EP0458018B1 - Procédé et dispositif de pulvérisation par flamme à haute vitesse de matériau d'apport réfractaire sous forme de poudre ou de fil pour le revêtement de surfaces - Google Patents

Procédé et dispositif de pulvérisation par flamme à haute vitesse de matériau d'apport réfractaire sous forme de poudre ou de fil pour le revêtement de surfaces Download PDF

Info

Publication number
EP0458018B1
EP0458018B1 EP91103273A EP91103273A EP0458018B1 EP 0458018 B1 EP0458018 B1 EP 0458018B1 EP 91103273 A EP91103273 A EP 91103273A EP 91103273 A EP91103273 A EP 91103273A EP 0458018 B1 EP0458018 B1 EP 0458018B1
Authority
EP
European Patent Office
Prior art keywords
gas
primary
combustion chamber
injector
gas mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91103273A
Other languages
German (de)
English (en)
Other versions
EP0458018A2 (fr
EP0458018A3 (en
Inventor
Erwin Dieter Hühne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UTP Schweissmaterial GmbH and Co KG
Original Assignee
UTP Schweissmaterial GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UTP Schweissmaterial GmbH and Co KG filed Critical UTP Schweissmaterial GmbH and Co KG
Priority to AT9191103273T priority Critical patent/ATE105596T1/de
Publication of EP0458018A2 publication Critical patent/EP0458018A2/fr
Publication of EP0458018A3 publication Critical patent/EP0458018A3/de
Application granted granted Critical
Publication of EP0458018B1 publication Critical patent/EP0458018B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the invention relates to a method and a device for high-speed flame spraying of high-melting wire and powdery filler materials for coating surfaces, in which an all-gas high-speed flame spray gun is used to coat the surfaces with any high-melting wire or powdery spray filler materials.
  • Two or more gas mixing systems that work independently of one another and that can work with different fuel gas / oxygen mixtures are integrated in the device.
  • DE-C-81 18 99 proposes a device for spraying metallic and non-metallic materials, which can be regarded as the basic principle for high-speed spraying using fuel gas and oxygen.
  • the device is essentially a system consisting of a combustion chamber and an expansion nozzle with which wire, powder or molten spray additive materials can be sprayed using hydrogen as the main detonating gas.
  • the proposed device therefore only works with one heating or propellant gas, predominantly hydrogen, which is introduced into the combustion chamber according to the compressed gas principle.
  • hydrogen is ignited manually, when it emerges from the expansion nozzle, electrically by short circuit or by an electric arc.
  • the ignition of hydrogen can take place through the molten heated spray additive, which is brought together through the combustion chamber via an access with the oxyhydrogen gas.
  • the fuel gas according to DE-C-81 18 99 this is hydrogen, is fed into the combustion chamber according to the compressed gas principle, which no longer meets the legal design requirements for oxy-fuel burners and also does not comply with the accident prevention regulation UVV-VGB 15.
  • hydrogen has no additional oxidizing gas, e.g. As oxygen, an insufficient heating power to high-melting spray additives such. B. can spray molybdenum, tungsten and oxides.
  • oxygen e.g.
  • hydrogen burns in a reducing manner and is therefore not suitable for spraying metal oxides, since the hydrogen flame extracts oxygen from the spray additive in the molten or plastic state.
  • Another high-speed flame spraying system is known from EP-A1-0 049 915.
  • This high-speed flame spraying system has a water-cooled expansion nozzle which is said to be suitable for spraying wire and powdered filler materials.
  • the heating gas is either hydrogen, propane or MAPP gas with oxygen.
  • the fuel gases used are fed into a large mixing room according to the compressed gas principle and mixed with oxygen.
  • the fuel gas-oxygen mixture enters the water-cooled expansion nozzle via holes, where it is combined with the powder or wire-shaped filler material in the combustion chamber.
  • EP-A1-0 049 915 also has a large number of application-related and safety-related defects.
  • the acetylene-oxygen flame has dominant properties that no other fuel gas-oxygen mixture can achieve. For this reason, it is ideally suited for the thermal spraying of high-melting filler materials.
  • acetylene as a heating gas for operating high-speed flame spraying systems in conjunction with oxygen is problematic due to the specific structure of the acetylene molecule.
  • Acetylene is a chemical combination of carbon and hydrogen. It is a so-called unsaturated hydrocarbon, the molecule of which is full of internal tension that is trying to balance. Acetylene is therefore not a stable substance, but tends to break down into its constituents, namely carbon and hydrogen. For example, if the acetylene is heated to a temperature of around 300 ° C, it is also under pressure, so that once decay has started, it propagates through the entire amount of gas. The energy released in the form of heat is sufficient to bring neighboring acetylene particles to the decay temperature. This process takes place so quickly that compressed acetylene decomposes like a deflagration when decomposition is initiated. This condition occurs e.g. B.
  • oxide-free spray layers such as. B. from Hastelloy, Tribaloy or high-purity nickel can only be produced using the plasma vacuum chamber spraying. This technology is very complicated and extremely expensive.
  • the object of the above invention is therefore to provide a method and a device with which the operation with acetylene and oxygen is possible without problems.
  • the present invention is intended to considerably simplify the coating process and reduce costs, which at the same time also improves the layer quality with respect to optimization of the adhesive tensile strength of the spraying material to the substrate by means of a significantly higher kinetic Energy of the flame jet is achieved, while at the same time a lower porosity and thus a higher tightness of the spray layer is achieved.
  • the method for high-speed flame spraying of high-melting wire and powdery filler materials for coating surfaces works by means of at least two gas mixing systems that function independently of one another and with which the wire or powdered spray additive material introduced into the primary chamber is melted by primary heating flames arranged concentrically around a feed channel , accelerated with the resulting high-speed flame and passed through an expansion nozzle into a downstream secondary combustion chamber, the primary high-speed flame at supersonic speed flows through it, along with the melt-plastic filler materials, which flows into an axially centrically expanded, downstream and water-cooled secondary expansion nozzle, so that in the area it flows , axially and focussing arranged, opening into the secondary combustion chamber secondary combustion
  • oxygen channels a negative pressure zone is created and a heating gas mixture with low inflow pressures can be supplied, the radial, axial around the secondary chamber Primary high-speed flame ignites the heating gas mixture, expands and, due to a high flame temperature and an extreme ignition and combustion speed, contributes to the residual melting
  • the primary gas mixture preferably takes place in the intermediate piece designed as an injector gas mixing block and the secondary gas mixture takes place in the primary combustion chamber housing designed as a mixing block for secondary gases.
  • a particularly preferred embodiment of the invention provides that the primary heating gas mixture follows directly in a gas mixing block according to the injector principle in the immediate vicinity of the primary combustion chamber.
  • the primary combustion chamber and / or the expansion nozzle is (are) integrated in the secondary injector gas mixing block.
  • the spray additive material optionally in powder form, and the powder transport gas at room temperature or the powdery spray additive material and / or the powder transport gases preheated.
  • the connection for the spray additives and / or powder transport gases is equipped with water cooling. The cold or preheated spray additive is melted when it is passed through the primary combustion chamber, brought through the secondary combustion chamber by the primary heating flame, melted and accelerated and emerges from the expansion nozzle bore with the secondary flame.
  • the proposed device for carrying out the method is designed as a flame spray gun and consists of a basic device body, operating component connection block with distributor chambers, injector gas mixing block, combustion chamber housing and a central bore for spray additive materials and cooling devices, and starting from the operating component connection block, the secondary gas and secondary heating gas -, Primary gas and primary heating gas ducts are routed separately to a primary combustion gas chamber and a secondary combustion gas chamber, the spray additive material duct surrounded by the primary gas ducts leading into the primary combustion chamber and the secondary gas ducts via the primary combustion chamber in the direction of the expansion nozzle and into the secondary combustion chamber.
  • a preferred embodiment is characterized in that the device consists of an operating component connection block, a basic device body, a gas mixing block carrier, an injector gas mixing block, a primary combustion chamber housing with an inner part or central bore body, press screw and union part, as well as a secondary expansion nozzle body and inner screw sleeve and outer screw sleeve.
  • the operating component connection block has at least one cooling water connection, one secondary gas connection, one primary gas connection, one connection for powdered filler materials and / or wire-shaped spray additives, one primary heating gas connection, one secondary heating gas connection and one cooling water return connection, which are channels up to the Continue the face of the operating component connection block or to the distribution chambers arranged there.
  • These channels or the distribution chambers of the operating component connection block correspond to channels of the same type in the main body of the device which connect to the operating component terminal block.
  • the main body of the device at least partially accommodates a gas mixing block carrier for secondary gases, an injector gas mixing block for primary gases being arranged in the gas mixing block carrier.
  • a further particularly preferred embodiment consists in the device base body having channels which correspond to the channels or to ring channels arranged on the end face of the operating component connection block.
  • a further embodiment consists in that the channel of the basic device body opens into a cooling water supply channel between the inner screw sleeve and the outer screw sleeve, the cooling water return channel corresponding to the cooling water return channel formed between the basic device body and the compression screw.
  • the gas mixing block carrier is preferably each penetrated by at least one secondary gas and secondary heating gas channel, each of which corresponds on the one hand to the media-like channels of the main body of the device and on the side pointing towards the primary combustion chamber in radial grooves arranged there for secondary heating gas and secondary gas.
  • the injector gas mixing block for primary gases has at least one primary heating gas channel and one primary gas channel, as well as a central bore for spray additive materials, these channels on the one hand corresponding to the media-like channels of the main body of the device and the primary gas channel in a radial annular space between the gas mixing block carrier and the injector gas mixing block or the channel for primary heating gas in an annular space for the oxygen distribution opens, while the central bore leads to the front of the injector gas mixing block and, starting from the annular space for the oxygen distribution, injector nozzle bores are directed to the injector gap, from where the injector mixing nozzle bores continue to form a radial groove.
  • the injector gas mixing block is followed by a primary combustion chamber housing in the direction of the expansion nozzle, which houses an inner part with injector gas mixing holes and a hole for the spray additives.
  • the injector gas mixing bores are arranged focusing and / or axially in the inner part.
  • a radial ring groove for fuel gas, oxygen primary gas, which corresponds to the radial ring groove of the injector gas mixing block, as well as the centrally arranged bore for spray additive materials of the inner part with the central bore of the injector gas mixing block, are arranged on the end face of the inner part pointing toward the injector gas mixing block.
  • the primary combustion chamber housing has a radial ring groove for secondary heating gas and a radial ring groove for secondary heating oxygen on the end facing the gas mixing block carrier, which correspond to the radial grooves of the gas mixing block carrier of the same media.
  • Corresponding channels continue from these radial ring grooves, where they meet in a radial ring groove (injector gap) by the channels leading directly or via injector pressure nozzle bores into the radial ring groove.
  • these channels are at least partially formed by the gap between the primary combustion chamber housing and the union part.
  • the expansion nozzle connects to the secondary combustion chamber.
  • the cooling water channel continues, starting from the connection of the operating component connection block through the device body, between the inner screw sleeve and the outer screw sleeve up to the radial bore at the expansion nozzle outlet bore and then merges into the cooling water return flow, in that the cooling water channel extends between the expansion nozzle body and the inner screw water sleeve and passes into a cooling sleeve , from here a cooling water channel leads to the cooling water return connection of the operating component connection block.
  • the primary combustion chamber housing is designed as a secondary gas mixing block.
  • the primary combustion chamber of the combustion chamber housing has a transition expansion nozzle bore.
  • Figure 1 shows the inventive device for high-speed flame spraying, which is designed as a flame spray gun.
  • the device is composed of an operating component connection block 9, an apparatus base body 12, an internal mixing nozzle block / injector gas mixing block for primary gases 13 and gas mixing block carrier 14, a primary combustion chamber housing 29 with a union part 80 and pressure screw 62, expansion nozzle body 39 and a surrounding inner screw sleeve 34 and outer screw sleeve 35 and 35 an inner part 76 receiving the central bore body 81 (FIG. 2).
  • a cooling water supply channel 1, a secondary gas channel 2, a primary gas channel 3, a central bore for filler materials (powder or wire) 4, a primary heating gas channel 5, a secondary heating gas channel 6 and a cooling water return channel 7 prevail through the device.
  • the primary gas and the primary heating gas are mixed in the injector gas mixing block for primary gases 13 and enter the primary combustion chamber 28, the wire or powdered spray additive material likewise introduced into the primary combustion chamber 28 being melted by the primary heating flames 64 arranged concentrically around the feed channel 4, accelerated with the resulting high-speed flame 65 and passed through a primary expansion nozzle bore 30 into a secondary combustion chamber 32 connected downstream becomes.
  • the primary high-speed flame 65 at supersonic speed with entrainment of the melt-plastic filler materials, which flows into an axially centrically expanded, downstream and water-cooled secondary expansion nozzle 39 or into its bore 38, so that in the region of radially, axially and / or focussing, in the secondary combustion chamber 32 opening secondary combustion gas oxygen channels 44, 45 a negative pressure zone is created and a heating gas mixture with low inflow pressures can be supplied, the heating gas mixture igniting in the secondary chamber 32 radially, axially around the primary high-speed flame 65, expanding and due to a high flame temperature and an extreme ignition and combustion speed contributes to the residual melting of the spray additive materials and to their additional acceleration.
  • the outer screw sleeve 35 surrounds the inner screw sleeve 34 in such a way that an annular space 36 is formed for the cooling water flow.
  • the inner screw sleeve 34 has an internal thread 83, and can thus be screwed onto the external thread 84 of the basic device body 12 and sealed by means of an O-ring 19.
  • the outer screw sleeve 35 has an external thread 85, which engages in an internal thread 86 of the device body 12 and thus screwed to it.
  • An O-ring 15 is also inserted here for sealing purposes.
  • the annular space 36 which is identified at a higher level by the reference number 1, continues the cooling water flow up to the device base body 12.
  • O-ring seals 41 and 42 are also arranged between the outer screw sleeve 35 and the inner screw sleeve 34 and between the inner screw sleeve 34 and the expansion nozzle body 39.
  • a cooling water duct 1c leads through the device base body 12 to the cooling water duct 1b of the operating component connection block 9, which has a connection for the cooling water access 1a.
  • the operating component connection block 9 is fastened to the device base body 12 by means of Allen screws 8 and sealed by means of O-rings 50, which each surround the connection channels 1a to 7a and the screws 8 in a sealing manner.
  • the expansion nozzle body 39 which is screwed onto the internal primary combustion chamber housing 29, is located within the inner screw sleeve 34.
  • annular space 37 for the cooling water return is formed between the expansion nozzle body 39 and the inner screw sleeve 34. This in turn merges into a larger annular space 33, in which the cooling water channel 7d opens out from the basic device body 12 and operating component connection block 9, here the channel 7a.
  • cooling channel 7d is continued through the gap between the device body 12 and the compression screw 62 up to the annular space 33.
  • the cooling system thus follows the following route: starting from the cooling water connection piece 1a of the operating component block 9, cooling water flows via the cooling water inlet channel 1b into the cooling water supply channel 1c of the basic device body via the annular space 36, distributed between the outer screw sleeve 35 and the inner screw sleeve 34 to the radial bores for cooling water 40 (cooling water flow ) to the expansion nozzle 39. Via the annular space 37, the cooling water flows between the expansion nozzle 39 and the inner screw sleeve 34 via the cooling water channel 7d back to the connecting piece 7a for cooling water return.
  • the cooling water supply is shown with dashed lines and the cooling water return with dash-dotted lines in Figures 2 and 3.
  • the secondary gas path is shown with wavy lines that run obliquely from top left to bottom right and the secondary heating gas path is shown with wavy lines that run diagonally from bottom left to top right.
  • the primary gas path was shown with horizontal wavy lines and the primary heating gas curve with vertical wavy lines, the respective crossing waves representing the mixture.
  • the Spray additive material shown dotted.
  • the operating component connection block 9 has, for example, a connection 3a for heating oxygen (primary gas) and a connection 5a for fuel gas H2, propane, etc. (primary heating gas).
  • a channel 3b leads from the connection 3a for heating oxygen (primary gas) through the operating component connection block 9 into an oxygen distribution chamber 11, on the end face 68 of the operating component connection block 9 pointing towards the device connection block 12.
  • the primary heating oxygen channel 3 is formed by the individual channels 3c in the basic device body 12 and the channel 3d in the injector gas mixing block 13.
  • the channel 3c opens into the oxygen distribution chamber 11 and the channel 3d into the annular space 56 for oxygen distribution in the internal mixing nozzle block or injector gas mixing block 13.
  • a channel 5b leads into the fuel component distribution block 9 within the operating component connection block 9, which also leads to the end face 68 of the operating component terminal block 9 is arranged.
  • the channel 5c in the main body 12 leads to the channel 5d, which opens into the annular space 57.
  • the oxygen distribution takes place in the annular space 56, which acts as a pressure compensation chamber.
  • the oxygen flows through the ring groove 57 adjoining the annular space 57 through the injector pressure nozzle bores 58 (Injector gap) 57a, in order to then flow through the various injector mixing nozzle bores 59 with the entrained fuel gas from the injector gap (annular space 57a).
  • the fuel gas-oxygen mixture passes through the radial ring groove 22 / 22a via the fuel gas-oxygen mixture bores 47 and 48 into the primary gas combustion chamber 28.
  • Fuel gas (predominantly hydrogen, propane gas or propylene) is fed in at port 5 and passes through the fuel gas distribution chamber (pressure compensation chamber) 10 via the connecting bore 5c / 5d into the radial annular space 57 into the radial annular groove 57a, injector gap, from which the fuel gas is entrained and mixed into the injector mixing bores 59 by the injector action, the oxygen flowing through at supersonic speed.
  • the fuel gas-oxygen primary mixture reaches the primary combustion chamber 28 via the bores 47 and 48.
  • the injector effect in the internal gas mixing block is achieved by a higher inflow pressure of oxygen compared to the fuel gas inflow pressure. If the primary fuel gas / oxygen mixture emerging from the expansion nozzle bore 43 (see FIG. 1) is ignited, the flame strikes back into the primary combustion chamber 28. The fuel gas / oxygen mixture now burns out of the cylindrical combustion chamber bore 30 or 46 as a primary high-speed flame through the secondary combustion chamber 32 into the water-cooled expansion nozzle bore 38. In the opening area of the secondary gas mixture bores 44, 45 arranged concentrically, axially and focusing around the primary combustion chamber bore 46, a vacuum zone is created due to the high flame speed of the primary heating gas flow.
  • Secondary heating oxygen is supplied at the connection 2a and reaches the radial ring groove 63/21 (pressure compensation and distribution ring groove) via the channels 2b, 2c, 2d.
  • the oxygen passes through the oxygen connection bores into a large number of injector compressed gas bores 24, in which it is accelerated to supersonic speed and flows through annular groove 25 (injector gap), entrains fuel gas from the annular groove 25 and opens into the opposite axial and / or focusing aligned mixing bores 26 and as fuel gas -Oxygen mixture emerges from the mixing bores 44 and 45.
  • the outflow is positively influenced by the negative pressure zone in the inlet area generated by the primary high-speed flame.
  • the fuel gas-oxygen mixture predominantly acetylene-oxygen mixture flowing into the combustion chamber (secondary) 32 ignites at the primary high-speed flame and optimizes the melting process of the spray particles and increases the flame speed and spray particle speed.
  • the operating component connection block 9 has the connection 2a for heating oxygen (secondary gas) and the connection 6a for fuel gas C2H2 (secondary heating gas), from where the channels 2b and 6b lead through the operating component connection block 9 to the end face 68.
  • a channel 2c leads from channel 2b to channel 2d of the gas mixing block carrier 14 and a channel 6c from channel 6b to channel 6d of the gas mixing block carrier 14.
  • the channel 2d in turn leads into a radial ring groove 63 or 21 and the like Channel 6d into the radial groove 18.
  • the radial grooves of the gas mixing block carrier 14 of the same media correspond to the radial grooves of the primary combustion chamber housing 29, as is also the case with the primary system.
  • Heating oxygen flows through the bores 23 of the secondary fuel via the injector pressure nozzle bores 24, each of which has half the focusing position and the axial position, into the radial annular groove 25 (injector gap), from where the mixture then flows through the bores 44 and 45, such as described, continues.
  • a connection 4a is arranged on the operating component connection block 9, from which the channel 4b continues up to the end face 68, where it leads into a channel 4c of the basic device body 12 or corresponds to it.
  • the channel 4d which corresponds to the bore 49 of the central bore body 76, now continues in the injector gas mixing block 13.
  • FIG. 9 shows a section along the line AA indicated in FIG. 1 and FIG. 10 shows a section along the section line BB indicated in FIG. 1.
  • FIG. 9 shows the opening area of the secondary gas flows in plan view.
  • outlet bores 44 for secondary heating gas-oxygen mixture (axial) and the outlet bores 45 for secondary heating gas-oxygen mixture (focusing) can thus be seen in FIG.
  • injector gas mixing bores for primary heating gas-oxygen mixture are used with the reference symbol 47 and such bores (focusing) with the reference symbol 48.
  • the outlet bore for the spray additives is identified by reference numeral 49 and the central bore body by reference numeral 81.
  • the secondary combustion chamber housing bears the reference symbol 31 and the primary expansion nozzle bore the reference symbol 30, while the outlet bores for secondary heating gas-oxygen mixture (axial) and the reference bores 45 (focusing) are identified by the reference symbol 44.
  • the primary flame outlet expansion nozzle bore has the reference symbol 46 and the outlet bore for spray additives is identified by the reference symbol 49.
  • FIG. 4 shows the operating component connection block 9. It has the cooling water supply connection 1a, the secondary gas connection 2a, the primary gas connection 3a, the feed channel connection 4a, the primary heating gas connection 5a, the secondary heating gas connection 6a and the cooling water return connection 7a. These each continue with corresponding channels 1b to 7b in the operating component connection block 9, the channels 1b to 7b corresponding to media-like channels 1c to 7c of the main body 12 of the device.
  • the operating component connection block 9 is connected to the device base body 12 by means of screws 8 and sealed at its end face 68 by O-rings 50.
  • FIG. 5 shows the basic device body 12. As already described above, it has the channels 1c to 7c, which correspond to corresponding media-like channels 1b to 7b of the operating component connection block 9.
  • the secondary gas channel 2c and secondary heating gas channel 6c of the device base body 12 lead into channels 2d and 6d of the gas mixing block carrier 14 with the same media, while the primary gas 3c and primary heating gas channels 5c lead into channels 3d, 5d of the injector gas mixing block 13 with the same media.
  • the central loading channel 4c corresponds to the channel 4d of the injector gas mixing block 13.
  • the cooling water supply channel 1c is meanwhile in communication with the channel 1d, which is formed between the inner screw sleeve 34 and the outer screw sleeve 35, the outer screw sleeve 35 being screwed onto the internal thread 86 and the inner screw sleeve 34 onto the external thread 84 of the basic device body 12, these of course corresponding threads 83 or 85.
  • the cooling water return duct 7c is connected to the duct 7d, which is formed between the device base body 12 and the compression screw 62.
  • FIG. 6 shows the gas mixing block carrier 14. It receives the injector gas mixing block 13 centrally and has the already described secondary gas channels 2d and secondary heating gas channels 6d, which correspond to the channels 2c and 6c of the main body 12 of the device.
  • Radial ring grooves 18 for secondary heating gas and 60 for secondary gas are provided on the end face 71 of the gas mixing block 14, the channel 2d opening into the radial ring groove 60 and the channel 6d opening into the radial ring groove 18. These are in turn connected to corresponding radial ring grooves 20 and 21 of the primary combustion chamber housing 29 of the same media.
  • FIG. 7 shows the injector gas mixing block 13 accommodated by the gas mixing block carrier 14, with its channels 3d, 4d and 5d, which, as described above, are connected to the channels 3c, 4c and 5c of the basic device body 12.
  • the channel 3d for primary gas leads into an annular space for the oxygen distribution, from there through injector pressure nozzle bores 58 into the injector gap 57a, while the channel 5d leads into the radial annular space 57 for primary heating gas (fuel gas) and from there into the injector gap 57a.
  • the mixture then continues through the injector mixing nozzle bores 59 into the radial annular groove 22a, while the central channel 4d for the spray additive leads to the end face 65 and merges there into the central channel 49 of the central bore body 81.
  • FIG. 8 shows the primary combustion chamber housing 29 with its radial ring grooves 20 for secondary heating gas and 21 for secondary heating oxygen, as well as the internal part 76 accommodated with a central bore body 81.
  • the primary combustion chamber housing 29 also carries out the secondary gas or heating gas mixture. This is done by the gas mixture coming from the injector gas mixing block 13 flowing through the bores 47, 48 into the primary combustion chamber 28 and the secondary gas / heating gas components from the gas mixing block carrier being guided separately into the primary combustion chamber housing 29 and bringing them together in the radial ring groove 25 (injector gap) and over them Primary combustion chamber 28 are also guided through the bores 44, 45 into the secondary combustion chamber 32 of the secondary expansion nozzle body 39.
  • FIG. 11 shows a diagram of the flame temperatures of fuel gas-oxygen mixtures
  • FIG. 12 shows the ignition speeds of fuel gas-oxygen mixtures
  • FIG. 13 shows the primary flame lines of fuel gas-oxygen mixtures. From this it can be seen that the acetylene-oxygen flame has dominant properties that cannot be achieved by any other fuel gas-oxygen mixture. For this reason, it is ideally suited for the thermal spraying of high-melting filler materials.
  • the curve of acetylene in accordance with TRG103 of 21.5 to 22.5% acetylene, 71.5 to 73.5% ethylene and 5.0 to 6.0% propylene, compared with a mixture of methyl acetylene and methane, propylene and propane.
  • powder and powder transport gas are supplied at port 4 at room temperature.
  • preheated powder transport gases such as B. argon, nitrogen and other gases and preheated powders.
  • the connection 4a is designed with water cooling (cooling water supply and return).
  • the cold or preheated powder-powder transport gas mixture is guided through the central bore 4 and opens into the primary combustion chamber 28 from the nozzle inlet bore 49.
  • the non-preheated powder transport gas mixture is melted by the high-speed flame and guided with the kinetic energy through the secondary combustion chamber, remelted by the enveloping secondary heating flame (acetylene + oxygen flame) and additionally accelerated through the water-cooled expansion nozzle bore 38 and passes on the end face optimally melted from the expansion nozzle bore 43 or in the melt-plastic state with the secondary high-speed flame with multiple sound speeds.
  • the enveloping secondary heating flame acetylene + oxygen flame
  • preheating temperatures can be between 50 and 800 ° C
  • the preheated spray additive is already melted well when the particles are led through the primary combustion chamber and by the Primary heating flame passes through the secondary combustion chamber, where it is still molten, additionally accelerated, and emerges from the expansion nozzle bore at the highest possible speed with the secondary flame.
  • Preheating powdered filler material and powder transport gas to 50 ° C to 800 ° C before feeding it into the burner has several advantages over the cold supply. For example, the low temperature difference between the powder particles and the heating power of the primary flame should be mentioned; As a result, the powder is melted better in the flame with the same dwell time than when it is cold introduced. It is also advantageous, for example, that the preheated powder transport gas cools the primary and secondary flames less than cold powder transport gas; this leads to higher flame heating power and higher flame speeds.
  • Wire-shaped spray filler materials can also be introduced and melted into the primary combustion chamber via the central bore 4 via the connection 4a.
  • the wire feed is controlled depending on the melting point and wire diameter so that a continuous spraying process can take place.
  • FIG. 14 shows a further embodiment variant of the invention.
  • the primary gas mixture takes place in the injector gas mixing block 13, that is to say in an intermediate piece, here the primary heating gas mixture (fuel gas and oxygen) directly in a gas mixing block 13a according to the injector principle in immediate vicinity of the primary combustion chamber 28, that is to say without an intermediate piece.
  • the descriptions made in the exemplary embodiment according to FIG. 1 with regard to the other device and method elements apply to these taking into account the adaptation of the embodiment variant according to FIG. 14, so that a further functional description can be dispensed with, since the embodiment variant 14 is to be assumed to be the general inventive concept.
  • the present invention provides a method and a device in the form of an all-gas high-speed flame spray burner for coating surfaces with any high-melting wire or powder-form spray additive materials which, for example, make operation with acetylene and oxygen possible without problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Claims (30)

  1. Procédé de projection ultra-rapide de matériaux fondus pulvérulents et filiformes à haut point de fusion pour l'enduction de surfaces, caractérisé en ce qu'au moyen de deux systèmes mélangeurs de gaz travaillant indépendamment l'un de l'autre, le matériau d'apport de projection pulvérulent ou filiforme, introduit dans une chambre de combustion primaire (28), est fondu par des flammes de combustion primaire (64) disposées concentriquement autour d'un conduit d'alimentation (4), accéléré par la flamme ultra-rapide produite (65) et amené dans une chambre de combustion secondaire consécutive (32), chambre que la flamme ultra-rapide primaire (65) traverse à une vitesse supersonique, en entraînant conjointement les matériaux d'apport à l'état plastique de fusion, pour déboucher dans une buse d'expansion secondaire consécutive (39), refroidie par eau et élargie axialement en son centre, ou dans le perçage (38) de cette buse, de sorte qu'une zone de dépression est produite dans la région de conduits d'oxygène et de gaz de combustion secondaires (44, 45), en disposition radiale, axiale et/ou focalisante, qui débouchent dans la chambre de combustion secondaire (32), et qu'un mélange de gaz chauds peut être alimenté avec de faibles pressions d'affluence, mélange qui s'enflamme radialement dans la chambre secondaire (32), axialement autour de la flamme ultra-rapide primaire (65), est expansé et, du fait d'une température de flamme élevée et d'une vitesse extrême d'inflammation et de combustion, contribue à la fusion résiduelle des matériaux d'apport de projection et à accélérer encore ces matériaux.
  2. Procédé selon la revendication 1, caractérisé en ce que le mélangeage des gaz primaires s'effectue dans l'élément intermédiaire conçu comme bloc mélangeur de gaz d'injection (13).
  3. Procédé selon les revendications 1 et 2, caractérisé en ce que le mélangeage des gaz secondaires s'effectue dans le carter (29) de la chambre de combustion primaire, conçu comme bloc mélangeur pour les gaz secondaires.
  4. Procédé selon la revendication 1, caractérisé en ce que le mélangeage des gaz de combustion primaire s'effectue directement, selon le principe d'injection, dans un bloc mélangeur de gaz (13a) au voisinage immédiat de la chambre de combustion primaire (28).
  5. Procédé selon la revendication 1 et au moins une des revendications précédentes, caractérisé en ce que la chambre de combustion primaire et/ou la buse d'expansion est (sont) incorporée(s) dans le bloc mélangeur de gaz d'injection secondaire.
  6. Procédé selon la revendication 1 et au moins une des revendications précédentes, caractérisé en ce que le matériau d'apport de projection éventuellement pulvérulent et le gaz pour transporter la poudre est (sont) alimenté(s) à température ambiante.
  7. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le matériau d'apport de projection pulvérulent et/ou les gaz pour transporter la poudre sont alimentés à l'état préchauffé.
  8. Procédé selon la revendication 7, caractérisé en ce que le branchement pour le matériau d'apport de projection et/ou les gaz pour transporter la poudre est réalisé avec un refroidissement par eau.
  9. Procédé selon la revendication 1 et au moins une des revendications précédentes, caractérisé en ce que le matériau d'apport de projection froid et/ou préchauffé commence à être fondu lorsqu'il traverse la chambre de combustion primaire, est fondu et accéléré par la flamme de combustion primaire en traversant la chambre de combustion secondaire, et sort avec la flamme secondaire par le perçage de la buse d'expansion.
  10. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, ce dispositif étant réalisé sous la forme d'un pistolet de projection de matériaux fondus et étant constitué d'un corps de base d'appareil, d'un bloc de raccordement pour les fluides et matériaux de service avec des chambres de distribution, d'un bloc mélangeur de gaz d'injection, d'un carter de chambre de combustion, d'un perçage central pour les matériaux d'apport de projection et de moyens de refroidissement, caractérisé en ce que les conduits de gaz secondaire (2), de gaz combustible secondaire (6), de gaz primaire (3) et de gaz combustible primaire (5) partent dudit bloc de raccordement (9) et mènent séparément à une chambre de combustion primaire (28) ou, respectivement, à une chambre de combustion secondaire (32), le conduit de matériaux d'apport de projection ou conduit d'alimentation (4) menant dans la chambre de combustion primaire (28) en étant entouré par les conduits de gaz primaire et de gaz combustible primaire (3, 5), et les conduits de gaz secondaire et de gaz combustible secondaire (2, 6) débouchant dans la chambre de combustion secondaire (32) en étant amenés au-delà de la chambre de combustion primaire (28) en direction de la buse d'expansion (39).
  11. Dispositif selon la revendication 10, caractérisé en ce que ce dispositif est constitué d'un bloc de raccordement (9) pour les fluides et matériaux de service, d'un corps de base d'appareil (12), d'un bloc porteur mélangeur de gaz (14), d'un bloc mélangeur de gaz d'injection (13), d'un carter (29) de chambre de combustion primaire avec une partie intérieure (76) ou un corps de perçage central (81), une vis de serrage (62) et un élément d'accouplement (80), ainsi que d'un corps de buse d'expansion secondaire (39), d'un manchon vissé intérieur (34) et d'un manchon vissé extérieur (35).
  12. Dispositif selon les revendications 10 et 11, caractérisé en ce que le bloc de raccordement (9) pour les fluides et matériaux de service présente au moins, respectivement, un branchement d'entrée d'eau de refroidissement (1a), un branchement de gaz secondaire (2a), un branchement de gaz primaire (3a), un branchement (4a) pour des matériaux d'apport de projection pulvérulents et/ou filiformes, un branchement de gaz combustible primaire (5a), un branchement de gaz combustible secondaire (6a) et un branchement de retour d'eau de refroidissement (7a), qui se prolongent, sous la forme de conduits (1b, 2b, 3b, 4b, 5b, 6b, 7b), jusqu'à la face frontale (68) du bloc de raccordement (9) ou jusqu'à des chambres de distribution (10, 11) qui y sont disposées.
  13. Dispositif selon l'une quelconque des revendications 10 à 12, caractérisé en ce que les conduits (1b à 7b) ou les chambres de distribution (10, 11) du bloc de raccordement (9) pour les fluides et matériaux de service correspondent avec des conduits (1c à 7c) du corps de base d'appareil (12) destinés aux mêmes fluides et matériaux.
  14. Dispositif selon l'une quelconque des revendications 10 à 13, caractérisé en ce que le corps de base d'appareil (12) reçoit, en l'entourant au moins partiellement, un bloc porteur mélangeur de gaz (14) pour les gaz secondaires, un bloc mélangeur de gaz d'injection (13) pour les gaz primaires étant disposé dans le bloc porteur mélangeur de gaz (14).
  15. Dispositif selon l'une quelconque des revendications 10 à 14, caractérisé en ce que le corps de base d'appareil (12) présente des conduits (1c à 7c) qui correspondent avec les conduits (1b à 7b) ou avec des conduits annulaires (10, 11) disposés sur la face frontale (68) du bloc de raccordement (9) pour les fluides et matériaux de service.
  16. Dispositif selon l'une quelconque des revendications 10 à 15, caractérisé en ce que le conduit (1c) du corps de base d'appareil (12) débouche dans un conduit aller d'eau de refroidissement (1d) entre le manchon vissé intérieur (34) et le manchon vissé extérieur (35), le conduit de retour d'eau de refroidissement (7c) correspondant avec le conduit de retour d'eau de refroidissement (7b), formé entre le corps de base d'appareil (12) et la vis de serrage (62).
  17. Dispositif selon l'une quelconque des revendications 10 à 16, caractérisé en ce que le bloc porteur mélangeur de gaz (14) est traversé par au moins un conduit de gaz secondaire (2d) et au moins un conduit de gaz combustible secondaire (6d), conduits qui, d'un côté, mènent respectivement à des conduits (2c, 6c) pour les mêmes fluides du corps de base d'appareil (12), et qui, sur le côté (71) tourné vers la chambre de combustion primaire (28), mènent respectivement dans des rainures radiales (18, 60) qui y sont prévues pour le gaz secondaire et le gaz combustible secondaire.
  18. Dispositif selon l'une quelconque des revendications 10 à 17, caractérisé en ce que le bloc mélangeur de gaz d'injection (13) pour les gaz primaires présente au moins un conduit de gaz combustible primaire (5d) et au moins un conduit de gaz primaire (3d), ainsi qu'un perçage central (4d) pour les matériaux d'apport de projection, ces conduits (3d, 4d, 5d) correspondant d'un côté avec les conduits (3c, 5c, 5c) pour les mêmes fluides ou matériaux du corps de base d'appareil (12), et le conduit (5d) débouchant dans une chambre annulaire radiale (57) entre le bloc porteur mélangeur de gaz (14) et le bloc mélangeur de gaz d'injection (13), et le conduit (3d) dans une chambre annulaire (56) pour la distribution d'oxygène, tandis que le perçage central (4d) est prolongé jusqu'au côté frontal (75) du bloc mélangeur de gaz d'injection (13) et que des perçages de buse de pression d'injection (58) mènent de la chambre annulaire (56) à la fente d'injection (57a), d'où des perçages de buse de mélange d'injection (59) se poursuivent jusqu'à une rainure annulaire radiale (22a).
  19. Dispositif selon l'une quelconque des revendications 10 à 18, caractérisé en ce qu'un carter (29) de chambre de combustion primaire se raccorde au bloc mélangeur de gaz d'injection (13) en direction de la buse d'expansion (39), carter qui présente au moins une partie intérieure (76) avec les perçages de mélange de gaz d'injection (47, 48) pour le mélange de gaz primaires, ainsi qu'un perçage (49) pour les matériaux d'apport de projection.
  20. Dispositif selon l'une quelconque des revendications 10 à 19, caractérisé en ce que les perçages (47, 48) sont disposés en disposition axiale et/ou focalisante dans la partie intérieure (76).
  21. Dispositif selon l'une quelconque des revendications 10 à 20, caractérisé en ce qu'une rainure annulaire radiale (22) pour le gaz primaire (gaz combustible-oxygène) est disposée sur le côté frontal (77) de la partie intérieure (76) qui est tourné vers le bloc mélangeur de gaz d'injection (13), rainure qui correspond avec la rainure annulaire radiale (22a) du bloc mélangeur de gaz d'injection (13), de même que le perçage disposé centralement (49) correspond avec le perçage central (4d) du bloc mélangeur de gaz d'injection (13).
  22. Dispositif selon l'une quelconque des revendications 10 à 21, caractérisé en ce que le carter (29) de chambre de combustion primaire présente chaque fois, sur son côté frontal (78) tourné vers le bloc porteur mélangeur de gaz (14), une rainure annulaire radiale (20) pour le gaz combustible secondaire et une rainure annulaire radiale (21) pour l'oxygène secondaire, rainures qui correspondent avec les rainures radiales (18, 60) pour les mêmes fluides du bloc porteur mélangeur de gaz (14).
  23. Dispositif selon l'une quelconque des revendications 10 à 22, caractérisé en ce que des conduits correspondants respectifs (23, 79) se poursuivent à partir des rainures annulaires radiales (20, 21) et se réunissent dans une rainure annulaire radiale (25) (fente d'injection), les conduits (79) menant directement dans la rainure annulaire radiale (25), tandis que les conduits (23) y mènent par l'intermédiaire de perçages de buse de pression d'injection (24).
  24. Dispositif selon l'une quelconque des revendications 10 à 23, caractérisé en ce que les conduits (79) sont formés au moins en partie par la fente entre le carter (29) de chambre de combustion primaire et l'élément d'accouplement (80).
  25. Dispositif selon l'une quelconque des revendications 10 à 24, caractérisé en ce que des perçages (44, 45) en disposition axiale et focalisante mènent de la rainure annulaire radiale (25) à la chambre de combustion secondaire (32).
  26. Dispositif selon l'une quelconque des revendications 10 à 25, caractérisé en ce que les perçages (44, 45) sont amenés au-delà de la chambre de combustion primaire (28).
  27. Dispositif selon l'une quelconque des revendications 10 à 26, caractérisé en ce que la buse d'expansion (39) se raccorde à la chambre de combustion secondaire (32).
  28. Dispositif selon l'une quelconque des revendications 10 à 27, caractérisé en ce que le circuit aller (1) d'eau de refroidissement se poursuit, en partant du branchement (1a) du bloc de raccordement (9) pour les fluides et matériaux de service, à travers le corps de base d'appareil (12), puis, entre le manchon vissé intérieur (34) et le manchon vissé extérieur (35), jusqu'aux perçages radiaux (40) prévus au niveau du perçage de sortie (43) de la buse d'expansion, à la suite de quoi ce circuit aller se raccorde au circuit de retour d'eau de refroidissement par le fait que le conduit d'eau de refroidissement s'étend entre le corps de buse d'expansion (39) et le manchon vissé intérieur (34) et se raccorde à une chambre annulaire d'eau de refroidissement (33), d'où un conduit d'eau de refroidissement (16) mène au branchement de retour d'eau de refroidissement (7a) du bloc de raccordement (9).
  29. Dispositif selon l'une quelconque des revendications 10 à 28, caractérisé en ce que le carter (29) de chambre de combustion primaire est conçu comme bloc mélangeur de gaz d'injection secondaire.
  30. Dispositif selon la revendication 29, caractérisé en ce que la chambre de combustion primaire (28) du carter de chambre de combustion (29) présente un perçage de buse d'expansion de transition (30).
EP91103273A 1990-05-22 1991-03-05 Procédé et dispositif de pulvérisation par flamme à haute vitesse de matériau d'apport réfractaire sous forme de poudre ou de fil pour le revêtement de surfaces Expired - Lifetime EP0458018B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT9191103273T ATE105596T1 (de) 1990-05-22 1991-03-05 Verfahren und vorrichtung zum hochgeschwindigkeitsflammspritzen von hochschmelzenden draht- und pulverfoermigen zusatzwerkstoffen zum beschichten von oberflaechen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4016412A DE4016412A1 (de) 1990-05-22 1990-05-22 Verfahren und vorrichtung zum hochgeschwindigkeitsflammspritzen von hochschmelzenden draht- und pulverfoermigen zusatzwerkstoffen zum beschichten von oberflaechen
DE4016412 1990-05-22

Publications (3)

Publication Number Publication Date
EP0458018A2 EP0458018A2 (fr) 1991-11-27
EP0458018A3 EP0458018A3 (en) 1992-01-22
EP0458018B1 true EP0458018B1 (fr) 1994-05-11

Family

ID=6406924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91103273A Expired - Lifetime EP0458018B1 (fr) 1990-05-22 1991-03-05 Procédé et dispositif de pulvérisation par flamme à haute vitesse de matériau d'apport réfractaire sous forme de poudre ou de fil pour le revêtement de surfaces

Country Status (5)

Country Link
EP (1) EP0458018B1 (fr)
JP (1) JPH07102358A (fr)
AT (1) ATE105596T1 (fr)
CA (1) CA2043024A1 (fr)
DE (2) DE4016412A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9218287U1 (de) * 1991-12-23 1994-02-17 OSU-Maschinenbau GmbH, 44577 Castrop-Rauxel Thermische Spritz- und Beschleunigungsdüse zur Erzeugung von Metallschichten
DE4239903C1 (de) * 1992-11-27 1994-06-30 Franz Kuenzli Ag Wangen Injektor-Mundstück für Brenneraggregate
GB9316522D0 (en) * 1993-08-09 1993-09-22 Hopkins William Apparatus for and methods of producing a particulate spray
DE4418437C2 (de) * 1994-05-26 1996-10-24 Linde Ag Verfahren und Vorrichtung zum autogenen Flammspritzen
DE4429142B4 (de) * 1994-08-17 2004-11-18 Matthäus Götz Düsenspritzkopf zum Hochgeschwindigkeitsflammspritzen so wie Verfahren zur Verarbeitung von Beschichtungspulvern
CN1119431C (zh) * 2000-08-10 2003-08-27 沈阳航空工业学院 超音速火焰熔滴喷涂方法
JP4626945B2 (ja) * 2004-07-06 2011-02-09 第一高周波工業株式会社 サーメット溶射皮膜形成部材およびその製造方法
CH702999A1 (de) * 2010-04-29 2011-10-31 Amt Ag Vorrichtung zur Beschichtung von Substraten mittels Hochgeschwindigkeitsflammspritzen.
CN113512447B (zh) * 2021-04-07 2023-11-10 北京航化节能环保技术有限公司 一种全预混喷嘴装置、气化炉、气化方法及喷嘴加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE811899C (de) * 1949-06-05 1951-08-23 Deutsche Edelstahlwerke Ag Vorrichtung zum Verspruehen von metallischen und nichtmetallischen Werkstoffen
US4416421A (en) * 1980-10-09 1983-11-22 Browning Engineering Corporation Highly concentrated supersonic liquified material flame spray method and apparatus
US4869936A (en) * 1987-12-28 1989-09-26 Amoco Corporation Apparatus and process for producing high density thermal spray coatings
US5019686A (en) * 1988-09-20 1991-05-28 Alloy Metals, Inc. High-velocity flame spray apparatus and method of forming materials

Also Published As

Publication number Publication date
DE4016412C2 (fr) 1992-09-03
DE59101597D1 (de) 1994-06-16
EP0458018A2 (fr) 1991-11-27
JPH07102358A (ja) 1995-04-18
ATE105596T1 (de) 1994-05-15
DE4016412A1 (de) 1991-11-28
CA2043024A1 (fr) 1991-11-23
EP0458018A3 (en) 1992-01-22

Similar Documents

Publication Publication Date Title
DE3879445T2 (de) Apparat und verfahren zum erzeugen einer beschichtung von hoher dichte durch thermische zerstaeubung.
DE68914074T2 (de) Hochgeschwindigkeits-Flammspritzvorrichtung.
DE69018654T2 (de) Abgeschirmte Heissspritzpistole und Verwendung derselben.
DE3929960A1 (de) Duese fuer einen plasmabrenner und verfahren zum einbringen eines pulvers in die plasmaflamme eines plasmabrenners
EP0135826A1 (fr) Appareil pour la pulvérisation thermique d'un plasma
DE102006044906A1 (de) Plasmabrenner
DE2523435C2 (de) Verfahren und Vorrichtungen zum Plasma-Flammspritzen
EP0458018B1 (fr) Procédé et dispositif de pulvérisation par flamme à haute vitesse de matériau d'apport réfractaire sous forme de poudre ou de fil pour le revêtement de surfaces
DE4030541C2 (de) Brenner zur Beschichtung von Grundwerkstoffen mit pulverförmigen Zusatzwerkstoffen
DE4239903C1 (de) Injektor-Mundstück für Brenneraggregate
DE10253794B4 (de) Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem
DE69628966T2 (de) Verfahren und Vorrichtung zum Erzeugen eines Flammenstrahles mit Überschallgeschwindigkeit und stabilisierten Stosswellen
DE4443811A1 (de) Universell anwendbarer Hochgeschwindigkeits-Flammspritzbrenner zum Verspritzen von draht-, stab- und/oder pulverförmigen Spritzzusatz-Werkstoffen
EP0612567B1 (fr) Chambre d'égalisation de pression comprenant un insert
DE10037276B4 (de) Zusatzeinrichtung für Pulver- und Draht-Flammspritzgeräte
DE10357440B4 (de) Niedertemperatur-Hochgeschwindigkeits-Flammspritzsystem zum Vorbereiten von Oberflächen und/oder zum thermischen Spritzen von pulverförmigen Spritzzusatzwerkstoffen
EP1603684B1 (fr) Systeme de projection a la flamme, a haute vitesse et a basse temperature
DE4429142B4 (de) Düsenspritzkopf zum Hochgeschwindigkeitsflammspritzen so wie Verfahren zur Verarbeitung von Beschichtungspulvern
DE102005063145A1 (de) Brennerkopf für luftgekühltes Hochgeschwindigkeitsflammspritzgerät
DE3533966C1 (de) Verfahren und Lichtbogenspritzduese zum Beschichten von Werkstueckoberflaechen durch Schmelzen von Draehten in einem elektrischen Lichtbogen
DE10019095B4 (de) Verfahren zum Plasma-Pulver-Löten
DE4216688C1 (de) Verfahren und Vorrichtung zum thermischen Spritzen von pulver- oder draht- oder stabförmigen Spritzzusatzwerkstoffen
DE9005798U1 (de) Vorrichtung zum Hochgeschwindigkeitsflammspritzen von hochschmelzenden draht- und pulverförmigen Zusatzwerkstoffen zum Beschichten von Oberflächen
DE4219992C3 (de) Thermisches Spritzverfahren und Spritz- und Beschleunigungsdüse zur Erzeugung von Metallschichten
WO2020108841A1 (fr) Dispositif d'injecteur pour l'insufflation de solides dans un agrégat métallurgique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920220

17Q First examination report despatched

Effective date: 19930903

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940511

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940511

Ref country code: DK

Effective date: 19940511

REF Corresponds to:

Ref document number: 105596

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59101597

Country of ref document: DE

Date of ref document: 19940616

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940817

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950306

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950320

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950321

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950328

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950331

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950331

Year of fee payment: 5

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960331

BERE Be: lapsed

Owner name: UTP SCHWEISSMATERIAL G.M.B.H. & CO. K.G.

Effective date: 19960331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050305