EP0438682B1 - Abgassystem mit einem Partikelfilter und einem Regenerierungsbrenner - Google Patents

Abgassystem mit einem Partikelfilter und einem Regenerierungsbrenner Download PDF

Info

Publication number
EP0438682B1
EP0438682B1 EP90123506A EP90123506A EP0438682B1 EP 0438682 B1 EP0438682 B1 EP 0438682B1 EP 90123506 A EP90123506 A EP 90123506A EP 90123506 A EP90123506 A EP 90123506A EP 0438682 B1 EP0438682 B1 EP 0438682B1
Authority
EP
European Patent Office
Prior art keywords
exhaust
burner
exhaust system
flame tube
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90123506A
Other languages
English (en)
French (fr)
Other versions
EP0438682A3 (en
EP0438682A2 (de
Inventor
Josef Dipl.-Ing. Kreutmair (Fh)
Alfred Zöbl
Nikolaus Dipl.-Ing. König (FH)
David Michael Simpkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arvin Industries Deutschland GmbH
Original Assignee
Zeuna Starker GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeuna Starker GmbH and Co KG filed Critical Zeuna Starker GmbH and Co KG
Publication of EP0438682A2 publication Critical patent/EP0438682A2/de
Publication of EP0438682A3 publication Critical patent/EP0438682A3/de
Application granted granted Critical
Publication of EP0438682B1 publication Critical patent/EP0438682B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the invention relates to an exhaust system with a particle filter and a burner for regenerating the particle filter, the burner being equipped with a fuel mixture nozzle and a flame tube which at least partially protrudes into the exhaust gas routing system and is flushed with the exhaust gas.
  • the burner is arranged in the exhaust pipe in such a way that the exhaust gas partially flows around the burner and mixes with the hot gases at the burner outlet.
  • the advantage of this design is that the burner can also be ignited while the engine is emitting exhaust gases.
  • a system of this type is known from EP 306 743 A2, in which the exhaust gases strike a flame tube of the burner perpendicularly through an annular gap, graze the flame tube in the longitudinal direction and finally mix with the hot gases of the burner in a crossflow mixer.
  • a hot gas outlet opening and a baffle plate at a distance from this opening are provided on the face of the flame tube, which radially deflect the axially emerging hot gases before they mix with the exhaust gases.
  • the invention has for its object to design an exhaust system of the type mentioned so that there is no risk of overheating a filter arranged close to the burner.
  • the hot gas is divided into a number of relatively small hot gas streams via the hot gas outlet openings in the flame tube.
  • This has the advantage that a uniform and complete mixing between exhaust gas and hot gas is possible and also the risk of the occurrence of larger secondary flame is eliminated. Due to the intimate mixing of the exhaust gases, a mixed gas with an almost homogeneous temperature is created from the mixing location. It is therefore possible to provide a particle or soot filter very close to the burner and thus to take advantage of the advantages associated with it.
  • the hot gas outlet openings are preferably evenly distributed on the flame tube and so far apart relative to its diameter that the escaping hot gas streams do not contact each other if possible.
  • the diameter is as small as possible and the number of outlet openings as large as possible, the lower or upper limit depending on the application being limited by the required pressure and flow conditions.
  • the flame tube provided with a plurality of outlet openings can be arranged differently in the exhaust gas flow path.
  • An arrangement is preferably selected in which the exhaust gas flows around the flame tube to cool it and finally hits the hot gas outlet openings transversely.
  • it is proposed to choose the arrangement so that the exhaust gas hits the flame tube tangentially and spirally flows around it and strikes the hot gas flows.
  • the hot gas outlet openings are distributed on one or more transverse planes near the end of the flame tube at uniform intervals on the circumference of the flame tube, the front end of the flame tube being closed.
  • the hot gas comes out of the flame tube in the form of a plurality of radial partial flows, wherein they lie in a plane which is oriented parallel to the inlet surface of the filter.
  • the above configurations have the advantage of a symmetrical distribution of the hot gas, which favors a homogenization of the gas temperature upstream of the filter.
  • the position of the hot gas outlet openings on the flame tube will depend on the respective construction concept of the exhaust system.
  • the outlet openings are provided on two diametrically opposed surface lines of the flame tube and on the diameter of the flame tube end face connecting these surface lines.
  • the mixing of the exhaust gases with the hot gases can be further optimized according to a further embodiment of the invention if a swirl plate is provided in the flow path of the exhaust gas or the gas mixture.
  • the swirl plate has several slots with slightly twisted sheets in between. When flowing through the slots, the already mixed gas or the exhaust gas is divided into several swirled gas streams, as a result of which the exhaust gases and hot gases are mixed more intensively over a very short distance.
  • the swirl plate is preferably arranged in the flow direction of the exhaust gas shortly before the hot gases emerge from the flame tube, so that a partial flow after the tear-off edge on the swirl plate can carry a partial hot gas flow with it into its swirling movement.
  • the swirl plate can simultaneously serve to concentrate or expand the exhaust gas flow, so that the flame contour outside the flame tube can be adapted to the shape of the filter housing.
  • the system is further favored by the use of a known blue burner which can be designed with variable output, for example depending on the engine exhaust gas temperature. In this way it is ensured that in the low load range of the engine a burner stoichiometric operation is possible, especially since pollutant values and unburned fuel quantities are low in the blue burner and these quantities can be easily combusted with the residual oxygen in the exhaust gas.
  • FIG. 1 shows an internal combustion engine 10, in the exhaust pipe 11 of which a particle filter 12 and a burner 13 are interposed.
  • the exhaust gases coming from the internal combustion engine 10 enter a housing 14 in which the burner 13 and the filter 12 are arranged one behind the other in the direction of flow.
  • the burner 13 will be out of operation while the engine 10 is running, so that the soot particles from the exhaust gases accumulate in the filter 12.
  • the burner 13 is put into operation if necessary by igniting by means of an arc 15 and supplying fuel 16 and combustion air 17.
  • the hot gases emerging from the burner 13 mix in the antechamber 18 of the filter 12 with the exhaust gas temperature being raised in such a way that the soot particles accumulated in the filter 12 oxidize.
  • the size, for example of the housing 14, depends, among other things, on the distance that must be maintained between the burner 13 and the filter 12. As a rule, this distance must be kept relatively large in order to avoid local overheating on the inlet side of the filter 12, which can be caused by uneven mixing of the exhaust and hot gases and by secondary flames in the antechamber 18.
  • a burner 13 is provided, the hot gases of which emerge not through one but through a plurality of openings on the flame tube, these openings being arranged in a plane which is parallel to the inlet surface 20 of the filter 12. This can happen in different ways, depending on which one Orientation of the burner 13 relative to the inlet surface 20 of the filter 12.
  • FIG. 2 An embodiment according to FIG. 2 is possible in which the flame tube 21 runs parallel to the inlet surface 20 of the filter 12.
  • the hot gas outlet openings 22 are located on a plane 23 which is formed on the end face 26 by two diametrically opposed surface lines 24, 25 of the flame tube 21 and a line connecting the two surface lines 24, 25.
  • the plane 23 is also selected so that it lies parallel to the inlet surface 20 of the filter 12.
  • This longitudinal section plane is shown in FIG. 3 with the emerging hot gas flows 27.
  • the exhaust gas stream 11 entering the housing 14 enclosing the burner 21 and the filter 12 strikes the hot gas partial streams 27 perpendicularly and mixes them largely homogeneously due to the distribution of the hot gas.
  • the division of the hot gases into a large number of small streams is preferably carried out in connection with a flame tube, which is arranged perpendicular to the inlet plane 20 of the filter 12. This arrangement is shown in Fig. 1.
  • the burner 13 consists of a flame tube 30, a mixing tube 31 and an atomizer nozzle 32.
  • the end face 33 of the flame tube opposite the atomizer nozzle 32 30 is completely closed.
  • the flame tube 30 has outlet openings 34 which are uniformly distributed on the circumference and are all located on a plane 35 which is oriented parallel to the inlet plane 20 of the filter.
  • the hot gas 36 emerges in star form in numerous partial streams 37 from the flame tube 30, ie parallel to the inlet surface 20 of the filter 12.
  • the exhaust gases 40 flow, as in FIG.
  • the embodiment according to FIG. 4 has the advantage over that of FIG. 2 that a better burned hot gas 36 emerges from the outlet openings 34 located at the end of the flame tube 30. Further rows of outlet openings for the hot gas 36 can be provided, which are arranged in one or more planes parallel to the first plane 35. 4 shows a further level 46 with outlet openings 45 in dashed lines. The outlet openings 45 of this second level 46 can be placed on the hatch opposite the outlet openings 34 of the first level 35.
  • the connection of the hot gas outlet distribution with a so-called blue burner with or without a mixing tube 31 and / or a hot gas recirculation has the further advantage that an exhaust system with variable burner output can be produced due to the relatively good combustion in the wide output range of the blue burner.
  • the burner output is adapted to the engine exhaust gas temperature, which enables a fuel-saving design and optimal control of the exhaust gas inlet temperature into the filter.
  • the division into a large number of small hot gas partial streams 37 therefore not only brings about the homogenization of the gas temperature, but also a reduction in the secondary flame length in the afterburning of the unburned constituents which escape, particularly in substoichiometric burner operation. Because of the division of the hot gases 36, only small lengths of flame can arise due to the smaller amount of hot gas. From this point of view, too, there is a danger of local combustion of the filter surface or uneven burning of the particle filter.
  • FIG. 6 shows an exemplary embodiment in which a swirl plate 50 is arranged parallel to the plane 35 of the outlet openings 34 in front of the outlet openings 34 of the hot gases in the flow direction of the exhaust gases 40.
  • the swirl plate 50 which is shown in a top view (partially) in FIG. 7, consists of an annular disk which is pushed onto the flame tube 30 and is fixedly connected to the housing or flame tube and has a plurality of radial slots 51 to 53.
  • the slats 54 formed by the slots 51-53 are slightly twisted around radial axes.
  • the inflowing exhaust gas 40 is divided with the swirl plate 50 into many partial flows, which form individual vortices 55 behind the swirl plate 50.
  • the arrangement of the swirl plate 50 and the outlet openings 34 for the hot gas are preferably designed and arranged such that each exhaust gas vortex 55 swirls into a partial hot gas flow and thus the essential mixing of the two gases takes place at the hot gas outlet 34.
  • the acting as steering plates lamellae 54 of the swirl plate 50 can also be oriented so that they not only swirl the partial flows, but also divert as needed, z. B. in the direction of the burner axis, d. H. concentrating the exhaust gas flow or, in contrast, expanding the exhaust gas flow.
  • the slots of the swirl plate 50 can run radially, as shown under the number 51 in FIG. 7, or more (52) or less (53) can be chosen obliquely to increase the flow cross section on the swirl plate 50.
  • the swirl plate 50 contributes to shortening the mixing path between exhaust gas and hot gas and thus enables a further reduction in the distance between burner 13 and filter 12.
  • the swirl plate 50 causes an undesirable jam in the exhaust gas flow, then it is possible to pass a partial flow, usually the lower partial flow 11 '(FIG. 1), into the burner 13, in which the residual oxygen from the exhaust gases can be used simultaneously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

  • Die Erfindung bezieht sich auf ein Abgassystem mit einem Partikelfilter und einem Brenner zur Regenerierung des Partikelfilters, wobei der Brenner mit einer Kraftstoff-Gemischdüse und einem Flammrohr ausgestattet ist, das zumindest teilweise in das Abgasführungssystem hineinragt und vom Abgas umspült ist.
  • In sogenannten Vollstrom-Brenner-Abgassystemen ist der Brenner im Abgasrohr derart angeordnet, daß das Abgas den Brenner teilweise umspült und am Brenneraustritt sich mit den Heißgasen vermischt. Vorteil dieser Ausführung ist, daß der Brenner auch während des die Abgase ausstoßenden Motorbetriebes gezündet werden kann. Ein System dieser Art ist aus der EP 306 743 A2 bekannt, bei dem die Abgase durch einen Ringspalt senkrecht auf ein Flammenrohr des Brenners auftreffen, das Flammenrohr in Längsrichtung streifen und sich schließlich in einem Querstrommischer mit den Heißgasen des Brenners vermischen. Dazu ist an der Stirnseite des Flammenrohres eine Heißgas-Austrittsöffnung sowie eine dieser Öffnung im Abstand gegenüberstehenden Prallplatte vorgesehen, die die axial austretenden Heißgase radial umlenken, bevor sie sich mit den Abgasen mischen.
  • Bei einer derartigen Ausgestaltung ist es bei ungünstigen Strömungsverhältnissen möglich, daß die Heißgase aus dem zwischen Prallplatte und Flammenrohr-Stirnwand gebildeten radialen Austrittsring sich nicht gleichmäßig verteilen, so daß heißere lokale Ströme den Filter örtlich beschädigen können. Dabei kann es auch passieren, daß unverbrannter Brennstoff aus dem Brenner am radialen Austritt mit dem im Abgas enthaltenden Restsauerstoff zu einer Sekundärflamme gezündet wird, die ein größeres Ausmaß, d. h. Flammenlänge hat und die ebenfalls einen relativ nahe am Brenner angeordneten Rußfilter lokal zerstören kann. In solchen Fällen ist der Partikelfilter aus Sicherheitsgründen in größerer Entfernung vom Brenner anzuordnen, was das Bauvolumen vergrößert und das System verteuert.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Abgassystem der eingangs genannten Art so auszubilden, daß keine Gefahr einer Überhitzung eines nahe am Brenner angeordneten Filters besteht.
  • Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
  • Über die Heißgas-Austrittsöffnungen im Flammenrohr wird das Heißgas in eine Vielzahl relativ kleiner Heißgasströme aufgeteilt. Das hat den Vorteil, daß eine gleichmäßige und vollständige Vermischung zwischen Abgas und Heißgas möglich ist und außerdem die Gefahr der Entstehung von größeren Sekundärstichflammen gebannt ist. Durch die innige Vermischung der Abgase entsteht bereits ab dem Mischort ein Mischgas mit annähernd homogener Temperatur. Es ist damit möglich, einen Partikel- bzw. Rußfilter sehr nahe am Brenner vorzusehen und so die damit verbundenen Vorteile auszunützen.
  • Die Heißgas-Austrittsöffnungen sind vorzugsweise gleichmäßig auf dem Flammenrohr und relativ zu dessen Durchmesser soweit auseinander verteilt, daß die austretenden Heißgasströme sich möglichst nicht kontaktieren. Der Durchmesser ist möglichst klein und die Anzahl der Austrittsöffnungen möglichst groß zu wählen, wobei die untere bzw. obere Grenze je nach Anwendungsfall von den erforderlichen Druck- und Strömungsbedingungen begrenzt wird.
  • Das mit mehreren Austrittsöffnungen vorgesehene Flammenrohr kann in den Abgasströmungsweg unterschiedlich angeordnet werden. Vorzugsweise wird eine Anordnung gewählt, bei der das Abgas zur Kühlung des Flammenrohres dieses umspült und schließlich quer auf die Heißgas-Austrittsöffnungen trifft. Um den Mischvorgang zu intensivieren, wird vorgeschlagen, die Anordnung so zu wählen, daß das Abgas tangential auf das Flammenrohr trifft und spiralartig dieses umspült und auf die Heißgasströme auftrifft.
  • Gemäß einer bevorzugten Ausgestaltung der Erfindung sind die Heißgas-Austrittsöffnungen auf einer oder mehreren Querebenen nahe dem Ende des Flammenrohres in gleichmäßigen Abständen am Umfang des Flammenrohres verteilt, wobei das Stirnende des Flammenrohres geschlossen ist. Das Heißgas trifft dabei in der Form von mehreren radialen Teilströmen aus dem Flammenrohr heraus, wobei sie in einer Ebene liegen, die parallel zur Eintrittsfläche des Filters orientiert ist.
  • Die vorstehenden Ausgestaltungen haben den Vorteil einer symmetrischen Verteilung des Heißgases, die eine Homogenisierung der Gastemperatur vor dem Filter begünstigt. In der Regel wird die Lage der Heißgas-Austrittsöffnungen am Flammenrohr sich nach dem jeweiligen Baukonzept des Abgassystemes richten. Bei einem quer zum Filter gerichteten Brennerrohr z. B. werden die Austrittsöffnungen an zwei diametral gegenüberliegenden Mantellinien des Flammenrohres sowie auf dem diese Mantellinien verbindenden Durchmesser der Flammenrohr-Stirnseite vorgesehen.
  • Die Vermischung der Abgase mit den Heißgasen läßt sich gemäß einer weiteren Ausgestaltung der Erfindung weiter optimieren, wenn eine Drallplatte in den Strömungsweg des Abgases oder des Gasgemisches vorgesehen wird. Die Drallplatte hat mehrere Schlitze mit dazwischenliegenden, leicht verdrehten Blechen. Beim Durchströmen durch die Schlitze wird das bereits gemischte Gas oder das Abgas in mehrere verwirbelte Gasströme aufgeteilt, wodurch eine intensivere Vermischung der Abgase und Heißgase bereits auf sehr kurzer Strecke erfolgt. Die Drallplatte wird vorzugsweise in Strömungsrichtung des Abgases kurz vor dem Austritt der Heißgase aus dem Flammrohr angeordnet, so daß ein Teilstrom nach der Abreißkante an der Drallplatte einen Heißgasteilstrom mit in seine Verwirbelungsbewegung mitreißen kann.
  • Die Drallplatte kann gleichzeitig zur Konzentrierung oder Erweiterung des Abgasstromes dienen, womit die Flammenkontur außerhalb des Flammenrohres der Filtergehäuseform anpaßbar ist.
  • Begünstigt wird das System ferner durch Anwendung eines bekannten Blaubrenners, der mit variabler Leistung, beispielsweise in Abhängigkeit der Motorabgastemperatur, auslegbar ist. Auf die Weise wird gewährleistet, daß im niedrigen Lastbereich des Motors ein unterstöchiometrischer Betrieb des Brenners möglich ist, zumal beim Blaubrenner Schadstoffwerte sowie unverbrannte Brennstoffmengen gering sind und diese Mengen ohne weiteres mit dem Restsauerstoff im Abgas nachverbrannt werden können.
  • Es gibt Anwendungsfälle, bei denen eine Aufteilung des Abgases in zwei Ströme von Vorteil ist, wobei ein Teilstrom durch das Flammrohr durchgeführt wird. Dieses ist bei der erfindungsgemäßen Ausgestaltung durchaus möglich und bei baulich geringem Raumangebot von Vorteil.
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt.
  • Fig. 1
    zeigt eine Abgasanlage,
    Fig. 2
    ein erstes Ausführungsbeispiel,
    Fig. 3
    ein Detail aus Fig. 2,
    Fig. 4
    ein zweites Ausführungsbeispiel,
    Fig. 5
    eine Hälfte eines Querschnittes aus Fig. 4 und
    Fig. 6 und 7
    ein weiteres Ausführungsbeispiel.
  • Fig. 1 zeigt eine Verbrennungsmaschine 10, in deren Abgasleitung 11 ein Partikelfilter 12 und ein Brenner 13 zwischengeschaltet sind. Die aus dem Verbrennungsmotor 10 kommenden Abgase gelangen in ein Gehäuse 14, in dem der Brenner 13 und der Filter 12 in Strömungsrichtung hintereinander angeordnet sind. In der Regel wird bei laufendem Motor 10 der Brenner 13 außer Betrieb sein, so daß sich die Rußpartikel aus den Abgasen im Filter 12 ansammeln. Nach von Fall zu Fall unterschiedlichen Kriterien wird der Brenner 13 bei Bedarf durch Zünden mittels eines Lichtbogens 15 und Zuführen von Brennstoff 16 und Verbrennungsluft 17 in Betrieb genommen. Die aus dem Brenner 13 austretenden Heißgase vermischen sich im Vorraum 18 des Filters 12 unter Anhebung der Abgastemperatur mit den Abgasen derart, daß die im Filter 12 angesammelten Rußpartikel oxidieren.
  • Die Baugröße, beispielsweise des Gehäuses 14, hängt unter anderem vom Abstand ab, der zwischen dem Brenner 13 und dem Filter 12 eingehalten werden muß. Dieser Abstand wird in der Regel relativ groß zu halten sein, um lokale Überhitzungen eintrittsseitig des Filters 12 zu vermeiden, die durch ungleichmäßige Vermischung der Ab- und Heißgase sowie durch Sekundärflammen im Vorraum 18 verursacht werden können.
  • Um hier Abhilfe zu schaffen, wird ein Brenner 13 vorgesehen, dessen Heißgase nicht durch eine sondern durch mehrere Öffnungen am Flammenrohr austreten, wobei diese Öffnungen in einer Ebene angeordnet sind, die parallel zur Eintrittsfläche 20 des Filters 12 liegt. Dieses kann in unterschiedlicher Weise geschehen, je nachdem welche Orientierung der Brenner 13 relativ zur Eintrittsfläche 20 des Filters 12 hat.
  • Es ist eine Ausgestaltung gemäß Fig. 2 möglich, bei der das Flammenrohr 21 parallel zur Eintrittsfläche 20 des Filters 12 verläuft. In diesem Fall befinden sich die Heißgas-Austrittsöffnungen 22 auf einer Ebene 23, die durch zwei diametral gegenüberliegenden Mantellinien 24, 25 des Flammenrohres 21 und einer die beiden Mantellinien 24, 25 verbindenden Linie auf der Stirnseite 26 gebildet ist. Die Ebene 23 ist ferner so gewählt, daß sie parallel zur Eintrittsfläche 20 des Filters 12 liegt. Diese Längsschnittebene ist in Fig. 3 mit den austretenden Heißgasströmen 27 gezeigt. Der in das den Brenner 21 und den Filter 12 umschließende Gehäuse 14 eintretende Abgasstrom 11 trifft senkrecht auf die Heißgasteilströme 27 auf und vermischt sich mit diesen weitgehend homogen aufgrund der Aufteilung des Heißgases.
  • Die Aufteilung der Heißgase in eine Vielzahl kleiner Ströme wird vorzugsweise in Verbindung mit einem Flammenrohr durchgeführt, das senkrecht zur Eintrittsebene 20 des Filters 12 angeordnet ist. Diese Anordnung ist in Fig. 1 gezeigt.
  • Ein Ausführungsbeispiel hierzu ist in Fig. 4 gezeigt. Der Brenner 13 besteht aus einem Flammenrohr 30, einem Mischrohr 31 sowie einer Zerstäuberdüse 32. Die der Zerstäuberdüse 32 gegenüberliegende Stirnseite 33 des Flammenrohres 30 ist vollkommen geschlossen. Nahe an diesem Ende hat das Flammenrohr 30 am Umfang gleichmäßig verteilte Austrittsöffnungen 34, die sich alle auf einer Ebene 35 befinden, die parallel zur Eintrittsebene 20 des Filters orientiert ist. Wie im Schnitt nach der Linie V - V in Fig. 5 gezeigt ist, tritt das Heißgas 36 sternförmig in zahlreichen Teilströmen 37 aus dem Flammenrohr 30 heraus, d. h. parallel zur Eintrittsfläche 20 des Filters 12. Die Abgase 40 strömen, wie in Fig. 5 näher gezeigt, tangential in den Vorraum 18 ein, in dem das Flammenrohr 30 sich befindet und umspülen das Flammenrohr 30 in einem spiralförmigen Verlauf. Am Ende des Flammenrohres 30 trifft das Abgas 40 mit den Heißgasteilströmen 37 senkrecht zusammen, wobei die beiden Gase in kürzester Strecke nahezu vollständig sich vermischen. Im geringen axialen Abstand vom Flammenrohr 30 bereits herrscht im Vorraum 18 eine nahezu homogene Temperatur. Dadurch ist es möglich, den Filter 12 sehr nahe an die Stirnseite 33 des Brenners 13 heranzurücken.
  • Die Ausgestaltung nach Fig. 4 hat gegenüber der der Fig. 2 den Vorteil, daß aus den am Ende des Flammenrohres 30 befindlichen Austrittsöffnungen 34 ein besser verbranntes Heißgas 36 heraustritt. Es können weitere Reihen von Austrittsöffnungen für das Heißgas 36 vorgesehen werden, die in einer oder mehreren Ebenen parallel zur ersten Ebene 35 angeordnet sind. In der Fig. 4 ist eine weitere Ebene 46 mit Austrittsöffnungen 45 gestrichelt dargestellt. Die Austrittsöffnungen 45 dieser zweiten Ebene 46 können gegenüber den Austrittsöffnungen 34 der ersten Ebene 35 auf Luke gesetzt werden.
  • Die Verbindung der Heißgas-Austrittsaufteilung mit einem sogenannten Blaubrenner mit oder ohne einem Mischrohr 31 und/oder einer Heißgasrezirkulation hat den weiteren Vorteil, daß aufgrund der relativ guten Verbrennung im breiten Leistungsbereich des Blaubrenners ein Abgassystem mit variabler Brennerleistung herstellbar ist. Die Brennerleistung wird an die Motorabgastemperatur angepaßt, womit eine kraftstoffsparende Auslegung sowie eine optimale Regelung der Abgaseintrittstemperatur in den Filter möglich ist. Durch die Aufteilung in eine Vielzahl kleiner Heißgasteilströme 37 wird daher nicht nur die Homogenisierung der Gastemperatur, sondern auch eine Reduzierung der Sekundärflammenlänge in der Nachverbrennung der insbesondere im unterstöchiometrischen Brennerbetrieb austretenden unverbrannten Bestandteile bewirkt. Durch die Aufteilung der Heißgase 36 können nämlich jeweils aufgrund der geringeren Heißgasmenge nur kleine Flammenlängen entstehen. Es ist daher auch aus dieser Sicht eine Gefahr der lokalen Verbrennung der Filteroberfläche bzw. ungleichmäßiges Freibrennen des Partikelfilters gebannt.
  • In Fig. 6 ist ein Ausführungsbeispiel gezeigt, bei dem in Strömungsrichtung der Abgase 40 vor den Austrittsöffnungen 34 der Heißgase eine Drallplatte 50 parallel zur Ebene 35 der Austrittsöffnungen 34 angeordnet ist. die Drallplatte 50, die in Fig. 7 in Draufsicht (teilweise) gezeigt ist, besteht aus einer Ringscheibe, die auf dem Flammenrohr 30 aufgeschoben und mit dem Gehäuse oder Flammenrohr fest verbunden ist und eine Vielzahl radialer Schlitze 51 bis 53 hat. Die durch die Schlitze 51 - 53 gebildeten Lamellen 54 sind leicht um radiale Achsen verdreht. Das anströmende Abgas 40 wird mit der Drallplatte 50 in viele Teilströme aufgeteilt, die hinter der Drallplatte 50 einzelne Wirbel 55 bilden. Die Anordnung der Drallplatte 50 und der Austrittsöffnungen 34 für das Heißgas sind bevorzugt so ausgebildet und angeordnet, daß jeder Abgaswirbel 55 in einen Heißgasteilstrom hineinwirbelt und damit bereits am Heißgasaustritt 34 die wesentliche Vermischung der beiden Gase erfolgt.
  • Die als Lenkbleche wirkenden Lamellen 54 der Drallplatte 50 können ferner so orientiert werden, daß sie nicht nur die Teilströme verwirbeln, sondern je nach Bedarf auch umlenken, z. B. in Richtung der Brennerachse, d. h. den Abgasstrom konzentrierend oder im Gegensatz dazu den Abgasstrom erweiternd.
  • Die Schlitze der Drallplatte 50 können radial verlaufen, wie unter der Ziffer 51 in Fig. 7 gezeigt ist, oder zur Vergrößerung des Durchstromquerschnitts an der Drallplatte 50 mehr (52) oder weniger (53) schräg dazu gewählt werden. Die Drallplatte 50 trägt zur Abkürzung des Vermischungsweges zwischen Abgas und Heißgas bei und ermöglicht damit eine weitere Reduzierung des Abstandes zwischen Brenner 13 und Filter 12.
  • Bewirkt die Drallplatte 50 einen unerwünschten Stau in der Abgasströmung, dann ist es möglich, einen Teilstrom, in der Regel den geringeren Teilstrom 11' (Fig. 1) in den Brenner 13 zu leiten, worin der Restsauerstoff der Abgase gleichzeitig genutzt werden kann.

Claims (13)

  1. Abgassystem mit einem Partikelfilter (12) und einem Brenner (13) zur Regenerierung des Partikelfilters, wobei der Brenner mit einer Brennstoffdüse (32) und einem Flammenrohr (21, 30) ausgerüstet ist, das zumindest teilweise in das Abgasführungssystem hineinragt und vom Abgas umspült ist, dadurch gekennzeichnet, daß das Flammenrohr (21, 30) mit einer Vielzahl von Heißgas-Austrittsöffnungen (22, 34) ausgebildet ist, die in mindestens einer Ebene (23, 35 bzw. 46) liegen, die annähernd planparallel zur Filtereintrittsoberfläche (20) orientiert ist.
  2. Abgassystem nach Anspruch 1, dadurch gekennzeichnet, daß die Heißgas-Austrittsöffnungen (22, 34, 45) in gleichmäßigen Abständen am Flammenrohr (21 bzw. 30) verteilt sind.
  3. Abgassystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Abgassystem im Bereich des Brenners (13) so ausgestaltet ist, daß sich eine Querstrommischung zwischen dem Abgas (11, 40) und dem aus den Austrittsöffnungen (22, 34, 45) austretende Heißgas (27, 37) ergibt.
  4. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Partikelfilter (12) in Abgasstromrichtung unmittelbar nach dem Brenner (13) angeordnet ist.
  5. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Brenner (13) mit einem Mischrohr (31) und/oder einer Rezirkulation der Heißgase (36) vorgesehen ist.
  6. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem Brenner (13) eine Brennstoff/Verbrennungsluft-Regeleinrichtung zugeordnet ist, mit der die Brennerleistung in Abhängigkeit der Motorlast regelbar ist.
  7. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Flammenrohr (30) an der der Düse gegenüberliegenden Stirnseite (33) geschlossen ist und an diesem Ende mit annähernd radialen Heißgas-Austrittsöffnungen (34, 45) versehen ist.
  8. Abgassystem nach Anspruch 7, dadurch gekennzeichnet, daß die Heißgas-Austrittsöffnungen (34) in regelmäßigen Abständen voneinander in einer Querebene (35) am Umfang des Flammenrohres (30) verteilt sind.
  9. Abgassystem nach Anspruch 8, dadurch gekennzeichnet, daß zusätzlich Heißgas-Austrittsöffnungen in einer zweiten Querebene (46) des Flammenrohres (30) vorgesehen sind.
  10. Abgassystem nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß das Flammenrohr (30) und die Abgasführung (11) zueinander so angeordnet sind, daß das Flammenrohr spiralartig vom Abgas umspülbar ist.
  11. Abgassystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Abgas- oder Abgas-Heißgas-Gemischstrom eine Drallplatte (50) vorgesehen ist, die den Gasstrom in mehrere sich verwirbelnde Teilströme (55) aufteilt.
  12. Abgassystem nach Anspruch 11, dadurch gekennzeichnet, daß die Drallplatte (50) in Abgasströmungsrichtung unmittelbar vor den Austrittsöffnungen (34 bzw. 45) des Heißgases angeordnet ist.
  13. Abgassystem nach Anspruch 11, dadurch gekennzeichnet, daß durch Formgebung der Drallplatte (50) die Flammenkontur der Filtergehäuseform anpaßbar ist.
EP90123506A 1990-01-25 1990-12-07 Abgassystem mit einem Partikelfilter und einem Regenerierungsbrenner Expired - Lifetime EP0438682B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4002130 1990-01-25
DE4002130 1990-01-25
DE4009201A DE4009201A1 (de) 1990-01-25 1990-03-22 Abgassystem mit einem partikelfilter und einem regenerierungsbrenner
DE4009201 1990-03-22

Publications (3)

Publication Number Publication Date
EP0438682A2 EP0438682A2 (de) 1991-07-31
EP0438682A3 EP0438682A3 (en) 1992-02-26
EP0438682B1 true EP0438682B1 (de) 1994-07-20

Family

ID=25889401

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123506A Expired - Lifetime EP0438682B1 (de) 1990-01-25 1990-12-07 Abgassystem mit einem Partikelfilter und einem Regenerierungsbrenner

Country Status (8)

Country Link
US (1) US5140814A (de)
EP (1) EP0438682B1 (de)
JP (1) JPH04350315A (de)
AT (1) ATE108865T1 (de)
DE (2) DE4009201A1 (de)
DK (1) DK0438682T3 (de)
ES (1) ES2031055T3 (de)
GR (1) GR920300093T1 (de)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320523A (en) * 1992-08-28 1994-06-14 General Motors Corporation Burner for heating gas stream
US5339630A (en) * 1992-08-28 1994-08-23 General Motors Corporation Exhaust burner catalyst preheater
DE4310926A1 (de) * 1993-04-02 1994-10-06 Siemens Ag Vorrichtung und Verfahren zur Schadstoffminderung im Abgas
DE4330983A1 (de) * 1993-09-13 1995-03-16 Ernst Apparatebau Gmbh & Co Brennereinsatz für Rußfilter
US5771683A (en) * 1995-08-30 1998-06-30 Southwest Research Institute Active porous medium aftertreatment control system
US7741127B2 (en) * 2001-08-06 2010-06-22 Southwest Research Institute Method for producing diesel exhaust with particulate material for testing diesel engine aftertreatment devices
CA2454249A1 (en) * 2001-08-06 2003-02-20 Southwest Research Institute Method and apparatus for testing catalytic converter durability
US6983645B2 (en) * 2002-08-06 2006-01-10 Southwest Research Institute Method for accelerated aging of catalytic converters incorporating engine cold start simulation
US20040007056A1 (en) * 2001-08-06 2004-01-15 Webb Cynthia C. Method for testing catalytic converter durability
US7175422B2 (en) * 2001-08-06 2007-02-13 Southwest Research Institute Method for accelerated aging of catalytic converters incorporating injection of volatilized lubricant
US7412335B2 (en) * 2002-08-06 2008-08-12 Southwest Research Institute Component evaluations using non-engine based test system
US7212926B2 (en) * 2002-08-06 2007-05-01 Southwest Research Institute Testing using a non-engine based test system and exhaust product comprising alternative fuel exhaust
US7299137B2 (en) 2002-08-06 2007-11-20 Southwest Research Institute Method for drive cycle simulation using non-engine based test system
US6694727B1 (en) * 2002-09-03 2004-02-24 Arvin Technologies, Inc. Exhaust processor
DE10260899A1 (de) * 2002-12-20 2004-07-01 Deutz Ag Verfahren und Vorrichtung zur Anhebung oder Absenkung der Abgastemperatur bei Dieselmotoren
EP2426329B1 (de) * 2003-09-19 2013-05-01 Nissan Diesel Motor Co., Ltd. Abgasentgiftungsvorrichtung für Motor
JP2005127318A (ja) * 2003-09-19 2005-05-19 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
GB2408470B (en) * 2003-11-25 2007-06-13 Arvin Internat An internal combustion engine exhaust system
US7685811B2 (en) * 2004-01-13 2010-03-30 Emcon Technologies Llc Method and apparatus for controlling a fuel-fired burner of an emission abatement assembly
US20060283181A1 (en) * 2005-06-15 2006-12-21 Arvin Technologies, Inc. Swirl-stabilized burner for thermal management of exhaust system and associated method
US20050150215A1 (en) * 2004-01-13 2005-07-14 Taylor William Iii Method and apparatus for operating an airless fuel-fired burner of an emission abatement assembly
US8641411B2 (en) * 2004-01-13 2014-02-04 Faureua Emissions Control Technologies, USA, LLC Method and apparatus for directing exhaust gas through a fuel-fired burner of an emission abatement assembly
US7908847B2 (en) * 2004-01-13 2011-03-22 Emcon Technologies Llc Method and apparatus for starting up a fuel-fired burner of an emission abatement assembly
US7581389B2 (en) * 2004-01-13 2009-09-01 Emcon Technologies Llc Method and apparatus for monitoring ash accumulation in a particulate filter of an emission abatement assembly
US7628011B2 (en) * 2004-01-13 2009-12-08 Emcon Technologies Llc Emission abatement assembly and method of operating the same
US7025810B2 (en) * 2004-01-13 2006-04-11 Arvin Technologies, Inc. Method and apparatus for shutting down a fuel-fired burner of an emission abatement assembly
US20050150219A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for controlling the temperature of a fuel-fired burner of an emission abatement assembly
US20050150376A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for monitoring the components of a control unit of an emission abatement assembly
US7243489B2 (en) * 2004-01-13 2007-07-17 Arvin Technologies, Inc. Method and apparatus for monitoring engine performance as a function of soot accumulation in a filter
US20050150218A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for determining accumulation in a particulate filter of an emission abatement assembly
US20050150216A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for cleaning the electrodes of a fuel-fired burner of an emission abatement assembly
US7118613B2 (en) * 2004-01-13 2006-10-10 Arvin Technologies, Inc. Method and apparatus for cooling the components of a control unit of an emission abatement assembly
EP2383445B1 (de) * 2004-02-02 2012-12-19 Nissan Diesel Motor Co., Ltd. Abgasreinigungsvorrichtung für einen Motor
EP1712754A4 (de) 2004-02-02 2010-09-29 Nissan Diesel Motor Co Vorrichtung zur abgasreinigung eines verbrennungsmotors
US7297174B2 (en) * 2004-02-11 2007-11-20 Et Us Holdings, Llc Particulate filter assembly
DE102004008415A1 (de) * 2004-02-20 2005-09-01 Arvin Technologies, Inc., Troy Vorrichtung zum Reinigen von Fahrzeugabgasen, insbesondere Dieselrußfilter
DE102004013458A1 (de) * 2004-03-18 2005-10-20 Arvin Technologies Inc Vorrichtung zum Reinigen von Fahrzeugabgasen
DE102004016690A1 (de) * 2004-04-05 2005-10-27 Arvin Technologies, Inc., Troy Vorrichtung zum Reinigen von Fahrzeugabgasen, insbesondere Dieselrußfilter, und Fahrzeug mit entsprechender Vorrichtung
WO2006101987A2 (en) * 2005-03-17 2006-09-28 Southwest Research Institute Use of recirculated exhaust gas in a burner-based exhaust generation system for reduced fuel consumption and for cooling
WO2006101991A2 (en) 2005-03-17 2006-09-28 Southwest Research Institute Mass air flow compensation for burner-based exhaust gas generation system
US20060218902A1 (en) * 2005-03-31 2006-10-05 Solar Turbines Incorporated Burner assembly for particulate trap regeneration
US20060254260A1 (en) * 2005-05-16 2006-11-16 Arvinmeritor Emissions Technologies Gmbh Method and apparatus for piezoelectric injection of agent into exhaust gas for use with emission abatement device
US7246005B2 (en) * 2005-06-07 2007-07-17 Arvin Technologies, Inc. Method and apparatus for controlling a component by feed-forward closed-loop controller state modification
US7332142B2 (en) * 2005-06-17 2008-02-19 Emcon Tehnologies Germany (Augsburg) Gmbh Method and apparatus for bubble injection of agent into exhaust gas for use with emission abatement device
US7481048B2 (en) * 2005-06-30 2009-01-27 Caterpillar Inc. Regeneration assembly
US7406822B2 (en) * 2005-06-30 2008-08-05 Caterpillar Inc. Particulate trap regeneration system and control strategy
US20070039381A1 (en) * 2005-08-05 2007-02-22 Timmons Suzanne A Secondary Air Injector For Use With Exhaust Gas Simulation System
US20070158466A1 (en) * 2005-12-29 2007-07-12 Harmon Michael P Nozzle assembly
US20070228191A1 (en) * 2006-03-31 2007-10-04 Caterpillar Inc. Cooled nozzle assembly for urea/water injection
US20070235556A1 (en) * 2006-03-31 2007-10-11 Harmon Michael P Nozzle assembly
DE102006039882B3 (de) * 2006-08-25 2007-12-20 Siemens Ag Einspritzanlage für eine Brennkraftmaschine und Brennkraftmaschine
US8789363B2 (en) 2007-06-13 2014-07-29 Faurecia Emissions Control Technologies, Usa, Llc Emission abatement assembly having a mixing baffle and associated method
KR100925871B1 (ko) * 2008-08-07 2009-11-06 에이치케이엠엔에스(주) Dpf 시스템용 배기가스 및 화염 혼합장치
JP2010236780A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd 温熱器具及び制御プログラム
KR101533243B1 (ko) * 2009-05-28 2015-07-02 주식회사 에코닉스 배기가스 유해물질 저감장치용 버너 및 이를 포함하는 배기가스 유해물질 저감장치
KR101587217B1 (ko) * 2009-10-06 2016-01-20 주식회사 에코닉스 배기가스 유해물질 저감장치용 버너 및 이를 포함하는 배기가스 유해물질 저감장치
US8397557B2 (en) * 2009-10-21 2013-03-19 Emcon Technologies Llc Diagnostic method and apparatus for thermal regenerator after-treatment device
DE102009053379B4 (de) * 2009-11-14 2021-02-04 Volkswagen Ag Abgasanlage einer Brennkraftmaschine mit einem Brenner
DE102009059684A1 (de) * 2009-12-19 2011-06-22 J. Eberspächer GmbH & Co. KG, 73730 Abgasbehandlungseinrichtung
US9506385B2 (en) * 2010-07-15 2016-11-29 Faurecia Emissions Control Technologies, Usa, Llc Fuel fired burner for vehicle exhaust component
DE102010062755B4 (de) * 2010-12-09 2015-05-28 Bosch Emission Systems Gmbh & Co. Kg Abgasanlage
WO2013161898A1 (ja) * 2012-04-27 2013-10-31 日野自動車 株式会社 排気浄化装置用バーナー
EP2884174B1 (de) * 2012-08-07 2018-03-21 Hino Motors, Ltd. Brenner
WO2014024944A1 (ja) 2012-08-07 2014-02-13 日野自動車 株式会社 排気浄化装置用バーナー
EP2843306A4 (de) 2012-08-07 2015-12-02 Hino Motors Ltd Brenner für abgasreinigungsvorrichtungen
EP2884175A4 (de) * 2012-08-13 2015-10-21 Hino Motors Ltd Brenner
US9027332B2 (en) 2013-02-27 2015-05-12 Tenneco Automotive Operating Company Inc. Ion sensor with decoking heater
US8991163B2 (en) 2013-02-27 2015-03-31 Tenneco Automotive Operating Company Inc. Burner with air-assisted fuel nozzle and vaporizing ignition system
US9027331B2 (en) 2013-02-27 2015-05-12 Tenneco Automotive Operating Company Inc. Exhaust aftertreatment burner with preheated combustion air
US8959902B2 (en) * 2013-02-27 2015-02-24 Tenneco Automotive Operating Company Inc. Exhaust treatment burner and mixer system
US9352276B2 (en) 2013-05-07 2016-05-31 Tenneco Automotive Operating Company Inc. Exhaust mixing device
US9364790B2 (en) 2013-05-07 2016-06-14 Tenneco Automotive Operating Company Inc. Exhaust mixing assembly
US9291081B2 (en) 2013-05-07 2016-03-22 Tenneco Automotive Operating Company Inc. Axial flow atomization module
US9334781B2 (en) 2013-05-07 2016-05-10 Tenneco Automotive Operating Company Inc. Vertical ultrasonic decomposition pipe
US9314750B2 (en) 2013-05-07 2016-04-19 Tenneco Automotive Operating Company Inc. Axial flow atomization module
US9289724B2 (en) 2013-05-07 2016-03-22 Tenneco Automotive Operating Company Inc. Flow reversing exhaust gas mixer
JP6051144B2 (ja) * 2013-10-30 2016-12-27 株式会社クボタ エンジンの排気処理装置
CN104564245B (zh) * 2014-12-31 2017-03-01 杭州黄帝车辆净化器有限公司 柴油发动机dpf低温再生点火器专用点火燃烧腔总成
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
US10344646B2 (en) * 2018-08-21 2019-07-09 Tenneco Automotive Operating Company Inc. Exhaust gas burner assembly
EP4019748B1 (de) * 2020-12-23 2023-12-06 Marelli Europe S.p.A. Heizvorrichtung für ein auspuffsystem eines verbrennungsmotors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033123A (en) * 1973-08-17 1977-07-05 Nissan Motor Co., Ltd. Internal combustion engine exhaust gas after-burning system
JPS5762311A (en) * 1980-10-03 1982-04-15 Nippon Soken Inc Liquid fuel combustion apparatus
JPS5929718A (ja) * 1982-08-12 1984-02-17 Mitsubishi Motors Corp パテイキユレ−トフイルタの再生用バ−ナ
JPS5993913A (ja) * 1982-11-19 1984-05-30 Nissan Motor Co Ltd 内燃機関の排気微粒子処理装置
US4651524A (en) * 1984-12-24 1987-03-24 Arvin Industries, Inc. Exhaust processor
DE3729861C2 (de) * 1987-09-05 1995-06-22 Deutsche Forsch Luft Raumfahrt Verfahren zum Betreiben einer Rußfiltervorrichtung für einen Dieselmotor und Rußfiltervorrichtung zur Durchführung dieses Verfahrens
DE3732491A1 (de) * 1987-09-26 1989-04-13 Bosch Gmbh Robert Zuendbrenner fuer eine vorrichtung zum verbrennen von festkoerperpartikeln im abgas von brennkraftmaschinen

Also Published As

Publication number Publication date
EP0438682A3 (en) 1992-02-26
ES2031055T3 (es) 1994-10-16
ES2031055T1 (es) 1992-12-01
ATE108865T1 (de) 1994-08-15
DK0438682T3 (da) 1994-08-29
DE59006514D1 (de) 1994-08-25
EP0438682A2 (de) 1991-07-31
GR920300093T1 (en) 1993-02-17
US5140814A (en) 1992-08-25
DE4009201A1 (de) 1991-08-01
JPH04350315A (ja) 1992-12-04

Similar Documents

Publication Publication Date Title
EP0438682B1 (de) Abgassystem mit einem Partikelfilter und einem Regenerierungsbrenner
DE2947130C2 (de) Brennstoffinjektor für ein Gasturbinentriebwerk
DE3217674C2 (de) Brennkammer für eine Gasturbine
DE69306039T2 (de) Verbrennungsverfahren mit niedrigem NOx-Gehalt und Brennervorrichtung zur Durchführung des Verfahrens
DE3132074C2 (de) Vorrichtung zur Mischung des Turbinenabgasstroms mit dem Mantelstrom bzw. der Umgebungsluft eines Gasturbinentriebwerks
DE69531806T2 (de) Gasturbinenbrennkammer
DE2131490C2 (de) Brenner-Mischdüse
DE4025017C2 (de) Abgasleitung mit einem Partikelfilter und einem Regenerierungsbrenner
DE3029095C2 (de) Doppelbrennstoffinjektor für ein Gasturbinentriebwerk
DE2918416C2 (de) Vergasungsölbrenner
EP0175875B1 (de) Öl- oder Gasbrenner zur Heissgaserzeugung
EP0636836A2 (de) Brenner zum Verbrennen von staubförmigem Brennstoff
DE3007763A1 (de) Brenneinrichtung fuer gasturbinentriebwerke
DE2659089C3 (de) Brenner, insbesondere für flüssige Brennstoffe
DE4138433C2 (de) Brenner für Industrieöfen
DE4319213C2 (de) Brenner zur motorunabhängigen Aufheizung eines im Abgasstrang eines Fahrzeugmotors angeordneten Katalysators
DE69507971T2 (de) Brenner zur Verbrennung von Brennstoff
EP0686250B1 (de) Vorrichtung und verfahren zum verbrennen oxidierbarer bestandteile in einem zu reinigenden trägergas
DE3215641A1 (de) Ringbrenner fuer ein gasturbinentriebwerk
CH682009A5 (de)
DE19507088B4 (de) Vormischbrenner
EP0777082A2 (de) Vormischbrenner
EP0645583A1 (de) Gasbrenner
DE3541987C2 (de)
EP0706007B1 (de) Verfahren und Brenner zur Verbrennung von staubförmigem Brennstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

ITCL It: translation for ep claims filed

Representative=s name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

GBC Gb: translation of claims filed (gb section 78(7)/1977)
TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920403

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZEUNA-STAERKER GMBH & CO KG

17Q First examination report despatched

Effective date: 19930714

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 108865

Country of ref document: AT

Date of ref document: 19940815

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940725

REF Corresponds to:

Ref document number: 59006514

Country of ref document: DE

Date of ref document: 19940825

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2031055

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013619

EAL Se: european patent in force in sweden

Ref document number: 90123506.9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951017

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951120

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951219

Year of fee payment: 6

Ref country code: BE

Payment date: 19951219

Year of fee payment: 6

Ref country code: AT

Payment date: 19951219

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951220

Year of fee payment: 6

Ref country code: DK

Payment date: 19951220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19951221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951229

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960101

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961207

Ref country code: GB

Effective date: 19961207

Ref country code: DK

Effective date: 19961207

Ref country code: AT

Effective date: 19961207

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

Ref country code: BE

Effective date: 19961231

BERE Be: lapsed

Owner name: ZEUNA-STARKER G.M.B.H. & CO. K.G.

Effective date: 19961231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961207

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3013619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

EUG Se: european patent has lapsed

Ref document number: 90123506.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19980113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051207