EP0434556B1 - High intensity wet magnetic separator - Google Patents

High intensity wet magnetic separator Download PDF

Info

Publication number
EP0434556B1
EP0434556B1 EP90403669A EP90403669A EP0434556B1 EP 0434556 B1 EP0434556 B1 EP 0434556B1 EP 90403669 A EP90403669 A EP 90403669A EP 90403669 A EP90403669 A EP 90403669A EP 0434556 B1 EP0434556 B1 EP 0434556B1
Authority
EP
European Patent Office
Prior art keywords
magnets
chamber
product
pole pieces
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90403669A
Other languages
German (de)
French (fr)
Other versions
EP0434556A1 (en
Inventor
Gilbert Dauchez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F C B
Original Assignee
F C B
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F C B filed Critical F C B
Publication of EP0434556A1 publication Critical patent/EP0434556A1/en
Application granted granted Critical
Publication of EP0434556B1 publication Critical patent/EP0434556B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/032Matrix cleaning systems

Definitions

  • the present invention relates to high intensity magnetic separators working in the wet and consisting of at least one separation chamber traversed from top to bottom by the product to be treated, in the form of a liquid or pulp containing in suspension the particles to be separated, and magnets or coils creating in the chamber a magnetic field whose lines of force are perpendicular to the direction of flow of the product to be treated;
  • the separation chamber can contain a matrix formed of grooved plates, balls, expanded metal, iron wool, etc. through which the product to be treated circulates.
  • Separators of this type with discontinuous operation have a cyclical operation: in a first phase, the product to be treated is circulated in the separation chamber in the presence of the magnetic field; during this phase, the magnetic constituents of the product are fixed on the walls of the chamber and / or on the elements of the matrix, while the non-magnetic particles are entrained by the liquid phase of the product and collected in a first collector.
  • the second phase the supply of the product to be treated is cut off, the magnetic field is removed and the magnetic products are extracted from the separation chamber by washing with a pressurized liquid which is generally water.
  • a pressurized liquid which is generally water.
  • the object of the present invention is to allow the use of permanent magnets, in place of electromagnets, in high intensity magnetic separators working in wet conditions and, by this means, of reducing the weight, the size and the cost of these devices and reduce their energy consumption.
  • the magnetic separator object of the present invention comprises at least one separation chamber where the product to be treated flows from top to bottom and permanent magnets, possibly associated with pole pieces, and is characterized in that means are provided for producing a relative displacement of the magnets, respectively of the pole pieces, and of the separation between a first position where the magnets, respectively the pole pieces, are intimately applied against the walls of the separation chamber and a second position where the magnets, respectively the pole pieces, are distant from said walls and the magnetic field in said chamber is low enough that the magnetic particles can be removed from the chamber by a current of a washing liquid, said relative movement comprising a movement of the magnets, respectively of the pole pieces, transversely to said walls.
  • the magnets can be moved by means of jacks controlled by a programmable automaton, at the same time as valves placed on the supply and the evacuation of the separation chamber, to be applied on the walls of the chamber during the separation phase and be separated from them during the phase of evacuation of the magnetic constituents, the duration of each of the phases being predetermined or a function, for example, of the degree of clogging of the chamber.
  • the separation chamber can be constituted, in a conventional manner, by a tubular casing made of magnetic material, containing a matrix formed of grooved plates, balls, expanded metal, etc., and occupying the entire section of the chamber.
  • It can also be constituted by a section of tube made of an elastically deformable material, such as rubber or a plastic material, having in the normal state a circular or curved section and which is crushed between the magnets during the separation phase so to form a flat tube.
  • an elastically deformable material such as rubber or a plastic material
  • the magnets can be constituted by an assembly of elementary magnets whose direction of magnetization is perpendicular to the direction of flow of the product treated in the separation chamber. It is also possible to use a stack of magnets and flat pole pieces, the direction of magnetization of the magnets being in this case parallel to the direction of flow of the product to be treated.
  • the pole pieces located on either side of the separation chamber may be located in the same plane perpendicular to the direction of flow of the product to be treated and of the same polarity or opposite polarities, or vertically offset by half not.
  • the separator has only one separation chamber, its operation is necessarily discontinuous.
  • several identical elementary units will be combined, each unit being formed of a separation chamber, permanent magnets, possibly of pole pieces, and of means for removing the permanent magnets from the chamber and applying them to its walls, and being supplied cyclically with products to be treated and washing liquid, the various units being successively supplied so as to allow continuous operation.
  • the various units can be fixed and be connected, on the one hand, to a supply of products to be treated and to a collector of purified products and, on the other hand, to a source of a washing liquid and to a collector of magnetic constituents, through a set of valves whose opening and closing are programmed to ensure cyclic operation of the separation units.
  • the separation units can also be mobile and movable between a separation zone, which is equipped with means for supplying products to be treated, and for collecting purified products, and a washing zone provided with means for distributing a liquid. washing and collecting magnetic components.
  • a separation zone which is equipped with means for supplying products to be treated, and for collecting purified products
  • a washing zone provided with means for distributing a liquid. washing and collecting magnetic components.
  • the movement can be alternative.
  • the separation units will be linked to each other to form an endless ring or chain and will be moved step by step, always in the same direction. We can obviously provide, several separation and washing zones, along the ring or the endless chain.
  • the longitudinal movement of the units will be accompanied by a transverse displacement of the magnets when the units pass from one zone to another.
  • each unit could comprise two or more chambers which would be brought successively between the magnets, in a separation zone comprising, moreover, means for supplying the product to be treated and for collecting the purified product, then distant from this zone. and brought to a washing area equipped with means for dispensing a washing liquid and for collecting magnetic components, the magnets normally applied to the walls of the chamber being in the separation zone, being periodically spaced apart to allow the chambers to be moved.
  • the magnets and / or the pole pieces located on either side of the separation chamber being of opposite polarities, the means used to separate them from the separation chamber must overcome the force of magnetic attraction. Part of the energy involved can be recovered during the movement of magnets or pole pieces, especially when using several units operating sequentially.
  • the separation unit shown in Figures 1 and 2 consists essentially of a separation chamber 10 placed between two permanent magnets 12 of opposite polarities. Each magnet is integral with an L-section armature 14, the two armatures forming a closed magnetic circuit with the magnets and the chamber 10, when the magnets are applied to the opposite walls of the chamber 10, as shown in the figure. 2 a.
  • the separation chamber consists of an envelope made of a non-magnetic material, of rectangular section and open at its two ends. It is filled with vertical grooved plates or other elements, such as bars, steel wool, etc ... made of soft magnetic material which create in the gap magnetic field gradients allowing the magnetic particles of the product to be treated to fix on said elements.
  • the chamber 10 is connected to a pipe for supplying the product to be treated 16, through a solenoid valve 18, and to a pipe for pressurized water 20, through a solenoid valve 22.
  • a collector 24 is placed under the chamber 10 and connected to two conduits 26 and 28, through solenoid valves 30 and 32, respectively, which make it possible to direct the products collected in two different directions.
  • Cylinders 34 make it possible to move the magnets and the armatures perpendicular to the large faces of the chamber 10 and to maintain the magnets applied to the latter (FIG. 2 a) or separated from them (FIG. 2 b).
  • This separation unit operates as follows: in a first phase, the magnets 12 are applied to the large faces of the chamber 10 (FIG. 2a), the valves 18 and 30 are open and the valves 22 and 32 are closed.
  • the product to be treated in the form of pulp, circulates from top to bottom in the chamber 10, between the vertical plates.
  • the magnetic particles are subjected to attractive forces which deflect them towards the plates and hold them there.
  • the purified product is collected in the collector 24 and evacuated through the conduit 26.
  • the magnets are moved away from the chamber (FIG. 2 b), the valves 18 and 30 are closed and the valves 22 and 32 are open.
  • the magnetic particles which are no longer subjected to the action of the magnetic field are then entrained by the pressurized water circulating in the chamber 10 and discharged through the conduit 28.
  • the duration of the first phase can be predetermined, in particular if the content of the product to be treated in particles magnetic varies little over time.
  • the transition from the first to the second phase can be done when the degree of clogging of the chamber, evaluated for example from a measurement of the flow rate or of the pressure drop, reaches a predetermined value.
  • the magnets must be separated by a sufficient distance so that the magnetic field in the chamber 10 is practically zero, the lines of force of the magnetic field of each magnet then closing in on themselves through the air gap formed between the magnet and chamber 10 and the associated armature.
  • the magnets 12 are constituted by an assembly by bonding of elementary magnets with samarium-cobalt or with neodymium-iron-boron, the direction of magnetization being perpendicular to the large faces of the chamber 10.
  • each magnet 12-armature assembly 14 could be replaced by a stack of magnets 40 and pole pieces 42, as shown in FIG. 4, the direction of magnetization of the magnets being parallel to the direction of flow of the product to be treated in the chamber 10 (arrow F ).
  • Figures 3 a and b show another embodiment of the separation chamber.
  • This is here constituted by an elastically deformable tube 110, made of rubber or plastic, which normally has a circular section (FIG. 3 b) and takes a flattened shape. when it is compressed between the magnets 12 ( Figure 3 a).
  • the tube will be filled with a material, such as steel wool, which can be compressed elastically without great effort so as not to hinder the deformation of the tube and its return to the original shape.
  • Wires of soft magnetic material arranged longitudinally or braided to form a tubular sheath could be embedded in the thickness of the wall of the tube to create magnetic field gradients on the inside of the tube.
  • Figure 3a corresponds to the separation phase, the magnets being brought together and crushing the tube 110; in the washing phase ( Figure 3b) the magnets are spaced from each other, and the tube has resumed its circular shape.
  • FIG. 5 The diagram of such an installation is shown in FIG. 5.
  • the supply lines for the product to be treated 16 and for pressurized water 20 are connected to the chambers 10 ′ and 10 ′ ′ through solenoid valves 18 ′ and 18 ′ ′ and 22 ′ and 22 ′ ′, respectively.
  • Collectors 24 ′ and 24 ′ ′ placed under the chambers 10 ′ and 10 ′ ′ make it possible to direct the products leaving the chambers towards an outlet for purified product or an outlet for magnetic product, depending on the position of a schematic selector by a pivoting flap 50 ′, 50 ′ ′.
  • valves 18 ′, 18 ′ ′, 22 ′ and 22 ′ ′, the selectors 50 ′ and 50 ′ ′ as well as the jacks, not shown, moving the magnets 12 ′, 12 ′ ′ are controlled by a programmable controller or a microphone -computer according to a pre-established and modifiable program so that at any time, at least one of the units is in the separation phase.
  • the number of units to be used in an installation will depend on the flow of product to be treated.
  • the use of standard units reduces costs and facilitates maintenance, as a faulty unit can be quickly replaced by a spare unit.
  • An intermediate rinsing phase with maintenance of the magnetic field may be provided to remove the grains of non-magnetic constituents retained by magnetic flocculation.

Abstract

The separator comprises at least one separator unit constituted by a chamber where the product to be treated flows from the top downwards and means for creating a magnetic field perpendicular to the flow direction of the product to be treated. <??>In order to reduce the weight, the size and the cost of the separator and to reduce its energy consumption, permanent magnets (12), optionally associated with pole pieces (14), are used for creating the magnetic field and means (34) are provided for moving the said magnets, and optionally the pole pieces, between a first position where the magnets or the pole pieces are intimately applied against the walls of the said chamber (10) and a second position such that the magnetic field in the chamber (10) is sufficiently low in order that the magnetic particles can be removed from the chamber by a stream of washing liquid. <IMAGE>

Description

La présente invention a trait aux séparateurs magnétiques à haute intensité travaillant en humide et constitués par au moins une chambre de séparation traversée de haut en bas par le produit à traiter, sous forme de liquide ou de pulpe contenant en suspension les particules à séparer, et des aimants ou des bobinages créant dans la chambre un champ magnétique dont les lignes de force sont perpendiculaires à la direction d'écoulement du produit à traiter; la chambre de séparation peut contenir une matrice formée de plaques rainurées, de billes, de métal expansé, de laine de fer, etc à travers laquelle circule le produit à traiter.The present invention relates to high intensity magnetic separators working in the wet and consisting of at least one separation chamber traversed from top to bottom by the product to be treated, in the form of a liquid or pulp containing in suspension the particles to be separated, and magnets or coils creating in the chamber a magnetic field whose lines of force are perpendicular to the direction of flow of the product to be treated; the separation chamber can contain a matrix formed of grooved plates, balls, expanded metal, iron wool, etc. through which the product to be treated circulates.

Les séparateurs de ce type à fonctionnement discontinu ont une marche cyclique : dans une première phase, on fait circuler le produit à traiter dans la chambre de séparation en présence du champ magnétique; au cours de cette phase, les constituants magnétiques du produit se fixent sur les parois de la chambre et/ou sur les éléments de la matrice, tandis que les particules non magnétiques sont entraînés par la phase liquide du produit et recueillis dans un premier collecteur. Dans la seconde phase, on coupe l'alimentation du produit à traiter, on supprime le champ magnétique et on extrait les produits magnétiques de la chambre de séparation par lavage au moyen d'un liquide sous-pression qui est généralement de l'eau. Sur ces appareils, on utilise généralement des bobinages, pour produire le champ magnétique, afin qu'il soit possible d'annuler ce dernier pendant la phase de lavage. On a toutefois proposé d'utiliser des aimants permanents sur des filtres de ce type destinés à épurer des liquides peu chargés en particules magnétiques et ne nécessitant pas des nettoyages fréquents. Sur ces filtres, la chambre de séparation est constituée par une cassette qui peut être remplacée, lorsqu'elle est colmatée, par une cassette propre éventuellement après démontage des aimants. Ce type de filtre n'est pas adapté au traitement des produits chargés en particules magnétiques.Separators of this type with discontinuous operation have a cyclical operation: in a first phase, the product to be treated is circulated in the separation chamber in the presence of the magnetic field; during this phase, the magnetic constituents of the product are fixed on the walls of the chamber and / or on the elements of the matrix, while the non-magnetic particles are entrained by the liquid phase of the product and collected in a first collector. In the second phase, the supply of the product to be treated is cut off, the magnetic field is removed and the magnetic products are extracted from the separation chamber by washing with a pressurized liquid which is generally water. On these devices, we use generally coils, to produce the magnetic field, so that it is possible to cancel the latter during the washing phase. However, it has been proposed to use permanent magnets on filters of this type intended to purify liquids sparingly loaded with magnetic particles and which do not require frequent cleaning. On these filters, the separation chamber is constituted by a cassette which can be replaced, when it is clogged, by a clean cassette possibly after dismantling the magnets. This type of filter is not suitable for the treatment of products loaded with magnetic particles.

Dans les séparateurs à marche continue, plusieurs chambres de séparation sont groupées pour former un anneau ou une chaîne sans fin et sont déplacées en continu par rapport aux pièces polaires, qui sont fixes, perpendiculairement aux lignes de force magnétiques. Au cours de leur déplacement, les chambres passant successivement dans une zone de séparation, une zone de rinçage et une zone d'évacuation des constituants magnétiques. L'alimentation des chambres est effectuée dans la zone de séparation, pratiquement sur toute sa longueur. A la sortie de cette zone, là où le champ magnétique est encore intense, on fait circuler dans les chambres un liquide de rinçage pour éliminer les grains de constituants non magnétiques retenus par floculation magnétique. Dans la zone d'évacuation qui fait suite à la zone de rinçage et où la champ magnétique est, pratiquement nul, les produits magnétiques sont extraits des chambres par lavage à l'eau sous pression. Ces appareils sont lourds, encombrants et coûteux et comme le champ magnétique est produit par des électro-aimants, leur consommation d'énergie électrique est importante.In continuous-running separators, several separation chambers are grouped to form an endless ring or chain and are moved continuously relative to the pole pieces, which are fixed, perpendicular to the magnetic lines of force. During their movement, the chambers pass successively through a separation zone, a rinsing zone and an evacuation zone of the magnetic constituents. The supply of the chambers is carried out in the separation zone, practically over its entire length. At the exit of this zone, where the magnetic field is still intense, a rinsing liquid is circulated in the chambers to remove the grains of non-magnetic constituents retained by magnetic flocculation. In the evacuation zone which follows the rinsing zone and where the magnetic field is, practically none, the magnetic products are extracted from the chambers by washing with water under pressure. These devices are heavy, bulky and expensive and since the magnetic field is produced by electromagnets, their consumption of electrical energy is high.

On a proposé, dans la littérature, de remplacer les électro-aimants par des aimants permanents sur ce dernier type d'appareils, mais ces propositions n'ont reçu aucune application pratique, car l'intensité du champ magnétique que l'on peut produire avec des aimants permanents étant limitée, l'existence du jeu qu'il est nécessaire de prévoir entre les parois des chambres de séparation et les aimants ou les pièces polaires pour permettre leurs déplacements relatifs n'aurait pas permis de réaliser les performances recherchées pour ce type d'appareils.It has been proposed in the literature to replace electromagnets with permanent magnets on the latter type of device, but these proposals have received no practical application, since the intensity of the magnetic field that can be produced with permanent magnets being limited, the existence of the clearance which it is necessary to provide between the walls of the separation chambers and the magnets or the pole pieces to allow their relative displacements would not have made it possible to achieve the performances sought for this type of devices.

Le filtre décrit dans le document EP-A-0341824 qui divulgue le préambule de la revendication 1 présente le même inconvénient : le jeu qui est prévu entre les aimants et les faces de l'élément filtrant, pour permettre le déplacement des aimants parallèlement auxdites faces, limite les performances du filtre et le rend inapte aux applications classiques des séparateurs magnétiques à haute intensité.The filter described in document EP-A-0341824 which discloses the preamble of claim 1 has the same drawback: the clearance which is provided between the magnets and the faces of the filter element, to allow the magnets to move parallel to said faces , limits the performance of the filter and makes it unsuitable for conventional applications of high intensity magnetic separators.

Le but de la présente invention est de permettre l'utilisation d'aimants permanents, à la place des électro-aimants, dans les séparateurs magnétiques à haute intensité travaillant en humide et, par ce moyen, de diminuer le poids, l'encombrement et le coût de ces appareils et de réduire leur consommation énergétique.The object of the present invention is to allow the use of permanent magnets, in place of electromagnets, in high intensity magnetic separators working in wet conditions and, by this means, of reducing the weight, the size and the cost of these devices and reduce their energy consumption.

Le séparateur magnétique objet de la présente invention comporte au moins une chambre de séparation où le produit à traiter circule du haut vers le bas et des aimants permanents, éventuellement associés à des pièces polaires, et est caractérisé en ce que des moyens sont prévus pour réaliser un déplacement relatif des aimants, respectivement des pièces polaires, et de la chambre de séparation entre une première position où les aimants, respectivement les pièces polaires, sont intimement appliqués contre les parois de la chambre de séparation et une seconde position où les aimants, respectivement les pièces polaires, sont éloignés desdites parois et le champ magnétique dans ladite chambre est suffisamment faible pour que les particules magnétiques puissent être évacués de la chambre par un courant d'un liquide de lavage, ledit déplacement relatif comportant un mouvement des aimants, respectivement des pièces polaires, transversalement auxdites parois.The magnetic separator object of the present invention comprises at least one separation chamber where the product to be treated flows from top to bottom and permanent magnets, possibly associated with pole pieces, and is characterized in that means are provided for producing a relative displacement of the magnets, respectively of the pole pieces, and of the separation between a first position where the magnets, respectively the pole pieces, are intimately applied against the walls of the separation chamber and a second position where the magnets, respectively the pole pieces, are distant from said walls and the magnetic field in said chamber is low enough that the magnetic particles can be removed from the chamber by a current of a washing liquid, said relative movement comprising a movement of the magnets, respectively of the pole pieces, transversely to said walls.

Les aimants, respectivement les pièces polaires, peuvent être déplacés au moyen de vérins commandés par un automate programmable, en même temps que des vannes placées sur l'alimentation et l'évacuation de la chambre de séparation, pour être appliqués sur les parois de la chambre pendant la phase de séparation et être écartés de celles-ci pendant la phase d'évacuation des constituants magnétiques, la durée de chacune des phases étant prédéterminée ou fonction, par exemple, du degré de colmatage de la chambre.The magnets, respectively the pole pieces, can be moved by means of jacks controlled by a programmable automaton, at the same time as valves placed on the supply and the evacuation of the separation chamber, to be applied on the walls of the chamber during the separation phase and be separated from them during the phase of evacuation of the magnetic constituents, the duration of each of the phases being predetermined or a function, for example, of the degree of clogging of the chamber.

La chambre de séparation peut être constituée, de façon classique, par un boitier tubulaire en matériau magnétique, contenant une matrice formée de plaques rainurées, de billes, de métal expansé, etc... et occupant toute la section de la chambre.The separation chamber can be constituted, in a conventional manner, by a tubular casing made of magnetic material, containing a matrix formed of grooved plates, balls, expanded metal, etc., and occupying the entire section of the chamber.

Elle peut aussi être constituée par un tronçon de tube en un matériau élastiquement déformable, tel que du caoutchouc ou une matière plastique, ayant à l'état normal une section circulaire ou bombée et qui est écrasé entre les aimants pendant la phase de séparation de façon à former un tube plat.It can also be constituted by a section of tube made of an elastically deformable material, such as rubber or a plastic material, having in the normal state a circular or curved section and which is crushed between the magnets during the separation phase so to form a flat tube.

Les aimants peuvent être constitués par un assemblage d'aimants élémentaires dont la direction d'aimantation est perpendiculaire à la direction d'écoulement du produit traité dans la chambre de séparation. On pourra aussi utiliser un empilage d'aimants et de pièces polaires plates, la direction d'aimantation des aimants étant dans ce cas parallèle à la direction d'écoulement du produit à traiter. Les pièces polaires situées de part et d'autre de la chambre de séparation pourront être situées dans un même plan perpendiculaire à la direction d'écoulement du produit à traiter et de même polarité ou de polarités opposées, ou décalées verticalement d'un demi-pas.The magnets can be constituted by an assembly of elementary magnets whose direction of magnetization is perpendicular to the direction of flow of the product treated in the separation chamber. It is also possible to use a stack of magnets and flat pole pieces, the direction of magnetization of the magnets being in this case parallel to the direction of flow of the product to be treated. The pole pieces located on either side of the separation chamber may be located in the same plane perpendicular to the direction of flow of the product to be treated and of the same polarity or opposite polarities, or vertically offset by half not.

Dans la cas où le séparateur ne comporte qu'une seule chambre de séparation, son fonctionnement est nécessairement discontinu. Pour une marche en continu, on associera plusieurs unités élémentaires identiques, chaque unité étant formée d'une chambre de séparation, d'aimants permanents, éventuellement de pièces polaires, et de moyens pour écarter les aimants permanents de la chambre et les appliquer sur ses parois, et étant alimentée cycliquement en produits à traiter et en liquide de lavage, les différentes unités étant alimentées successivement de façon à permettre un fonctionnement continu.In the case where the separator has only one separation chamber, its operation is necessarily discontinuous. For continuous operation, several identical elementary units will be combined, each unit being formed of a separation chamber, permanent magnets, possibly of pole pieces, and of means for removing the permanent magnets from the chamber and applying them to its walls, and being supplied cyclically with products to be treated and washing liquid, the various units being successively supplied so as to allow continuous operation.

Les différentes unités peuvent être fixes et être reliées, d'une part, à une alimentation en produits à traiter et à un collecteur de produits épurés et, d'autre part, à une source d'un liquide de lavage et à un collecteur des constituants magnétiques, à travers un jeu de vannes dont l'ouverture et la fermeture sont programmées pour assurer un fonctionnement cyclique des unités de séparation.The various units can be fixed and be connected, on the one hand, to a supply of products to be treated and to a collector of purified products and, on the other hand, to a source of a washing liquid and to a collector of magnetic constituents, through a set of valves whose opening and closing are programmed to ensure cyclic operation of the separation units.

Les unités de séparation peuvent aussi être mobiles et déplaçables entre une zone de séparation, qui est équipée de moyens d'alimentation en produits à traiter, et de collecte des produits épurés, et une zone de lavage munie de moyens de distribution d'un liquide de lavage et de collecte des constituants magnétiques. Dans le cas d'un appareil ne comportant que deux unités, le mouvement peut être alternatif. Dans le cas général, les unités de séparation seront liées les unes aux autres pour former un anneau ou une chaîne sans fin et seront déplacées pas-à-pas, toujours dans le même sens. On pourra évidemment prévoir, plusieurs zones de séparation et de lavage, le long de l'anneau ou de la chaîne sans fin. Conformément à l'invention, le mouvement longitudinal des unités s'accompagnera d'un déplacement transversal des aimants lorsque les unités passeront d'une zone à l'autre.The separation units can also be mobile and movable between a separation zone, which is equipped with means for supplying products to be treated, and for collecting purified products, and a washing zone provided with means for distributing a liquid. washing and collecting magnetic components. In the case of a device comprising only two units, the movement can be alternative. In the general case, the separation units will be linked to each other to form an endless ring or chain and will be moved step by step, always in the same direction. We can obviously provide, several separation and washing zones, along the ring or the endless chain. According to the invention, the longitudinal movement of the units will be accompanied by a transverse displacement of the magnets when the units pass from one zone to another.

En variante, chaque unité pourrait comporter deux chambres ou plus qui seraient amenées successivement entre les aimants, dans une zone de séparation comportant, en outre, des moyens d'alimentation en produit à traiter et de collecte du produit épuré, puis éloignées de cette zone et amenées dans une zone de lavage équipée de moyens de distribution d'un liquide de lavage et de collecte des constituants magnétiques, les aimants normalement appliqués sur les parois de la chambre se trouvant dans la zone de séparation en étant écartés périodiquement pour permettre le déplacement des chambres.As a variant, each unit could comprise two or more chambers which would be brought successively between the magnets, in a separation zone comprising, moreover, means for supplying the product to be treated and for collecting the purified product, then distant from this zone. and brought to a washing area equipped with means for dispensing a washing liquid and for collecting magnetic components, the magnets normally applied to the walls of the chamber being in the separation zone, being periodically spaced apart to allow the chambers to be moved.

Les aimants et/ou les pièces polaires situés de part et d'autre de la chambre de séparation étant de polarités opposées, les moyens utilisés pour les écarter de la chambre de séparation devront vaincre la force d'attraction magnétique. Une partie de l' énergie mise en jeu pourra être récupérée lors du mouvement de rapprochement des aimants ou pièces polaires, notamment lorsqu'on utilise plusieurs unités fonctionnant séquentiellement.The magnets and / or the pole pieces located on either side of the separation chamber being of opposite polarities, the means used to separate them from the separation chamber must overcome the force of magnetic attraction. Part of the energy involved can be recovered during the movement of magnets or pole pieces, especially when using several units operating sequentially.

D'autres caractéristiques de l'invention apparaîtront à la lecture de la description qui suit et se réfère aux dessins l'accompagnant qui montrent, à titre d'exemple non-limitatif, quelques formes de réalisation de l'invention et sur lesquels

  • La figure 1 est une vue en coupe verticale d'une unité de séparation conforme à l'invention, représentée schématiquement;
  • Les figures 2 a et b sont des vues de dessus de l'unité de la figure 1 pendant les phases de séparation et de lavage respectivement;
  • Les figures 3 a et b sont des vues de dessus, analogues aux figures 2 a et b, d'une autre unité de séparation conforme à l'invention, comportant une chambre de séparation de conception différente;
  • La figure 4 montre une possibilité de réalisation du circuit magnétique d'une unité de séparation; et
  • La figure 5 montre une possibilité d'association de deux unités de séparation pour assurer un fonctionnement continu.
Other characteristics of the invention will appear on reading the description which follows and refers to the accompanying drawings which show, by way of non-limiting example, some embodiments of the invention and in which
  • Figure 1 is a vertical sectional view of a separation unit according to the invention, shown schematically;
  • Figures 2 a and b are top views of the unit of Figure 1 during the separation and washing phases respectively;
  • Figures 3 a and b are top views, similar to Figures 2 a and b, of another separation unit according to the invention, comprising a separation chamber of different design;
  • Figure 4 shows a possible embodiment of the magnetic circuit of a separation unit; and
  • Figure 5 shows a possibility of combining two separation units to ensure continuous operation.

L'unité de séparation représentée sur les figures 1 et 2 est constituée essentiellement par une chambre de séparation 10 placée entre deux aimants permanents 12 de polarités opposées. Chaque aimant est solidaire d'une armature à section en L 14, les deux armatures formant un circuit magnétique fermé avec les aimants et la chambre 10, lorsque les aimants sont appliqués sur les parois opposées de la la chambre 10, comme représenté sur la figure 2 a.The separation unit shown in Figures 1 and 2 consists essentially of a separation chamber 10 placed between two permanent magnets 12 of opposite polarities. Each magnet is integral with an L-section armature 14, the two armatures forming a closed magnetic circuit with the magnets and the chamber 10, when the magnets are applied to the opposite walls of the chamber 10, as shown in the figure. 2 a.

La chambre de séparation est constituée par une enveloppe en un matériau amagnétique, à section rectangulaire et ouverte à ses deux extrémités. Elle est remplie de plaques verticales rainurées ou d'autres éléments, tels que barres, paille de fer, etc ...en matériau magnétique doux qui créent dans l'entrefer des gradients de champ magnétique permettant aux particules magnétiques du produit à traiter de se fixer sur lesdits éléments.The separation chamber consists of an envelope made of a non-magnetic material, of rectangular section and open at its two ends. It is filled with vertical grooved plates or other elements, such as bars, steel wool, etc ... made of soft magnetic material which create in the gap magnetic field gradients allowing the magnetic particles of the product to be treated to fix on said elements.

A son extrémité supérieure, la chambre 10 est raccordée à une conduite d'alimentation en produit à traiter 16, à travers une électro-vanne 18, et à une conduite d'eau sous-pression 20, à travers une électro-vanne 22. Un collecteur 24 est placé sous la chambre 10 et relié à deux conduits 26 et 28, à travers des électro-vannes 30 et 32, respectivement, qui permettent de diriger les produits collectés dans deux directions différentes.At its upper end, the chamber 10 is connected to a pipe for supplying the product to be treated 16, through a solenoid valve 18, and to a pipe for pressurized water 20, through a solenoid valve 22. A collector 24 is placed under the chamber 10 and connected to two conduits 26 and 28, through solenoid valves 30 and 32, respectively, which make it possible to direct the products collected in two different directions.

Des vérins 34 permettent de déplacer les aimants et les armatures perpendiculairement aux grandes faces de la chambre 10 et de maintenir les aimants appliqués sur ces dernières (figure 2 a) ou écartées de celles-ci (figure 2 b).Cylinders 34 make it possible to move the magnets and the armatures perpendicular to the large faces of the chamber 10 and to maintain the magnets applied to the latter (FIG. 2 a) or separated from them (FIG. 2 b).

Cette unité de séparation fonctionne de la manière suivante : dans une première phase, les aimants 12 sont appliqués sur les grandes faces de la chambre 10 (figure 2a), les vannes 18 et 30 sont ouvertes et les vannes 22 et 32 sont fermées. Le produit à traiter, sous forme de pulpe, circule de haut en bas dans la chambre 10, entre les plaques verticales. Les particules magnétiques sont soumises à des forces d'attraction qui les dévient vers les plaques et les maintiennent sur celles-ci. Le produit épuré est recueilli dans le collecteur 24 et évacué par le conduit 26. Dans une seconde phase, les aimants sont écartés de la chambre (figure 2 b), les vannes 18 et 30 sont fermées et les vannes 22 et 32 sont ouvertes. Les particules magnétiques qui ne sont plus soumises à l'action du champ magnétique sont alors entraînées par l'eau sous pression circulant dans la chambre 10 et évacuées par le conduit 28.This separation unit operates as follows: in a first phase, the magnets 12 are applied to the large faces of the chamber 10 (FIG. 2a), the valves 18 and 30 are open and the valves 22 and 32 are closed. The product to be treated, in the form of pulp, circulates from top to bottom in the chamber 10, between the vertical plates. The magnetic particles are subjected to attractive forces which deflect them towards the plates and hold them there. The purified product is collected in the collector 24 and evacuated through the conduit 26. In a second phase, the magnets are moved away from the chamber (FIG. 2 b), the valves 18 and 30 are closed and the valves 22 and 32 are open. The magnetic particles which are no longer subjected to the action of the magnetic field are then entrained by the pressurized water circulating in the chamber 10 and discharged through the conduit 28.

La durée de la première phase peut être prédéterminée, notamment si la teneur du produit à traiter en particules magnétiques varie peu dans le temps. En variante, le passage de la première à la seconde phase peut se faire lorsque le degré de colmatage de la chambre, évalué par exemple à partir d'une mesure du débit ou de la perte de charge, atteint une valeur prédéterminée.The duration of the first phase can be predetermined, in particular if the content of the product to be treated in particles magnetic varies little over time. Alternatively, the transition from the first to the second phase can be done when the degree of clogging of the chamber, evaluated for example from a measurement of the flow rate or of the pressure drop, reaches a predetermined value.

Les aimants doivent être écartés d'une distance suffisante pour que le champ magnétique dans la chambre 10 soit pratiquement nul, les lignes de force du champ magnétique de chaque aimant se refermant alors sur elles-même à travers l'entrefer ménagé entre l'aimant et la chambre 10 et l'armature associée.The magnets must be separated by a sufficient distance so that the magnetic field in the chamber 10 is practically zero, the lines of force of the magnetic field of each magnet then closing in on themselves through the air gap formed between the magnet and chamber 10 and the associated armature.

Les aimants 12 sont constitués par un assemblage par collage d'aimants élémentaires au samarium-cobalt ou au neodyme-fer-bore, la direction d'aimantation étant perpendiculaire aux grandes faces de la chambre 10. En variante, chaque ensemble aimant 12-armature 14 pourrait être remplacé par un empilage d'aimants 40 et de pièces polaires 42, comme représenté sur la figure 4, la direction d'aimantation des aimants étant paralléle à la direction d'écoulement du produit à traiter dans la chambre 10 (flèche F).The magnets 12 are constituted by an assembly by bonding of elementary magnets with samarium-cobalt or with neodymium-iron-boron, the direction of magnetization being perpendicular to the large faces of the chamber 10. As a variant, each magnet 12-armature assembly 14 could be replaced by a stack of magnets 40 and pole pieces 42, as shown in FIG. 4, the direction of magnetization of the magnets being parallel to the direction of flow of the product to be treated in the chamber 10 (arrow F ).

Les figures 3 a et b montrent une autre forme de réalisation de la chambre de séparation. Celle-ci est ici constituée par un tube 110 élastiquement déformable, en caoutchouc ou matière plastique, qui a normalement une section circulaire (figure 3 b) et prend une forme aplatie lorsqu'il est comprimé entre les aimants 12 (figure 3 a). De préférence, le tube sera rempli d'un matériau, tel que de la paille de fer, pouvant être comprimé élastiquement sans gros effort pour ne pas gêner la déformation du tube et son retour à la forme originale. Des fils en matériau magnétique doux disposés longitudinalement ou tressés pour former une gaine tubulaire pourraient être noyés dans l'épaisseur de la paroi du tube pour créer des gradients de champ magnétique sur la face intérieure du tube. La figure 3 a correspond à la phase de séparation, les aimants étant rapprochés et écrasant le tube 110; dans la phase de lavage (figure 3b) les aimants sont écartés l'un de l'autre, et le tube a repris sa forme circulaire.Figures 3 a and b show another embodiment of the separation chamber. This is here constituted by an elastically deformable tube 110, made of rubber or plastic, which normally has a circular section (FIG. 3 b) and takes a flattened shape. when it is compressed between the magnets 12 (Figure 3 a). Preferably, the tube will be filled with a material, such as steel wool, which can be compressed elastically without great effort so as not to hinder the deformation of the tube and its return to the original shape. Wires of soft magnetic material arranged longitudinally or braided to form a tubular sheath could be embedded in the thickness of the wall of the tube to create magnetic field gradients on the inside of the tube. Figure 3a corresponds to the separation phase, the magnets being brought together and crushing the tube 110; in the washing phase (Figure 3b) the magnets are spaced from each other, and the tube has resumed its circular shape.

Pour pouvoir traiter un produit en continu, il est nécessaire d'associer plusieurs unités de séparation. Dans le cas général où la phase de lavage est plus courte que la phase de séparation, il suffit de deux unités pour assurer un fonctionnement en continu. Le schéma d'une telle installation est représenté sur la figure 5. Les conduites d'alimentation en produit à traiter 16 et en eau sous-pression 20 sont reliées aux chambres 10′ et 10′′ à travers des électro-vannes 18′ et 18′′ et 22′ et 22′′, respectivement. Des collecteurs 24′ et 24′′ placés sous les chambres 10′ et 10′′ permettent de diriger les produits sortant des chambres vers une sortie de produit épuré ou une sortie de produit magnétique, suivant la position d'un sélecteur schématisé par un volet pivotant 50′, 50′′. Les vannes 18′, 18′′, 22′ et 22′′, les sélecteurs 50′ et 50′′ ainsi que les vérins, non représentés, déplaçant les aimants 12′, 12′′ sont commandés par un automate programmable ou un micro-ordinateur suivant un programme préétabli et modifiable de telle sorte qu'à tout instant, au moins une des unités soit en phase de séparation.To be able to process a product continuously, it is necessary to combine several separation units. In the general case where the washing phase is shorter than the separation phase, two units are sufficient to ensure continuous operation. The diagram of such an installation is shown in FIG. 5. The supply lines for the product to be treated 16 and for pressurized water 20 are connected to the chambers 10 ′ and 10 ′ ′ through solenoid valves 18 ′ and 18 ′ ′ and 22 ′ and 22 ′ ′, respectively. Collectors 24 ′ and 24 ′ ′ placed under the chambers 10 ′ and 10 ′ ′ make it possible to direct the products leaving the chambers towards an outlet for purified product or an outlet for magnetic product, depending on the position of a schematic selector by a pivoting flap 50 ′, 50 ′ ′. The valves 18 ′, 18 ′ ′, 22 ′ and 22 ′ ′, the selectors 50 ′ and 50 ′ ′ as well as the jacks, not shown, moving the magnets 12 ′, 12 ′ ′ are controlled by a programmable controller or a microphone -computer according to a pre-established and modifiable program so that at any time, at least one of the units is in the separation phase.

Le nombre d'unités à utiliser dans une installation dépendra du débit de produit à traiter. L'utilisation d'unités standard permet de réduire les coûts et facilite l'entretien, une unité défaillante pouvant être rapidement remplacée par une unité de rechange.The number of units to be used in an installation will depend on the flow of product to be treated. The use of standard units reduces costs and facilitates maintenance, as a faulty unit can be quickly replaced by a spare unit.

Une phase intermédiaire de rinçage avec maintien du champ magnétique, pourra être prévue pour éliminer les grains de constituants non magnétiques retenus par floculation magnétique.An intermediate rinsing phase with maintenance of the magnetic field may be provided to remove the grains of non-magnetic constituents retained by magnetic flocculation.

Il est bien entendu que toutes les modifications qui peuvent être apportées aux formes de réalisation décrites par la substitution de moyens techniques équivalents et notamment les variantes exposées dans le préambule de la description entrent dans le cadre de l'invention comme défini par les revendications.It is understood that all the modifications which can be made to the embodiments described by the substitution of equivalent technical means and in particular the variants set out in the preamble to the description fall within the scope of the invention as defined by the claims.

Claims (9)

  1. Wet process high intensity magnetic separator comprising at least one separating unit consisting of a chamber through which the product to be processed circulates downwardly and means to create a magnetic field perpendicular to the direction of flow of the product to be processed consisting of permanent magnets which may be associated with pole pieces, characterized in that means (34) are provided to cause a relative displacement of the magnets (12), respectively of the pole pieces (14), and of the chamber (10) between a first position in which the magnets, respectively the pole pieces, are closely applied against the walls of the said chamber and a second position in which the magnets, respectively the pole pieces, are apart from the said walls and the magnetic field in the chamber is weak enough to allow the magnetic particles to be removed from the chamber by a washing-liquid flow, which relative displacement includes a movement of the magnets, respectively of the pole pieces, transversely to the said walls.
  2. Magnetic separator according to claim 1, characterized in that the said means to move the magnets (12), respectively the pole pieces, consist of jacks (34) controlled by a programmable logic controller or a microprocessor, at the same time as valves (18, 22, 30, 32) mounted on ducts (16, 20, 26, 28) connected to the inlet and the outlet of the said chamber (10), so that the magnets, respectively the pole pieces, be applied on the walls of the chamber during a separation phase, and apart from the said walls during a washing phase.
  3. Magnetic separator according to claim 1 or 2, characterized in that the said chamber (10) consists of a tubular casing made of an amagnetic material containing a ferromagnetic matrix permeable to the product to be processed.
  4. Magnetic separator according to claim 1 or 2, characterized in that the said chamber (10) consists of a section of tube made of an elastically deformable material having a circular or convex section in its normal state and containing an elastically compressible ferromagnetic matrix permeable to the product to be processed, and in that the said tube is crushed between the magnets or the pole pieces and takes the form of a flat tube during the separation phase.
  5. Magnetic separator according to any of claims 1 to 4, characterized in that the said means of production of the magnetic field are made up of an assembly of elementary magnets whose magnetization direction is perpendicular to the direction of flow of the product to be processed through the said chamber (10).
  6. Magnetic separator according to any of claims 1 to 4, characterized in that the said means of production of the magnetic field are made up of a stack of magnets and pole pieces, the direction of magnetization of the magnets being parallel to the direction of flow of the product to be processed through the said chamber (10).
  7. Magnetic separator according to any of the above claims, characterized in that the separating unit or each separating unit comprises two chambers or more, means to move the chambers between a first zone containing the magnets and equipped with means to supply product to be processed and to collect the purified product and a second zone equipped with means to distribute a washing liquid and to collect the magnetic constituents and to bring them by turns successively into the first and the second zone and means to coordinate the movements of the chambers and of the magnets and/or pole pieces.
  8. Magnetic separator according to any of claims 1 to 6, characterized in that it comprises several separating units and means (18', 18'', 22', 22'') to connect cyclically each separating unit, on the one hand, to a product-to-be-processed feed line (16) and a purified product collector (26) and, on the other hand, to a source of a washing liquid (20) and a magnetic constituent collector (28).
  9. Magnetic separator according to any of claims 1 to 6, characterized in that it comprises several separating units and means to bring them by turns into a separation zone equipped with means to supply product to be processed and to collect the purified product and then into a washing zone equipped with means to distribute a washing liquid and to collect the magnetic constituents.
EP90403669A 1989-12-20 1990-12-19 High intensity wet magnetic separator Expired - Lifetime EP0434556B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8916880 1989-12-20
FR8916880A FR2655881B1 (en) 1989-12-20 1989-12-20 HIGH INTENSITY MAGNETIC SEPARATOR WORKING IN WET.

Publications (2)

Publication Number Publication Date
EP0434556A1 EP0434556A1 (en) 1991-06-26
EP0434556B1 true EP0434556B1 (en) 1995-03-01

Family

ID=9388749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90403669A Expired - Lifetime EP0434556B1 (en) 1989-12-20 1990-12-19 High intensity wet magnetic separator

Country Status (17)

Country Link
US (1) US5137629A (en)
EP (1) EP0434556B1 (en)
AT (1) ATE119076T1 (en)
AU (1) AU628698B2 (en)
BR (1) BR9006337A (en)
CA (1) CA2032579C (en)
CS (1) CS633890A3 (en)
DE (1) DE69017401T2 (en)
ES (1) ES2069720T3 (en)
FR (1) FR2655881B1 (en)
GR (1) GR3015260T3 (en)
MX (1) MX172887B (en)
OA (1) OA09280A (en)
PL (1) PL164766B1 (en)
RO (1) RO103410B1 (en)
RU (1) RU2052299C1 (en)
ZA (1) ZA909953B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679313B2 (en) 2007-03-28 2014-03-25 The Charles Stark Draper Laboratory, Inc. Method and apparatus for concentrating molecules

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2257060B (en) * 1991-05-24 1995-04-12 Shell Int Research Magnetic separation process
US5705059A (en) * 1995-02-27 1998-01-06 Miltenyi; Stefan Magnetic separation apparatus
US5833144A (en) * 1996-06-17 1998-11-10 Patchen, Inc. High speed solenoid valve cartridge for spraying an agricultural liquid in a field
US6190563B1 (en) 1997-09-09 2001-02-20 Petar Bambic Magnetic apparatus and method for multi-particle filtration and separation
DE10030412B4 (en) * 2000-06-21 2006-02-09 Bematec S.A. Magnetic separator with rotating flap
CN1642653B (en) * 2001-02-16 2010-04-28 澳斯墨特有限公司 An apparatus and process for inducing magnetism
DE10117659C2 (en) * 2001-04-09 2003-07-17 Steinert Gmbh Elektromagnetbau High gradient magnetic filter and method for separating weakly magnetizable particles from liquid media
WO2008130618A1 (en) * 2007-04-19 2008-10-30 The Charles Stark Draper Laboratory, Inc. Method and apparatus for separating particles, cells, molecules and particulates
US7837379B2 (en) 2007-08-13 2010-11-23 The Charles Stark Draper Laboratory, Inc. Devices for producing a continuously flowing concentration gradient in laminar flow
DE102008035695A1 (en) 2008-07-30 2010-02-04 Martin Lipsdorf Particle e.g. sensitive target particle, processing method for use in biotechnology field, involves deflecting magnetic field of permanent magnet between flow paths of magnetic field by impulse at magneto electric control element
BR112012005618B1 (en) 2009-10-28 2020-03-10 Magglobal, Llc MAGNETIC SEPARATION DEVICE
DE102010017957A1 (en) * 2010-04-22 2011-10-27 Siemens Aktiengesellschaft Device for separating ferromagnetic particles from a suspension
CN102933307A (en) * 2010-04-29 2013-02-13 澳斯墨特有限公司 Apparatus for continual magnetisation of a slurry
US20120240768A1 (en) * 2011-03-22 2012-09-27 General Electric Company System for removing moisture from an airstream
WO2012145658A1 (en) 2011-04-20 2012-10-26 Magnetation, Inc. Iron ore separation device
WO2014208770A1 (en) * 2013-06-28 2014-12-31 独立行政法人産業技術総合研究所 Matrix for magnetic separator and magnetic separator
CN106470765B (en) * 2014-06-16 2020-03-24 独立行政法人产业技术综合研究所 Sorting device and sorting method
DE102017107089B4 (en) * 2017-04-03 2019-08-22 Karlsruher Institut für Technologie Apparatus and method for selective fractionation of fines

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796336A (en) * 1955-03-11 1958-06-11 Blending Machine Company Ltd Improvements relating to magnetic separators for fluent materials
US2912106A (en) * 1956-09-11 1959-11-10 Magni Power Company Magnetic separator
US3375925A (en) * 1966-10-18 1968-04-02 Carpco Res & Engineering Inc Magnetic separator
US3887457A (en) * 1973-05-21 1975-06-03 Magnetic Eng Ass Inc Magnetic separation method
US4054513A (en) * 1973-07-10 1977-10-18 English Clays Lovering Pochin & Company Limited Magnetic separation, method and apparatus
US4046680A (en) * 1975-03-14 1977-09-06 Itasca Magnetics, Inc. Permanent magnet high intensity separator
US3947349A (en) * 1975-03-14 1976-03-30 Fritz Alan J Permanent magnet high intensity separator
GB1539732A (en) * 1975-04-11 1979-01-31 English Clays Lovering Pochin Magnetic separator
DE2624090C2 (en) * 1975-05-29 1984-01-12 English Clays Lovering Pochin & Co. Ltd., St. Austell, Cornwall Magnetic separator
US4087358A (en) * 1976-10-12 1978-05-02 J. M. Huber Corporation Augmenting and facilitating flushing in magnetic separation
US4191591A (en) * 1976-11-08 1980-03-04 Klockner-Humboldt-Deutz Method and apparatus for cleaning a matrix of a magnetic separator
SU649466A1 (en) * 1977-10-19 1979-04-04 Государственный Проектно-Конструкторский И Экспериментальный Институт По Обогатительному Оборудованию "Гипромашобогащение" Polygradient separator working member
DE2806340A1 (en) * 1978-02-15 1979-08-30 Kloeckner Humboldt Deutz Ag METHOD AND DEVICE FOR CLEANING THE MATRIX OF A MAGNETIC SEPARATOR, IN PARTICULAR A WET MAGNETIC SEPARATOR
NL8000165A (en) * 1980-01-10 1981-08-03 Holec Nv METHOD FOR SEPARATING PARTICLES IN A MAGNETIC FIELD
NL8000579A (en) * 1980-01-30 1981-09-01 Holec Nv PROCESS FOR CLEANING A HIGH GRADIENT MAGNETIC SEPARATOR AND HIGH GRADIENT MAGNETIC SEPARATOR.
US4317719A (en) * 1980-10-06 1982-03-02 Tomotoshi Tokuno Wet-type magnetic ore separation apparatus
DK111582A (en) * 1982-03-12 1983-09-13 Niro Atomizer As HIGH GRADUATE MAGNETIC SEPARATOR
SU1102630A1 (en) * 1982-06-08 1984-07-15 Plakhotnyuk Stepan A Magnetic separator
US4722788A (en) * 1985-05-25 1988-02-02 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Magnetic filter
US4874508A (en) * 1988-01-19 1989-10-17 Magnetics North, Inc. Magnetic separator
EP0341824A3 (en) * 1988-04-11 1991-05-15 Kawasaki Steel Corporation Apparatus for magnetic separation of impurities from fluids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679313B2 (en) 2007-03-28 2014-03-25 The Charles Stark Draper Laboratory, Inc. Method and apparatus for concentrating molecules

Also Published As

Publication number Publication date
EP0434556A1 (en) 1991-06-26
DE69017401T2 (en) 1995-07-13
CA2032579C (en) 1995-10-03
CS633890A3 (en) 1992-06-17
CA2032579A1 (en) 1991-06-21
RU2052299C1 (en) 1996-01-20
OA09280A (en) 1992-08-31
FR2655881A1 (en) 1991-06-21
BR9006337A (en) 1991-09-24
US5137629A (en) 1992-08-11
ATE119076T1 (en) 1995-03-15
AU628698B2 (en) 1992-09-17
AU6814890A (en) 1991-06-27
MX172887B (en) 1994-01-18
DE69017401D1 (en) 1995-04-06
ZA909953B (en) 1991-10-30
PL164766B1 (en) 1994-10-31
GR3015260T3 (en) 1995-06-30
ES2069720T3 (en) 1995-05-16
PL288358A1 (en) 1991-12-02
FR2655881B1 (en) 1992-07-24
RO103410B1 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
EP0434556B1 (en) High intensity wet magnetic separator
US20160151789A1 (en) Filter device and method for removing magnetizable particles from a liquid
EP0374251A1 (en) Device for separating ferromagnetic materials from fluid media
FR2511886A1 (en) MAGNETIC DIRECT WASH FILTER
FR2460701A1 (en) DEVICE FOR SEPARATING SOLID MATERIALS IN A LIQUID CURRENT
FR2477428A1 (en) METHOD AND DEVICE FOR EXTRACTING THE PARTICLES DRAWN FROM A GASEOUS CURRENT
WO1993015821A1 (en) Liquid filtration module and apparatus
EP0353154B1 (en) Apparatus for removing spent pellets from tube bundle cleaning installations
EP0120750A1 (en) Device for tangential filtration and installation containing this device
EP2239064B1 (en) Balls cleaning apparatus for heat exchanger
EP0159961B1 (en) Liquid filter with stacked rings
FR2461513A1 (en) Filamentary filter elements for contaminated fluids - as movable parallel rows between upper and lower grids in housing
EP2604347A1 (en) Magnetic separator
FR2473905A1 (en) ELECTROSTATIC FLUIDIZED BED COATING METHOD AND DEVICE
EP0975406A1 (en) Separator for three-phase mixture to be used under the sea
FR2483799A1 (en) Lamellar flow decantation plant to clarify treated waste water etc. - has simplified, more compact construction for given treatment capacity
FR2607419A1 (en) DEVICE FOR DECALAMINING THE SURFACE OF A ROLLING STRIP
FR2766390A1 (en) Magnetic solids filter especially for closed hydraulic circuit
WO2007135279A1 (en) Separator for particles contained in a gas stream, in particular solid and/or liquid and/or pasty particles
FR2559683A1 (en) MAGNETIC WASTE SEPARATOR
BE1006776A3 (en) ELECTRO-SEPARATOR FOR SEPARATORS OF hulls.
JPH04225809A (en) Wet strong magnetic separator
EP1520627A1 (en) High-intensity magnetic separator
EP2735547A1 (en) Novel method for producing water with reduced scale content and device for implementing same
CH338081A (en) Filtered

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES GB GR IT NL SE

17P Request for examination filed

Effective date: 19911111

17Q First examination report despatched

Effective date: 19930916

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: F C B

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES GB GR IT NL SE

REF Corresponds to:

Ref document number: 119076

Country of ref document: AT

Date of ref document: 19950315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69017401

Country of ref document: DE

Date of ref document: 19950406

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2069720

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3015260

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19951108

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951128

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951211

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951230

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961219

Ref country code: AT

Effective date: 19961219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961220

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19961220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3015260

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961219

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

EUG Se: european patent has lapsed

Ref document number: 90403669.6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051219