EP0459541B1 - Process for phosphating metal surfaces - Google Patents

Process for phosphating metal surfaces Download PDF

Info

Publication number
EP0459541B1
EP0459541B1 EP91200532A EP91200532A EP0459541B1 EP 0459541 B1 EP0459541 B1 EP 0459541B1 EP 91200532 A EP91200532 A EP 91200532A EP 91200532 A EP91200532 A EP 91200532A EP 0459541 B1 EP0459541 B1 EP 0459541B1
Authority
EP
European Patent Office
Prior art keywords
metal surfaces
phosphating
brought
contact
contain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91200532A
Other languages
German (de)
French (fr)
Other versions
EP0459541A1 (en
Inventor
Horst Dr. Gehmecker
Werner Dr. Rausch
Peter Dr. Schubach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemetall GmbH
Original Assignee
Metallgesellschaft AG
Continentale Parker SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6405232&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0459541(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metallgesellschaft AG, Continentale Parker SA filed Critical Metallgesellschaft AG
Publication of EP0459541A1 publication Critical patent/EP0459541A1/en
Application granted granted Critical
Publication of EP0459541B1 publication Critical patent/EP0459541B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/186Orthophosphates containing manganese cations containing also copper cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/188Orthophosphates containing manganese cations containing also magnesium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/368Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing magnesium cations

Definitions

  • the invention relates to a method for phosphating metal surfaces with aqueous, acid phosphating solutions containing zinc, manganese, Cu and phosphate ions and oxidizing agents, and its use as a pretreatment of the metal surfaces for subsequent electrocoating and for the phosphating of steel, galvanized steel , galvanized steel, aluminum and its alloys.
  • phosphating of metals pursues the goal of producing firmly adherent metal phosphate layers on the metal surface, which in themselves improve the corrosion resistance and, in conjunction with paints and other organic coatings, contribute to a significant increase in the adhesion and resistance to infiltration when exposed to corrosion.
  • phosphate layers serve as insulation against the passage of electrical currents and, in conjunction with lubricants, to facilitate sliding processes.
  • the low-zinc phosphating processes are particularly suitable, in which the phosphating solutions contain comparatively low levels of zinc ions of e.g. B. 0.5 to 1.5 g / l. Under these conditions, phosphate layers with a high content of phosphophyllite (Zn2Fe (PO4) 2.4H2O) are produced on steel, which is much more corrosion-resistant than the hopite (Zn3 (PO4) 2.4H2O) deposited from zinc-rich phosphating solutions.
  • Zn2Fe (PO4) 2.4H2O phosphophyllite
  • By using nickel and / or manganese ions in the low zinc phosphating solutions further increase the protection quality in connection with paints.
  • Low zinc process with the addition of e.g. B.
  • the high content of nickel ions in the phosphating solutions of the trication processes and of Ni and Ni compounds in the phosphate layers formed has disadvantages insofar as nickel and nickel compounds can be classified as harmful from the point of view of workplace hygiene and environmental protection.
  • the object of the invention is to provide a process for the phosphating of metals, in particular steel, galvanized steel, alloy-galvanized steel and aluminum and its alloys, which leads to phosphate layers, the quality of which roughly corresponds to the layers of the trication processes based on Zn-Mn Ni corresponds without having the disadvantage of the presence of Ni and Ni compounds.
  • the object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that the metal surfaces are brought into contact with phosphating solutions which contain a maximum of 0.01 g / l of nickel and 0.3 to 1.7 g / l Zn 0.2 to 4.0 g / l Mn 0.001 to 0.030 g / l Cu 5 to 30 g / l phosphate (calculated as P2O5) contain and in which the concentration of Fe (II) is kept below 0.1 g / l and the pH is adjusted to 3.0 to 3.8 by means of oxygen and / or other oxidizing agents having the same effect.
  • phosphating solutions which contain a maximum of 0.01 g / l of nickel and 0.3 to 1.7 g / l Zn 0.2 to 4.0 g / l Mn 0.001 to 0.030 g / l Cu 5 to 30 g / l phosphate (calculated as P2O5)
  • the method according to the invention is applied in particular to steel, galvanized steel, alloy-galvanized steel, aluminum and its alloys.
  • steel includes soft unalloyed steels, high and high-strength steels (e.g. microalloyed, dual-phase and phosphorus alloyed) and low-alloyed steels.
  • the galvanizing layers can e.g. B. generated by electrolysis, hot dipping or vapor deposition.
  • Typical zinc qualities include pure zinc, as well as e.g. B. Alloys with Fe, Ni, Co, Al, Cr.
  • Aluminum and aluminum alloys are understood to mean the casting and kneading materials used in the metal industry, which can contain, for example, Mg, Mn, Cu, Si, Zn, Fe, Cr, Ni, Ti as alloying elements.
  • the basic requirement of the process according to the invention is that the aqueous acidic phosphating solutions are essentially free of nickel. This means that under technical conditions the Ni concentration in the phosphating baths is less than 0.0002 to 0.01 g / l. However, it is preferably below 0.0001 g / l.
  • the essential content of the invention is also the presence of the three metal cations Zn, Mn and Cu in the amounts indicated.
  • Zn concentrations below 0.3 g / l lead to a significant deterioration in the layer formation, particularly when treating steel.
  • the phosphophyllite content in phosphate layers on steel drops sharply, at the same time the quality of the phosphate layers in connection with painting is reduced.
  • Below 0.2 g / l Mn the addition of this cation brings no visible advantages, above a concentration of 4 g / l there are no further improvements in quality observe.
  • the Cu concentration is between 0.001 and 0.030 g / l. Below this range, the favorable effect on layer formation and layer quality is lost, while above 0.030 g / l Cu an annoying Cu cementation becomes increasingly noticeable.
  • Fe dissolves in the form of Fe (II) ions.
  • the phosphating bath must now contain so much oxygen and / or other oxidizing agents that the stationary Fe (II) ion concentration does not exceed a value of 0.1 g / l, i.e. H. that all other Fe is converted into Fe (III) and precipitated as iron phosphate sludge.
  • the pH value of the phosphating solution must be set between 3.0 and 3.8.
  • the higher (lower) pH values apply to lower (higher) bath temperatures and to lower (higher) bath concentrations.
  • additional cations e.g. B. alkali (Na, K, NH4 and others), and / or alkaline earth metal ions (Mg, Ca) or other anions (NO3, Cl, SiF6, SO4, BF4 and others) also used.
  • the quality of the phosphate layers produced with the aid of the method according to the invention can be improved if up to 3 g / l Mg and / or up to 3 g / l Ca are added to the phosphating solution.
  • the preferred concentration range for these cations is 0.4 to 1.3 g / l each.
  • the cations can e.g. B. as phosphate or as a salt with the above mentioned anions are introduced into the phosphating solution.
  • the oxides, hydroxides and carbonates are also suitable as a source of Mg and Ca.
  • the Zn concentration is preferably 0.3 to 1 g / l, while for the spraying / dipping and immersion method the Zn content in the bath is preferably 0.9 to 1.7 g / l is set.
  • the preferred Mn concentration is - regardless of the type of application - between 0.4 and 1.3 g / l.
  • the metal surfaces are brought into contact with a phosphating solution which contains 0.003 and 0.020 g / l Cu. Furthermore, particularly favorable phosphating results are achieved if the weight ratio between Cu and phosphate, calculated as P2O5, is 1: (170 to 30,000) in the phosphating bath and Cu and P2O5 are supplemented in a weight ratio of 1: (5 to 2000).
  • the preferred oxidizing agents include nitrite, chlorate, bromate, peroxy compounds (H2O2, perborate, percarbonate, perphosphate, etc.) and organic nitro compounds, eg. B. nitrobenzenesulfonates. These oxidizing agents can be used alone or in combination - if appropriate also with weaker oxidizing agents such as nitrate. Suitable combinations are e.g. B.
  • oxidizing agents mentioned not only serve to oxidize Fe-II ions, but also accelerate them Phosphate layer formation. Examples of typical concentration ranges of the oxidizing agents mentioned in the phosphating bath are given below.
  • Nitrite 0.04 to 0.5 g / l; Chlorate: 0.5 to 5 g / l; Bromate: 0.3 to 4 g / l; Peroxy compound, calculated as H2O2: 0.005 to 0.1 g / l; Nitrobenzenesulfonate: 0.05 to 1 g / l.
  • a further preferred embodiment of the invention consists in bringing the metal surfaces into contact with phosphating solutions which additionally contain compounds having a modifying action from the group of surfactants, hydroxycarboxylic acid, tartrate, citrate, single fluoride, boron fluoride, silicon fluoride.
  • surfactant e.g. 0.05 to 0.5 g / l
  • Hydroxycarboxylic acids e.g. B. tartaric acid, citric acid or its salts lead in the concentration range of z. B. 0.03 to 0.3 g / l to a significant reduction in the weight of the phosphate layer.
  • Single fluoride favors the phosphating of metals that are more difficult to attack and leads to a reduction in the minimum phosphating time and an increase in the area coverage of the phosphate layer.
  • z. B. F contents of 0.1 to 1 g / l.
  • the controlled addition of single fluoride also enables the formation of crystalline phosphate layers on aluminum and its alloys.
  • BF4 and SiF6 also increase the aggressiveness of the phosphating baths, which is particularly evident when treating hot-dip galvanized surfaces. These additives are used, for example, in amounts of 0.4 to 3 g / l.
  • the phosphating process according to the invention is suitable for use in spraying, spraying / dipping and dipping.
  • the bath temperatures are usually between 40 and 60 ° C.
  • the surfaces are usually cleaned, rinsed and often treated with activating agents based on titanium phosphate before they are brought into contact with the phosphating solution.
  • the phosphate layers produced with the phosphating process according to the invention are finely crystalline and uniformly opaque.
  • the weight per unit area is usually between 1.5 and 4.5 g / m2 for the treatment of steel, galvanized steel and alloy-galvanized steel and between 0.5 and 2.5 g / m2 for the treatment of aluminum and its alloys.
  • the phosphating solution e.g. B. by incorporation into the phosphate layer, by sludge formation, by mechanical bath losses over the treated metal surface and the sludge discharge, by redox reactions and also by decomposition. For this reason, the phosphating solution must be monitored analytically and supplemented with the missing components.
  • the phosphate layers can be used with advantage for corrosion protection, for facilitating non-cutting cold forming and for electrical insulation. However, they are preferably used to prepare metal surfaces for painting, in particular electrocoating, with particularly good results in connection with cathodic electrocoating be achieved. Before painting, it is recommended that the phosphate layers with passivating detergents such. B. based on Cr (VI), Cr (VI) -Cr (III), Cr (III), Cr (III) fluorozirconate, Al (III), Al (III) fluorozirconate. This further increases paint adhesion and infiltration resistance.
  • Sheets made of steel, galvanized steel and aluminum were degreased with an alkaline cleaner, rinsed with water and, if necessary after phosphating with a solution containing titanium phosphate, phosphated with the phosphating solutions 1 to 12 at 50 ° C. In all cases, uniformly covering phosphate layers were produced, which in connection with cathodic electrocoat + automotive paint build-up provided good paint adhesion and good resistance to corrosion penetration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren Phosphatierlösungen, die Zink-, Mangan-, Cu- und Phosphationen sowie Oxidationsmittel enthalten, sowie dessen Anwendung als Vorbehandlung der Metalloberflächen für eine anschließende Elektrotauchlackierung und auf die Phosphatierung von Stahl, verzinktem Stahl, legierungsverzinktem Stahl, Aluminium und dessen Legierungen.The invention relates to a method for phosphating metal surfaces with aqueous, acid phosphating solutions containing zinc, manganese, Cu and phosphate ions and oxidizing agents, and its use as a pretreatment of the metal surfaces for subsequent electrocoating and for the phosphating of steel, galvanized steel , galvanized steel, aluminum and its alloys.

Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metalloberfläche fest verwachsene Metallphosphatschichten zu erzeugen, die für sich bereits die Korrosionsbeständigkeit verbessern und in Verbindung mit Lacken und anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Haftung und der Resistenz gegen Unterwanderung bei Korrosionsbeanspruchung beitragen. Außerdem dienen Phosphatschichten als Isolierung gegen den Durchtritt elektrischer Ströme und in Verbindung mit Schmierstoffen zur Erleichterung von Gleitvorgängen.The phosphating of metals pursues the goal of producing firmly adherent metal phosphate layers on the metal surface, which in themselves improve the corrosion resistance and, in conjunction with paints and other organic coatings, contribute to a significant increase in the adhesion and resistance to infiltration when exposed to corrosion. In addition, phosphate layers serve as insulation against the passage of electrical currents and, in conjunction with lubricants, to facilitate sliding processes.

Für die Vorbehandlung vor der Lackierung eignen sich insbesondere die Niedrigzink-Phosphatierverfahren, bei denen die Phosphatierlösungen vergleichsweise geringe Gehalte an Zinkionen von z. B. 0,5 bis 1,5 g/l aufweisen. Unter diesen Bedingungen werden auf Stahl Phosphatschichten mit einem hohem Gehalt an Phosphophyllit (Zn₂Fe(PO₄)₂.4H₂O) erzeugt, der wesentlich korrosionsbeständiger ist als der aus zinkreicheren Phosphatierlösungen abgeschiedene Hopeit (Zn₃(PO₄)₂.4H₂O). Durch Mitverwendung von Nickel- und/oder Manganionen in den Niedrigzink-Phosphatierlösungen läßt sich die Schutzqualität in Verbindung mit Lacken weiter steigern. Niedrigzinkverfahren mit Zusatz von z. B. 0,5 bis 1,5 g/l Manganionen und z. B. 0,3 bis 2,0 g/l Nickelionen finden als sogenannte Trikation-Verfahren zur Vorbereitung von Metalloberflächen für die Lackierung, beispielsweise für die kathodische Elektrotauchlackierung von Autokarosserien, weite Anwendung.For the pretreatment before painting, the low-zinc phosphating processes are particularly suitable, in which the phosphating solutions contain comparatively low levels of zinc ions of e.g. B. 0.5 to 1.5 g / l. Under these conditions, phosphate layers with a high content of phosphophyllite (Zn₂Fe (PO₄) ₂.4H₂O) are produced on steel, which is much more corrosion-resistant than the hopite (Zn₃ (PO₄) ₂.4H₂O) deposited from zinc-rich phosphating solutions. By using nickel and / or manganese ions in the low zinc phosphating solutions further increase the protection quality in connection with paints. Low zinc process with the addition of e.g. B. 0.5 to 1.5 g / l of manganese ions and z. B. 0.3 to 2.0 g / l of nickel ions are widely used as a so-called trication process for preparing metal surfaces for painting, for example for the cathodic electrocoating of car bodies.

Der hohe Gehalt an Nickelionen in den Phosphatierlösungen der Trikation-Verfahren und von Ni und Ni-Verbindungen in den gebildeten Phosphatschichten bringt jedoch insofern Nachteile, als Nickel und Nickelverbindungen aus Sicht der Arbeitsplatzhygiene und des Umweltschutzes als bedenklich einzustufen sind.However, the high content of nickel ions in the phosphating solutions of the trication processes and of Ni and Ni compounds in the phosphate layers formed has disadvantages insofar as nickel and nickel compounds can be classified as harmful from the point of view of workplace hygiene and environmental protection.

Aufgabe der Erfindung ist es, ein Verfahren für die Phosphatierung von Metallen, insbesondere von Stahl, verzinktem Stahl, legierungsverzinktem Stahl sowie Aluminium und dessen Legierungen bereitzustellen, das zu Phosphatschichten führt, deren Qualität etwa den Schichten der Trikation-Verfahren auf Basis Zn-Mn-Ni entspricht, ohne jedoch den Nachteil der Anwesenheit von Ni und Ni-Verbindungen aufzuweisen.The object of the invention is to provide a process for the phosphating of metals, in particular steel, galvanized steel, alloy-galvanized steel and aluminum and its alloys, which leads to phosphate layers, the quality of which roughly corresponds to the layers of the trication processes based on Zn-Mn Ni corresponds without having the disadvantage of the presence of Ni and Ni compounds.

Die Aufgabe wird gelöst, indem das Verfahren der eingangs genannten Art entsprechend der Erfindung derart ausgestaltet wird, daß man die Metalloberflächen mit Phosphatierlösungen in Berührung bringt, die maximal 0,01 g/l Nickel, sowie
   0,3 bis 1,7 g/l Zn
   0,2 bis 4,0 g/l Mn
   0,001 bis 0,030 g/l Cu
   5 bis 30 g/l Phosphat (berechnet als P₂O₅)
enthalten und in denen durch Sauerstoff und/oder andere gleichwirkende Oxidationsmittel die Konzentration an Fe(II) unter 0,1 g/l gehalten und der pH-Wert auf 3,0 bis 3,8 eingestellt wird.
The object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that the metal surfaces are brought into contact with phosphating solutions which contain a maximum of 0.01 g / l of nickel and
0.3 to 1.7 g / l Zn
0.2 to 4.0 g / l Mn
0.001 to 0.030 g / l Cu
5 to 30 g / l phosphate (calculated as P₂O₅)
contain and in which the concentration of Fe (II) is kept below 0.1 g / l and the pH is adjusted to 3.0 to 3.8 by means of oxygen and / or other oxidizing agents having the same effect.

Zwar ist es aus FR-A-2 203 893 bekannt, auf Oberflächen von Aluminium, Zink und Eisen Phosphatschichten mit Hilfe von Phosphatierungslösungen zu erzeugen, die Zink-, Mangan- und Kupferionen sowie einen Beschleuniger enthalten. Jedoch arbeiten die dort näher beschriebenen Lösungen mit höheren Zinkkonzentrationen. Darüber hinaus können sie erhebliche Nickelgehalte aufweisen.It is known from FR-A-2 203 893 to produce phosphate layers on surfaces of aluminum, zinc and iron with the aid of phosphating solutions which contain zinc, manganese and copper ions and an accelerator. However, the solutions described there work with higher zinc concentrations. In addition, they can have significant nickel contents.

Das erfindungsgemäße Verfahren wird insbesondere auf Stahl, verzinktem Stahl, legierungsverzinktem Stahl, Aluminium und dessen Legierungen angewendet. Unter dem Begriff Stahl sind weiche unlegierte Stähle, höher und hochfeste Stähle (z. B. mikrolegiert, Dual-Phase und phosphorlegiert) und niedriglegierte Stähle zusammengefaßt. Die Verzinkungsschichten können z. B. durch Elektrolyse, Schmelztauchen oder Bedampfen erzeugt werden.The method according to the invention is applied in particular to steel, galvanized steel, alloy-galvanized steel, aluminum and its alloys. The term steel includes soft unalloyed steels, high and high-strength steels (e.g. microalloyed, dual-phase and phosphorus alloyed) and low-alloyed steels. The galvanizing layers can e.g. B. generated by electrolysis, hot dipping or vapor deposition.

Zu den typischen Zinkqualitäten zählen Rein-Zink, sowie z. B. Legierungen mit Fe, Ni, Co, Al, Cr. Unter Aluminium und Aluminiumlegierungen werden die in der Metallindustrie verwendeten Guß- und Knetwerkstoffe verstanden, die als Legierungselemente z B. Mg, Mn, Cu, Si, Zn, Fe, Cr, Ni, Ti enthalten können.Typical zinc qualities include pure zinc, as well as e.g. B. Alloys with Fe, Ni, Co, Al, Cr. Aluminum and aluminum alloys are understood to mean the casting and kneading materials used in the metal industry, which can contain, for example, Mg, Mn, Cu, Si, Zn, Fe, Cr, Ni, Ti as alloying elements.

Grundforderung des erfindungsgemäßen Verfahrens ist, daß die wäßrigen, sauren Phosphatierlösungen im wesentlichen frei von Nickel sind. Das bedeutet, daß unter technischen Bedingungen die Ni-Konzentration in den Phosphatierbädern weniger als 0,0002 bis 0,01 g/l beträgt. Vorzugsweise liegt sie jedoch unter 0,0001 g/l.The basic requirement of the process according to the invention is that the aqueous acidic phosphating solutions are essentially free of nickel. This means that under technical conditions the Ni concentration in the phosphating baths is less than 0.0002 to 0.01 g / l. However, it is preferably below 0.0001 g / l.

Wesentlicher Inhalt der Erfindung ist außerdem die Anwesenheit der drei Metallkationen Zn, Mn und Cu in den angegebenen Mengen. Zn-Konzentrationen unter 0,3 g/l führen insbesondere bei der Behandlung von Stahl zu einer deutlichen Verschlechterung der Schichtausbildung. Bei Zn-Gehalten oberhalb von 1,7 g/l fällt der Phosphophyllit-Anteil in Phosphatschichten auf Stahl stark ab, gleichzeitig vermindert sich die Qualität der Phosphatschichten in Verbindung mit einer Lackierung. Unterhalb von 0,2 g/l Mn bringt der Zusatz dieses Kations keine sichtbaren Vorteile, oberhalb einer Konzentration von 4 g/l sind keine weiteren Qualitätsverbesserungen mehr zu beobachten. Die Cu-Konzentration liegt zwischen 0,001 und 0,030 g/l. Unterhalb dieses Bereiches geht der günstige Effekt auf Schichtbildung und Schichtqualität verloren, während sich oberhalb 0,030 g/l Cu zunehmend eine störende Cu-Zementation bemerkbar macht.The essential content of the invention is also the presence of the three metal cations Zn, Mn and Cu in the amounts indicated. Zn concentrations below 0.3 g / l lead to a significant deterioration in the layer formation, particularly when treating steel. At Zn contents above 1.7 g / l, the phosphophyllite content in phosphate layers on steel drops sharply, at the same time the quality of the phosphate layers in connection with painting is reduced. Below 0.2 g / l Mn, the addition of this cation brings no visible advantages, above a concentration of 4 g / l there are no further improvements in quality observe. The Cu concentration is between 0.001 and 0.030 g / l. Below this range, the favorable effect on layer formation and layer quality is lost, while above 0.030 g / l Cu an annoying Cu cementation becomes increasingly noticeable.

Bei der Phosphatierung von Stahl geht Fe in Form von Fe(II)-Ionen in Lösung. Das Phosphatierbad muß nun soviel Sauerstoff und/oder andere Oxidationsmittel enthalten, daß die stationäre Fe(II)-Ionenkonzentration einen Wert von 0,1 g/l nicht übersteigt, d. h. daß alles darüber hinaus gehende Fe in Fe(III) überführt und als Eisenphosphat-Schlamm ausgefällt wird.When steel is phosphated, Fe dissolves in the form of Fe (II) ions. The phosphating bath must now contain so much oxygen and / or other oxidizing agents that the stationary Fe (II) ion concentration does not exceed a value of 0.1 g / l, i.e. H. that all other Fe is converted into Fe (III) and precipitated as iron phosphate sludge.

Um eine einwandfreie Phosphatschichtausbildung zu gewährleisten, ist der pH-Wert der Phosphatierlösung auf einen Wert zwischen 3,0 und 3,8 einzustellen. Die höheren (niedrigeren) pH-Werte gelten für niedrigere (höhere) Badtemperatur und für niedrigere (höhere) Badkonzentrationen. Falls erforderlich werden zur Einstellung des Bad-pH weitere Kationen, z. B. Alkali- (Na, K, NH₄ u. a.), und/oder Erdalkaliionen (Mg, Ca) bzw. weitere Anionen (NO₃, Cl, SiF₆, SO₄, BF₄ u. a. ) mitverwendet. Um Korrekturen am pH-Wert der Phosphatierung während des Ansatzes und des Betriebes vorzunehmen, werden je nach Bedarf entweder basische Verbindungen (NaOH, Na₂CO₃, ZnO, ZnCO₃, MnCO₃ u. a. ) oder Säuren (HNO₃, H₃PO₄, H₂SiF₆, HCl u. a.) zugesetzt.In order to ensure a perfect formation of the phosphate layer, the pH value of the phosphating solution must be set between 3.0 and 3.8. The higher (lower) pH values apply to lower (higher) bath temperatures and to lower (higher) bath concentrations. If necessary, additional cations, e.g. B. alkali (Na, K, NH₄ and others), and / or alkaline earth metal ions (Mg, Ca) or other anions (NO₃, Cl, SiF₆, SO₄, BF₄ and others) also used. To make corrections to the pH of the phosphating during the batch and operation, either basic compounds (NaOH, Na₂CO₃, ZnO, ZnCO₃, MnCO₃ and others) or acids (HNO₃, H₃PO₄, H₂SiF₆, HCl and others) are added as required.

Die Qualität der mit Hilfe des erfindungsgemäßen Verfahrens erzeugten Phosphatschichten kann verbessert werden, wenn der Phosphatierlösung bis zu 3 g/l Mg und/oder bis zu 3 g/l Ca zugesetzt werden. Der bevorzugte Konzentrationsbereich für diese Kationen beträgt je 0,4 bis 1,3 g/l. Die Kationen können z. B. als Phosphat oder als Salz mit den vorstehend genannten Anionen in die Phosphatierlösung eingebracht werden. Außerdem sind die Oxide, Hydroxide und Karbonate als Quelle für Mg und Ca geeignet.The quality of the phosphate layers produced with the aid of the method according to the invention can be improved if up to 3 g / l Mg and / or up to 3 g / l Ca are added to the phosphating solution. The preferred concentration range for these cations is 0.4 to 1.3 g / l each. The cations can e.g. B. as phosphate or as a salt with the above mentioned anions are introduced into the phosphating solution. The oxides, hydroxides and carbonates are also suitable as a source of Mg and Ca.

Bei der Anwendung des erfindungsgemäßen Verfahrens im Spritzen beträgt die Zn-Konzentration vorzugsweise 0,3 bis 1 g/l, während für das Spritz/Tauch- und Tauch-Verfahren der Zn-Gehalt im Bad auf vorzugsweise 0,9 bis 1,7 g/l eingestellt wird. Die bevorzugte Mn-Konzentration liegt - unabhängig von der Anwendungsart - zwischen 0,4 und 1,3 g/l.When using the method according to the invention in spraying, the Zn concentration is preferably 0.3 to 1 g / l, while for the spraying / dipping and immersion method the Zn content in the bath is preferably 0.9 to 1.7 g / l is set. The preferred Mn concentration is - regardless of the type of application - between 0.4 and 1.3 g / l.

Entsprechend einer bevorzugten Ausführungsform der Erfindung bringt man die Metalloberflächen mit einer Phosphatierlösung in Berührung, die 0,003 und 0,020 g/l Cu enthält. Ferner werden besonders günstige Phosphatierergebnisse erzielt, wenn im Phosphatierbad das Gewichtsverhältnis zwischen Cu und Phosphat, gerechnet als P₂O₅, 1 : (170 bis 30 000) beträgt und Cu sowie P₂O₅ im Gewichtsverhältnis von 1 : (5 bis 2000) ergänzt werden.According to a preferred embodiment of the invention, the metal surfaces are brought into contact with a phosphating solution which contains 0.003 and 0.020 g / l Cu. Furthermore, particularly favorable phosphating results are achieved if the weight ratio between Cu and phosphate, calculated as P₂O₅, is 1: (170 to 30,000) in the phosphating bath and Cu and P₂O₅ are supplemented in a weight ratio of 1: (5 to 2000).

Zur Begrenzung der Fe(II)-Konzentration dient der Kontakt der Phosphatierlösung mit Sauerstoff, z. B. Luftsauerstoff, und/oder der Zusatz geeigneter Oxidationsmittel. Zu den bevorzugten Oxidationsmitteln zählen Nitrit, Chlorat, Bromat, Peroxi-Verbindungen (H₂O₂, Perborat, Percarbonat, Perphosphat u. a.) und organische Nitroverbindungen, z. B. Nitrobenzolsulfonate. Diese Oxidationsmittel können allein oder in Kombination - gegebenenfalls auch mit schwächeren Oxidationsmitteln wie Nitrat - eingesetzt werden. Geeignete Kombinationen sind z. B. Nitrit/Nitrat, Nitrit/Chlorat(/Nitrat), Peroxi-Verbindungen/NO₃, Bromat/Nitrat, Chlorat/Nitrobenzolsulfonat (/Nitrat), Bromat/Nitrobenzolsulfonat(/Nitrat). Die genannten Oxidationsmittel dienen jedoch nicht nur zur Oxidation von Fe-II-Ionen, sondern beschleunigen außerdem die Phosphatschichtbildung. Nachstehend werden Beispiele für typische Konzentrationsbereiche der genannten Oxidationsmittel im Phosphatierbad angegeben. Nitrit: 0,04 bis 0,5 g/l; Chlorat: 0,5 bis 5 g/l; Bromat: 0,3 bis 4 g/l; Peroxi-Verbindung, gerechnet als H₂O₂: 0,005 bis 0,1 g/l; Nitrobenzolsulfonat: 0,05 bis 1 g/l.To limit the Fe (II) concentration, the contact of the phosphating solution with oxygen, z. B. atmospheric oxygen, and / or the addition of suitable oxidizing agents. The preferred oxidizing agents include nitrite, chlorate, bromate, peroxy compounds (H₂O₂, perborate, percarbonate, perphosphate, etc.) and organic nitro compounds, eg. B. nitrobenzenesulfonates. These oxidizing agents can be used alone or in combination - if appropriate also with weaker oxidizing agents such as nitrate. Suitable combinations are e.g. B. nitrite / nitrate, nitrite / chlorate (/ nitrate), peroxy compounds / NO₃, bromate / nitrate, chlorate / nitrobenzenesulfonate (/ nitrate), bromate / nitrobenzenesulfonate (/ nitrate). However, the oxidizing agents mentioned not only serve to oxidize Fe-II ions, but also accelerate them Phosphate layer formation. Examples of typical concentration ranges of the oxidizing agents mentioned in the phosphating bath are given below. Nitrite: 0.04 to 0.5 g / l; Chlorate: 0.5 to 5 g / l; Bromate: 0.3 to 4 g / l; Peroxy compound, calculated as H₂O₂: 0.005 to 0.1 g / l; Nitrobenzenesulfonate: 0.05 to 1 g / l.

Eine weitere bevorzugte Ausgestaltung der Erfindung besteht darin, die Metallobeflächen mit Phosphatierlösungen in Berührung zu bringen, die zusätzlich modifizierend wirkende Verbindungen aus der Gruppe Tenside, Hydroxicarbonsäure, Tartrat, Citrat, Einfach-Fluorid, Borfluorid, Silicofluorid enthalten. Der Zusatz von Tensid (z. B. 0,05 bis 0,5 g/l) führt zu einer Verbesserung der Phosphatierung von leicht befetteten Metalloberflächen. Hydroxicarbonsäuren, z. B. Weinsäure, Citronensäure bzw. deren Salze, führen im Konzentrationsbereich von z. B. 0,03 bis 0,3 g/l zu einer deutlichen Verminderung des Phosphatschichtgewichtes. Einfach-Fluorid begünstigt die Phosphatierung von schwerer angreifbaren Metallen und führt dabei zu einer Verkürzung der Mindestphosphatierzeit und zu einer Erhöhung der Flächendeckung der Phosphatschicht. Für diesen Zweck eignen sich z. B. F-Gehalte von 0,1 bis 1 g/l. Außerdem wird durch die kontrollierte Zugabe von Einfach-Fluorid auch die Ausbildung kristalliner Phosphatschichten auf Aluminium und dessen Legierungen möglich. BF₄ und SiF₆ erhöhen ebenfalls die Aggressivität der Phosphatierbäder, was sich insbesondere bei der Behandlung von feuerverzinkten Oberflächen deutlich zeigt. Diese Zusätze werden beispielsweise in Mengen von 0,4 bis 3 g/l eingesetzt.A further preferred embodiment of the invention consists in bringing the metal surfaces into contact with phosphating solutions which additionally contain compounds having a modifying action from the group of surfactants, hydroxycarboxylic acid, tartrate, citrate, single fluoride, boron fluoride, silicon fluoride. The addition of surfactant (e.g. 0.05 to 0.5 g / l) leads to an improvement in the phosphating of lightly greased metal surfaces. Hydroxycarboxylic acids, e.g. B. tartaric acid, citric acid or its salts lead in the concentration range of z. B. 0.03 to 0.3 g / l to a significant reduction in the weight of the phosphate layer. Single fluoride favors the phosphating of metals that are more difficult to attack and leads to a reduction in the minimum phosphating time and an increase in the area coverage of the phosphate layer. For this purpose, z. B. F contents of 0.1 to 1 g / l. The controlled addition of single fluoride also enables the formation of crystalline phosphate layers on aluminum and its alloys. BF₄ and SiF₆ also increase the aggressiveness of the phosphating baths, which is particularly evident when treating hot-dip galvanized surfaces. These additives are used, for example, in amounts of 0.4 to 3 g / l.

Das erfindungsgemäße Phosphatierverfahren eignet sich für die Anwendung im Spritzen, Spritz/Tauchen und Tauchen. Die Badtemperaturen liegen üblicherweise zwischen 40 und 60 °C.The phosphating process according to the invention is suitable for use in spraying, spraying / dipping and dipping. The bath temperatures are usually between 40 and 60 ° C.

Bei der Behandlung von Stahl und Aluminium sind Einwirkzeiten von z. B. 1 bis 5 min ausreichend, um gleichmäßig deckende Phosphatschichten abzuscheiden. Für verzinkten Stahl genügen dagegen vielfach schon Kontaktzeiten von weniger als 10 sec, so daß das Verfahren auch in schnell laufenden Bandanlagen verwendet werden kann.When treating steel and aluminum, exposure times of e.g. B. 1 to 5 min sufficient to deposit evenly covering phosphate layers. In contrast, contact times of less than 10 seconds are often sufficient for galvanized steel, so that the method can also be used in high-speed conveyor systems.

Die Oberflächen werden üblicherweise gereinigt, gespült und vielfach mit Aktivierungsmitteln auf Basis Titanphosphat behandelt, ehe sie mit der Phosphatierlösung in Berührung gebracht werden.The surfaces are usually cleaned, rinsed and often treated with activating agents based on titanium phosphate before they are brought into contact with the phosphating solution.

Die mit dem erfindungsgemäßen Phosphatierverfahren erzeugten Phosphatschichten sind feinkristallin und gleichmäßig deckend. Das Flächengewicht liegt üblicherweise bei der Behandlung von Stahl, verzinktem Stahl und legierungsverzinktem Stahl zwischen 1,5 und 4,5 g/m² und bei der Behandlung von Aluminium und dessen Legierungen zwischen 0,5 und 2,5 g/m².The phosphate layers produced with the phosphating process according to the invention are finely crystalline and uniformly opaque. The weight per unit area is usually between 1.5 and 4.5 g / m² for the treatment of steel, galvanized steel and alloy-galvanized steel and between 0.5 and 2.5 g / m² for the treatment of aluminum and its alloys.

Während der Phosphatierung werden Badkomponenten der Phosphatierlösung, z. B. durch Einbau in die Phosphatschicht, durch Schlammbildung, durch mechanische Badverluste über die behandelte Metalloberfläche und den Schlammaustrag, durch Redox-Reaktionen und auch durch Zersetzung, verbraucht. Aus diesem Grunde muß die Phosphatierlösung analytisch überwacht und mit den fehlenden Komponenten ergänzt werden.During the phosphating, bath components of the phosphating solution, e.g. B. by incorporation into the phosphate layer, by sludge formation, by mechanical bath losses over the treated metal surface and the sludge discharge, by redox reactions and also by decomposition. For this reason, the phosphating solution must be monitored analytically and supplemented with the missing components.

Die Phosphatschichten können u. a. mit Vorteil für den Korrosionsschutz, für die Erleichterung der spanlosen Kaltumformung und für die elektrische Isolation verwendet werden. Vorzugsweise dienen sie jedoch zur Vorbereitung von Metalloberflächen für die Lackierung, insbesondere die Elektrotauchlackierung, wobei besonders gute Ergebnisse in Verbindung mit der kathodischen Elektrotauchlackierung erzielt werden. Vor der Lackierung empfiehlt es sich, die Phosphatschichten mit passivierenden Spülmitteln z. B. auf Basis von Cr(VI), Cr(VI)-Cr(III), Cr(III), Cr(III)-fluorozirkonat, Al(III), Al(III)-fluorozirkonat zu behandeln. Hierdurch werden Lackhaftung und Unterwanderungsbeständigkeit weiter gesteigert.The phosphate layers can be used with advantage for corrosion protection, for facilitating non-cutting cold forming and for electrical insulation. However, they are preferably used to prepare metal surfaces for painting, in particular electrocoating, with particularly good results in connection with cathodic electrocoating be achieved. Before painting, it is recommended that the phosphate layers with passivating detergents such. B. based on Cr (VI), Cr (VI) -Cr (III), Cr (III), Cr (III) fluorozirconate, Al (III), Al (III) fluorozirconate. This further increases paint adhesion and infiltration resistance.

Die Erfindung wird anhand der folgenden Beispiele beispielsweise und näher erläutert:The invention is illustrated by the following examples, for example and in more detail:

BeispieleExamples

Bleche aus Stahl, verzinktem Stahl und Aluminium wurden mit einem alkalischen Reiniger entfettet, mit Wasser gespült und gegebenen falls nach aktivierender Vorspülung mit einer Titanphosphat enthaltenden Lösung mit den Phosphatierlösungen 1 bis 12 bei 50 °C phosphatiert. In allen Fällen wurden gleichmäßig deckende Phosphatschichten erzeugt, die in Verbindung mit kathodischem Elektrotauchlack + Automobillackaufbau eine gute Lackhaftung und eine gute Beständigkeit gegen Korrosionsunterwanderung lieferten.

Figure imgb0001
Sheets made of steel, galvanized steel and aluminum were degreased with an alkaline cleaner, rinsed with water and, if necessary after phosphating with a solution containing titanium phosphate, phosphated with the phosphating solutions 1 to 12 at 50 ° C. In all cases, uniformly covering phosphate layers were produced, which in connection with cathodic electrocoat + automotive paint build-up provided good paint adhesion and good resistance to corrosion penetration.
Figure imgb0001

Claims (12)

  1. A method for phosphating metal surfaces with aqueous acidic phosphating solutions which contain zinc, manganese, Cu and phosphate ions and also oxidants, characterised in that the metal surfaces are brought into contact with phosphating solutions which contain at most 0.01 g/l nickel and also
       0.3 to 1.7 g/l Zn,
       0.2 to 4.0 g/l Mn,
       0.001 to 0.030 g/l Cu,
       5 to 30 g/l phosphate (calculated as P₂O₅)
    and in which the concentration of Fe(II) is kept below 0.1 g/l by oxygen and/or other oxidants having the same effect and the pH value is set to 3.0 to 3.8.
  2. A method according to Claim 1, characterised in that the metal surfaces are brought into contact with phosphating solutions which additionally contain Mg and/or Ca in quantities of up to 3.0 g/l each.
  3. A method according to Claim 2, characterised in that the metal surfaces are brought into contact with phosphating solutions which additionally contain Mg and/or Ca in quantities of 0.4 to 1.3 g/l.
  4. A method according to Claim 1, 2 or 3, characterised in that for application in spraying operations the metal surfaces are brought into contact with phosphating solutions which contain 0.3 to 1.0 g/l Zn.
  5. A method according to Claim 1, 2 or 3, characterised in that for application in spray/dipping and dipping operations the metal surfaces are brought into contact with phosphating solutions which contain 0.9 to 1.7 g/l Zn.
  6. A method according to one or more of Claims 1 to 5, characterised in that the metal surfaces are brought into contact with phosphating solutions which contain Mn in quantities of 0.4 to 1.3 g/l.
  7. A method according to one or more of Claims 1 to 6, characterised in that the metal surfaces are brought into contact with phosphating solutions which contain 0.003 to 0.020 g/l Cu.
  8. A method according to one or more of Claims 1 to 7, characterised in that the metal surfaces are brought into contact with phosphating solutions in which the weight ratio of Cu to P₂O₅ is set to 1 : (170 to 30000) and Cu and P₂O₅ are replenished in a weight ratio of 1 : (5 to 2000).
  9. A method according to one or more of Claims 1 to 8, characterised in that the metal surfaces are brought into contact with phosphating solutions which contain as oxidants nitrite, chlorate, bromate, peroxy compounds or organic nitro compounds.
  10. A method according to one or more of Claims 1 to 9, characterised in that the metal surfaces are brought into contact with phosphating solutions which additionally contain modifying compounds from the group surfactants, hydroxycarboxylic acid, tartrate, citrate, simple fluoride, boron fluoride or silicofluoride.
  11. The application of the method according to one or more of Claims 1 to 10 as a preliminary treatment of metal surfaces for subsequent electro-dip painting.
  12. The application of the method according to one or more of Claims 1 to 10 to the phosphating of steel, galvanised steel, zinc-alloy-plated steel, aluminium and alloys thereof.
EP91200532A 1990-04-27 1991-03-12 Process for phosphating metal surfaces Expired - Lifetime EP0459541B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4013483 1990-04-27
DE4013483A DE4013483A1 (en) 1990-04-27 1990-04-27 METHOD FOR PHOSPHATING METAL SURFACES

Publications (2)

Publication Number Publication Date
EP0459541A1 EP0459541A1 (en) 1991-12-04
EP0459541B1 true EP0459541B1 (en) 1995-11-22

Family

ID=6405232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91200532A Expired - Lifetime EP0459541B1 (en) 1990-04-27 1991-03-12 Process for phosphating metal surfaces

Country Status (11)

Country Link
EP (1) EP0459541B1 (en)
JP (1) JP3063920B2 (en)
BR (1) BR9101660A (en)
CA (1) CA2039901C (en)
CZ (1) CZ281471B6 (en)
DE (2) DE4013483A1 (en)
ES (1) ES2081420T3 (en)
MX (1) MX172859B (en)
PL (1) PL166676B1 (en)
RU (1) RU2051988C1 (en)
ZA (1) ZA913133B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210513A1 (en) * 1992-03-31 1993-10-07 Henkel Kgaa Nickel-free phosphating process
JPH05287549A (en) * 1992-04-03 1993-11-02 Nippon Paint Co Ltd Zinc phosphate treatment on metallic surface for cation type electrodeposition coating
DE4214992A1 (en) * 1992-05-06 1993-11-11 Henkel Kgaa Copper-containing nickel-free phosphating process
DE4232292A1 (en) * 1992-09-28 1994-03-31 Henkel Kgaa Process for phosphating galvanized steel surfaces
DE4243214A1 (en) * 1992-12-19 1994-06-23 Metallgesellschaft Ag Process for the production of phosphate coatings
DE69326021T2 (en) * 1992-12-22 1999-12-23 Henkel Corp IN ESSENTIAL NICKEL-FREE PHOSPHATE CONVERSION COATING COMPOSITION AND METHOD
EP0717787B1 (en) * 1993-09-06 1998-01-14 Henkel Kommanditgesellschaft auf Aktien Nickel-free phosphatization process
FR2724395B1 (en) * 1994-09-12 1996-11-22 Gec Alsthom Transport Sa INSULATED MAGNETIC SHEET AND METHOD FOR ISOLATING SAME
DE4440300A1 (en) * 1994-11-11 1996-05-15 Metallgesellschaft Ag Process for applying phosphate coatings
NO312911B1 (en) * 1994-12-22 2002-07-15 Budenheim Rud A Oetker Chemie Anti-corrosion pigment and its use
DE19500927A1 (en) * 1995-01-16 1996-07-18 Henkel Kgaa Lithium-containing zinc phosphating solution
DE19511573A1 (en) * 1995-03-29 1996-10-02 Henkel Kgaa Process for phosphating with metal-containing rinsing
DE19606017A1 (en) * 1996-02-19 1997-08-21 Henkel Kgaa Zinc phosphating with low copper and manganese contents
DE19634732A1 (en) * 1996-08-28 1998-03-05 Henkel Kgaa Zinc phosphating containing ruthenium
EP1005578B1 (en) 1997-08-06 2002-10-09 Henkel Kommanditgesellschaft auf Aktien Phosphating method accelerated by n-oxides
US6720032B1 (en) 1997-09-10 2004-04-13 Henkel Kommanditgesellschaft Auf Aktien Pretreatment before painting of composite metal structures containing aluminum portions
DE19740953A1 (en) * 1997-09-17 1999-03-18 Henkel Kgaa High speed spray or dip phosphating of steel strip
JPH11264076A (en) * 1998-01-14 1999-09-28 Nippon Paint Co Ltd Chemical conversion treatment for low lead ed
DE19808755A1 (en) 1998-03-02 1999-09-09 Henkel Kgaa Layer weight control for strip phosphating
DE10006338C2 (en) * 2000-02-12 2003-12-04 Chemetall Gmbh Process for coating metal surfaces, aqueous concentrate therefor and use of the coated metal parts
DE10110834B4 (en) * 2001-03-06 2005-03-10 Chemetall Gmbh Process for coating metallic surfaces and use of the substrates coated in this way
JP2002266080A (en) * 2001-03-07 2002-09-18 Nippon Paint Co Ltd Phosphate chemical conversion treatment solution, chemical conversion treatment method and chemical conversion treated steel sheet
DE102005047424A1 (en) * 2005-09-30 2007-04-05 Henkel Kgaa Phosphating solution used as a pre-treatment for metal surfaces contains zinc irons, phosphate ions, hydrogen peroxide or an equivalent amount of a hydrogen peroxide-splitting substance and aliphatic chelate-forming carboxylic acid
RU2470092C2 (en) * 2008-10-08 2012-12-20 Ниппон Стил Корпорейшн Metal with very high rust resistance
RU2572688C1 (en) * 2014-09-10 2016-01-20 Закрытое акционерное общество "ФК" Solution for metal surface phosphating
EP4382641A1 (en) * 2022-12-07 2024-06-12 Henkel AG & Co. KGaA Method for electrolytic deposition of a phosphate layer on zinc surfaces

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB526815A (en) * 1939-03-14 1940-09-26 Samuel Thomas Roberts Improvements relating to the rustproofing of ferrous surfaces prior to painting or enamelling
US2813812A (en) * 1952-06-24 1957-11-19 Parker Rust Proof Co Method for coating iron or zinc with phosphate composition and aqueous solution therefor
DE1223657B (en) * 1961-08-09 1966-08-25 Chemische Und Lackfabrik Process for phosphating metal surfaces
DE1287413B (en) * 1965-11-06 1969-01-16 Metallgesellschaft Ag Process for preparing steel for electrophoretic coating with paints
IT975560B (en) * 1972-10-20 1974-08-10 Sec Accomandita Semplice Fosfa PROCEDURE FOR PHOSPHATING ON METALLIC SURFACES INTENDED FOR PAINTING ESPECIALLY FOR ELETROPHORESIS AND SOLUTION RELATING TO THIS PROCEDURE
DE3345498A1 (en) * 1983-12-16 1985-06-27 Metallgesellschaft Ag, 6000 Frankfurt Process for producing phosphate coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Metalloberfläche, Band 42, Heft 6, Juni 1988, München DE, Seiten 301-305 *

Also Published As

Publication number Publication date
ZA913133B (en) 1992-12-30
CA2039901A1 (en) 1991-10-28
CZ281471B6 (en) 1996-10-16
RU2051988C1 (en) 1996-01-10
BR9101660A (en) 1991-11-26
PL290031A1 (en) 1992-02-24
JPH04228579A (en) 1992-08-18
ES2081420T3 (en) 1996-03-16
DE59106926D1 (en) 1996-01-04
MX172859B (en) 1994-01-17
JP3063920B2 (en) 2000-07-12
CA2039901C (en) 2000-11-14
PL166676B1 (en) 1995-06-30
EP0459541A1 (en) 1991-12-04
DE4013483A1 (en) 1991-10-31
CZ118091A3 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
EP0459541B1 (en) Process for phosphating metal surfaces
EP2507408B1 (en) Multi-stage pre-treatment method for metal components having zinc and iron surfaces
DE3118375C2 (en)
DE3689442T2 (en) Acidic, aqueous phosphate coating solutions for a process for phosphate coating of metallic surfaces.
EP1114202A1 (en) Method for phosphatizing, rerinsing and cathodic electro-dipcoating
EP0578670B1 (en) Process for phosphatizing metallic surfaces
EP0713539B1 (en) Phosphate treatment process for steel strip with one galvanised surface
EP0155547B1 (en) Process for the zinc-calcium phosphatizing of metal surfaces at a low treating temperature
EP0261704A1 (en) Process for producing phosphate coatings on metal surfaces
EP0656957B1 (en) Process for phosphatizing steel zinc-coated on one side only
EP0134895B1 (en) Process and compounds for applying accelerated and grain-refined phosphate coatings to metallic surfaces
EP0931179B1 (en) Method for phosphating a steel band
DE974713C (en) Process for the production of coatings on metals
EP1060290B1 (en) Aqueous solution and method for phosphatizing metallic surfaces
DE19735314A1 (en) Simultaneously pretreating different metal surfaces
EP0662164B1 (en) Process for phosphating galvanised steel surfaces
DE102009047523A1 (en) Multi-stage method for corrosion-inhibiting pretreatment of metallic components having the surfaces of zinc, comprises subjecting the metallic components with an aqueous treatment solution, and cleaning and degreasing the metal surface
EP0258922A1 (en) Process for producing phosphate coatings and their use
EP0866888B1 (en) Method of phosphating metal surfaces
DE19958192A1 (en) Process for phosphating, rinsing and cathodic electrocoating
WO1997014821A1 (en) Layer weight-adjustment in hydroxylamine-accelerated phosphatisation systems
WO1997016581A2 (en) Low-nitrate, manganese-free zinc phosphatization
DE19905479A1 (en) Process for the phosphatisation of zinc or aluminum surfaces
DE10310680A1 (en) Phosphating by spraying with an aqueous acid phosphating solution useful for phosphating metal surfaces
WO1998009000A1 (en) Ruthenium-containing zinc phosphate treatment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19920510

17Q First examination report despatched

Effective date: 19930609

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 59106926

Country of ref document: DE

Date of ref document: 19960104

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081420

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960217

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: HENKEL CORPORATION

Effective date: 19960822

NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL CORPORATION

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19981027

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLS Nl: assignments of ep-patents

Owner name: CHEMETALL GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050228

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050310

Year of fee payment: 15

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060313

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070313

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070329

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070509

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070626

Year of fee payment: 17

Ref country code: BE

Payment date: 20070419

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070319

Year of fee payment: 17

BERE Be: lapsed

Owner name: SOC. *CONTINENTALE PARKER

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20081001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080312