtbaren Aluminiumlegierung,

    dadurch gekennzeichnet, dass

    eine Legierung mit 3-5,5% Magnesium, 2-8% Zink, 0-4%% Kupfer, 0-1% Mangan, 0-0,5% Eisen, 0-0,4% Chrom, 0-0,4% Molybdän, 0-0,4% Zirkon, 0-0,3% Silizium und 0-0,05% Titan, Rest Aluminium handelsüblicher Reinheit, nach dem Stranggiessen homogenisiert, warm abgewalzt, mit hohem Kaltwalzgrad kalt an die Enddicke abgewalzt und in einer abschliessenden Wärmebehandlung mit schneller Erwärmung zur Rekristallisation geglüht und abgekühlt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Aluminiumlegierung mit 4-5% Magnesium und 2-6%, vorzugsweise 3-4%, Zink eingesetzt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Aluminiumlegierung mit 0-0,1% Kupfer, 0,2-0,4% Mangan, 0,15-0,25% Chrom, 0-0,2% Eisen, 0-0,2% Molybdän, 0-0,1% Zirkon und 0-0,1% Silizium eingesetzt wird.
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Aluminiumlegierung mit 0-0,1% Kupfer, 0,2-0,4% Mangan, 0-0,1% Chrom, 0-0,2% Eisen, 0-0,2°% Molybdän, 0,15-0,25% Zirkon und 0-0,1% Silizium eingesetzt wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Aluminiumlegierung mit 4-5% Magnesium, 3-4% Zink, 0,4-0,6% Kupfer, 0,6-0,8% Mangan, 0,1-0,15% Eisen, 0,1-0,3% Zirkon und 0,05-0,1% Silizium eingesetzt wird.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Aluminiumlegierung mit 4,1-4,5% Magnesium, 3,5-3,7% Zink, 0,2-0,4% Mangan, 0,05-0,15% Eisen, 0,1-0,3% Chrom und 0,05-0,1% Silizium eingesetzt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Aluminiumlegierung in einer ersten Homogenisierungsstufe während 2-12 Stunden auf eine Metalltemperatur von 420-450°C erwärmt, während 4-12 Stunden auf dieser Temperatur gehalten und in einer zweiten Homogenisierungsstufe während 0,5-4 Stunden auf 480-530°C erwärmt und während 2-12 Stunden auf dieser Temperatur gehalten wird, oder eine Aluminiumlegierung in einer stufenlosen Homogenisierung während 4-12 Stunden auf eine Metalltemperatur von 420-480°C erwärmt und während 10-30 Stunden auf dieser Temperatur gehalten wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das unmittelbar an die Homogenisierungsglühung anschliessende oder nach dem Abkühlen und dem Wiedererwärmen auf 350-500°C durchgeführte Warmwalzen zu einem 4-30 mm, vorzugsweise etwa 6-10 mm dicken Band führt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das warm abgewalzte Band vor dem Kaltwalzen während 6-36 Stunden bei 300-400°C zwischengeglüht wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Warmwalzband mit einem Verformungsgrad von 60-95%, vorzugsweise 70-90%, kalt abgewalzt wird.
  11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Kaltwalzband zur Rekristallisation mit einer Anwärmungszeit von höchstens 8 min, vorzugsweise von höchstens 3 min, bei einer Temperatur von 400-540°C geglüht wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet dass das Kaltwalzband in einem Salzbad oder in einem Banddurchlaufofen rekristallisiert wird.
EP91810411A 1990-06-11 1991-05-30 Superplastisches Blech aus einer Aluminiumlegierung Withdrawn EP0462056A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1959/90A CH682326A5 (de) 1990-06-11 1990-06-11
CH1959/90 1990-06-11

Publications (1)

Publication Number Publication Date
EP0462056A1 true EP0462056A1 (de) 1991-12-18

Family

ID=4222606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91810411A Withdrawn EP0462056A1 (de) 1990-06-11 1991-05-30 Superplastisches Blech aus einer Aluminiumlegierung

Country Status (3)

Country Link
US (1) US5122196A (de)
EP (1) EP0462056A1 (de)
CH (1) CH682326A5 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0799900A1 (de) * 1996-04-04 1997-10-08 Hoogovens Aluminium Walzprodukte GmbH Hochfeste Aluminium-Magnesium-Legierung für grosse Schweissstrukturen
CN104313413A (zh) * 2014-10-24 2015-01-28 北京科技大学 一种Al-Mg-Zn系合金及其合金板材的制备方法
CN112760578A (zh) * 2020-12-24 2021-05-07 上海交通大学 一种具有超塑性铝基复合材料板的制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145441A (ja) * 1993-01-27 1995-06-06 Toyota Motor Corp 超塑性アルミニウム合金およびその製造方法
US5469912A (en) * 1993-02-22 1995-11-28 Golden Aluminum Company Process for producing aluminum alloy sheet product
US5480498A (en) * 1994-05-20 1996-01-02 Reynolds Metals Company Method of making aluminum sheet product and product therefrom
US5850755A (en) * 1995-02-08 1998-12-22 Segal; Vladimir M. Method and apparatus for intensive plastic deformation of flat billets
US5772804A (en) * 1995-08-31 1998-06-30 Kaiser Aluminum & Chemical Corporation Method of producing aluminum alloys having superplastic properties
US6423164B1 (en) 1995-11-17 2002-07-23 Reynolds Metals Company Method of making high strength aluminum sheet product and product therefrom
DE19944589A1 (de) * 1999-09-16 2001-03-22 Ejot Verbindungstech Gmbh & Co Schraubverbindung
US6783729B2 (en) * 2001-12-11 2004-08-31 Alcan International Limited Aluminum alloy for making naturally aged die cast products
JP2007521140A (ja) * 2003-12-22 2007-08-02 キャボット コーポレイション 高い完全度のスパッタリングターゲット材料及びそれを大量に製造する方法
US20060027308A1 (en) * 2004-08-05 2006-02-09 Mackenzie M S Method and apparatus for curing patches on composite structures having complex substrates
EP1683882B2 (de) 2005-01-19 2010-07-21 Otto Fuchs KG Abschreckunempfindliche Aluminiumlegierung sowie Verfahren zum Herstellen eines Halbzeuges aus dieser Legierung
JP5114812B2 (ja) * 2006-03-07 2013-01-09 キャボット コーポレイション 変形させた金属部材の製造方法
US9039848B2 (en) * 2007-11-15 2015-05-26 Aleris Aluminum Koblenz Gmbh Al—Mg—Zn wrought alloy product and method of its manufacture
US8454078B2 (en) * 2009-11-17 2013-06-04 GM Global Technology Operations LLC Automotive vehicle door construction
US9315885B2 (en) * 2013-03-09 2016-04-19 Alcoa Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
CN106834839A (zh) * 2016-11-28 2017-06-13 佛山市尚好门窗有限责任公司 一种增强荧光的金属
CN113774296B (zh) * 2021-09-08 2022-08-05 中国航发北京航空材料研究院 一种提高铝合金厚板及锻件综合性能的制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984260A (en) * 1971-07-20 1976-10-05 British Aluminum Company, Limited Aluminium base alloys
US4021271A (en) * 1975-07-07 1977-05-03 Kaiser Aluminum & Chemical Corporation Ultrafine grain Al-Mg alloy product
EP0084571A1 (de) * 1981-07-30 1983-08-03 Kasei Naoetsu Light Metal Industries Limited Verfahren zur herstellung superplastischer aluminiumlegierungsplatte
EP0297035A1 (de) * 1987-06-23 1988-12-28 Alusuisse-Lonza Services Ag Aluminiumlegierung für superplastische Umformung
US4867805A (en) * 1988-02-03 1989-09-19 Agrawal Suphal P Superplastic aluminum alloys, alloy processes and component part formations thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911651B2 (ja) * 1980-10-29 1984-03-16 三井アルミニウム工業株式会社 超塑性アルミニウム合金及びその製造方法
JPS6025160A (ja) * 1983-07-22 1985-02-07 Seiko Electronic Components Ltd 非水電解液電池
JPS6086248A (ja) * 1983-10-17 1985-05-15 Kobe Steel Ltd 超塑性アルミニウム合金の製造方法
JPS60251260A (ja) * 1984-05-26 1985-12-11 Kobe Steel Ltd 超塑性アルミニウム合金の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984260A (en) * 1971-07-20 1976-10-05 British Aluminum Company, Limited Aluminium base alloys
US4021271A (en) * 1975-07-07 1977-05-03 Kaiser Aluminum & Chemical Corporation Ultrafine grain Al-Mg alloy product
EP0084571A1 (de) * 1981-07-30 1983-08-03 Kasei Naoetsu Light Metal Industries Limited Verfahren zur herstellung superplastischer aluminiumlegierungsplatte
EP0297035A1 (de) * 1987-06-23 1988-12-28 Alusuisse-Lonza Services Ag Aluminiumlegierung für superplastische Umformung
US4867805A (en) * 1988-02-03 1989-09-19 Agrawal Suphal P Superplastic aluminum alloys, alloy processes and component part formations thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 128 (C-345)[2185], 13. Mai 1986; & JP-A-60 251 260 (KOBE SEIKOSHO K.K.) 11-12-1985 *
PATENT ABSTRACTS OF JAPAN, Band 6, Nr. 158 (C-120)[1036], 19. August 1982; & JP-A-57 76 145 (MITSUI ARUMINIUMU KOGYO K.K.) 13-05-1982 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 228 (C-303)[1951], 13. September 1985; & JP-A-60 86 248 (KOBE SEIKOSHO K.K.) 15-05-1985 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0799900A1 (de) * 1996-04-04 1997-10-08 Hoogovens Aluminium Walzprodukte GmbH Hochfeste Aluminium-Magnesium-Legierung für grosse Schweissstrukturen
CN104313413A (zh) * 2014-10-24 2015-01-28 北京科技大学 一种Al-Mg-Zn系合金及其合金板材的制备方法
CN112760578A (zh) * 2020-12-24 2021-05-07 上海交通大学 一种具有超塑性铝基复合材料板的制备方法

Also Published As

Publication number Publication date
US5122196A (en) 1992-06-16
CH682326A5 (de) 1993-08-31

Similar Documents

Publication Publication Date Title
EP0462056A1 (de) Superplastisches Blech aus einer Aluminiumlegierung
DE3621671C2 (de)
US5133931A (en) Lithium aluminum alloy system
DE3586264T2 (de) Aluminium-lithium-legierungen.
US4618382A (en) Superplastic aluminium alloy sheets
EP0062469B1 (de) Verfahren zur Herstellung von Bauteilen aus einer feinkörnigen, hochfesten Aluminiumlegierung
DE112008003052T5 (de) Produkt aus Al-Mg-Zn-Knetlegierung und Herstellungsverfahren dafür
CH624147A5 (de)
DE1558521A1 (de) Nickel-Chrom-Knetlegierung
DE69107392T2 (de) Verfahren zur Herstellung eines Werkstoffes aus eines Aluminiumlegierung mit ausgezeichneter Pressverformbarkeit und Einbrennhärtbarkeit.
US4699673A (en) Method of manufacturing aluminum alloy sheets excellent in hot formability
US4645543A (en) Superplastic aluminum alloy
DE60315232T2 (de) Verfahren zur Herstellung eines stranggegossenen Aluminiumbleches
DE69402496T2 (de) Verfahren zur Herstellung von Blech aus einer Al-Legierung, die eine verzögerte natürliche Alterung, eine ausgezeichnete Verformbarkeit und Einbrennhärtbarkeit aufweist
DE2235168C2 (de) Verfahren zur Herstellung von Aluminiumlegierungen und deren Verwendung
DE2427653A1 (de) Legierungen auf kupferbasis und verfahren zu deren herstellung
DE10163039C1 (de) Warm- und kaltumformbares Bauteil aus einer Aluminiumlegierung und Verfahren zu seiner Herstellung
DE69029146T2 (de) Verbesserungen bei aluminiumlegierungen
EP0263070B1 (de) Verfahren zur Herstellung eines feinkörnig rekristallisierten Bleches
DE69921146T2 (de) Verfahren zur herstellung von wärmebehandlungsfähigen blech-gegenständen
DE1284095B (de) Verfahren zum Herstellen von Aluminiumlegierungsblechen hoher Zeitstandfestigkeit
DE2242235B2 (de) Superplastische Aluminiumlegierung
CH617720A5 (de)
EP0297035A1 (de) Aluminiumlegierung für superplastische Umformung
DE2641924C2 (de) Austenitische Ni-Cv-Legierung hoher Korrosionsbeständigkeit und Warmverformbarkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19920604

17Q First examination report despatched

Effective date: 19940329

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19950308