EP0431038A1 - Herstellung von nichtstrukturellen proteinen des bluetongue-virus unter verwendung eines baculovirus-expressionsvektors - Google Patents
Herstellung von nichtstrukturellen proteinen des bluetongue-virus unter verwendung eines baculovirus-expressionsvektorsInfo
- Publication number
- EP0431038A1 EP0431038A1 EP89909839A EP89909839A EP0431038A1 EP 0431038 A1 EP0431038 A1 EP 0431038A1 EP 89909839 A EP89909839 A EP 89909839A EP 89909839 A EP89909839 A EP 89909839A EP 0431038 A1 EP0431038 A1 EP 0431038A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- btv
- protein
- polypeptide
- cells
- infected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 241000120506 Bluetongue virus Species 0.000 title claims abstract description 60
- 241000701447 unidentified baculovirus Species 0.000 title claims description 29
- 101710172711 Structural protein Proteins 0.000 title claims description 11
- 239000013604 expression vector Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 48
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 37
- 241000238631 Hexapoda Species 0.000 claims abstract description 24
- 210000004027 cell Anatomy 0.000 claims description 78
- 210000005239 tubule Anatomy 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 23
- 229920001184 polypeptide Polymers 0.000 claims description 19
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 19
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 19
- 101710182846 Polyhedrin Proteins 0.000 claims description 8
- 230000000890 antigenic effect Effects 0.000 claims description 6
- 208000003836 bluetongue Diseases 0.000 claims description 4
- 230000000877 morphologic effect Effects 0.000 claims description 4
- 229960005486 vaccine Drugs 0.000 claims description 3
- 230000009385 viral infection Effects 0.000 claims description 2
- 241000124008 Mammalia Species 0.000 claims 1
- 210000004962 mammalian cell Anatomy 0.000 claims 1
- 241000700605 Viruses Species 0.000 abstract description 29
- 235000018102 proteins Nutrition 0.000 description 32
- 108020004414 DNA Proteins 0.000 description 30
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 239000000427 antigen Substances 0.000 description 12
- 102000036639 antigens Human genes 0.000 description 12
- 108091007433 antigens Proteins 0.000 description 12
- 239000000284 extract Substances 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 239000012634 fragment Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 239000013598 vector Substances 0.000 description 10
- 208000015181 infectious disease Diseases 0.000 description 9
- 241001494479 Pecora Species 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 239000012528 membrane Substances 0.000 description 7
- 101150036211 M6 gene Proteins 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 241000256251 Spodoptera frugiperda Species 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101710081079 Minor spike protein H Proteins 0.000 description 3
- 101150067196 NSI gene Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 3
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241001493067 Bluetongue virus 2 Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000000856 sucrose gradient centrifugation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- 241001545522 Aguacate virus Species 0.000 description 1
- 241000212384 Bifora Species 0.000 description 1
- 241000134316 Culicoides <genus> Species 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000120510 Epizootic hemorrhagic disease virus Species 0.000 description 1
- 241001288713 Escherichia coli MC1061 Species 0.000 description 1
- 101000782432 Eumenes pomiformis Venom peptide 5 Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000702247 Reoviridae Species 0.000 description 1
- 241000282849 Ruminantia Species 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 108010087302 Viral Structural Proteins Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 210000003963 intermediate filament Anatomy 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000000464 low-speed centrifugation Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 238000010915 one-step procedure Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- DBPYGJOORSXBMI-UHFFFAOYSA-N trinaphthalen-1-yl phosphate Chemical compound C1=CC=C2C(OP(OC=3C4=CC=CC=C4C=CC=3)(OC=3C4=CC=CC=C4C=CC=3)=O)=CC=CC2=C1 DBPYGJOORSXBMI-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/14011—Baculoviridae
- C12N2710/14111—Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
- C12N2710/14141—Use of virus, viral particle or viral elements as a vector
- C12N2710/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2720/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
- C12N2720/00011—Details
- C12N2720/12011—Reoviridae
- C12N2720/12311—Rotavirus, e.g. rotavirus A
- C12N2720/12322—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- This invention relates to a process for producing bluetongue virus proteins.
- Bluetongue virus is the prototype virus of the Qvbi ⁇ iTus genus (Reoviridae family) . It is vectored to vertebrates by Culicoides species and causes disease in certain ruminants, notably sheep.
- the genome of BTV consists of 10 unique double-stranded (ds) RNA molecules, each believed to code for a single polypeptide product. (Gorman et al. , 1981; Sanger and Mertens, 1983).
- the ten dsRNA species are contained in an inner core structure that contains five types of proteins, two that are major (VP3 and VP7) and three that are minor components (VPl, VP4 and VP6) .
- the core is surrounded by an outer capsid consisting of two major proteins, VP2 and VP5, to give a complete virion particle with a diameter of approximately 69 nm.
- non-structural proteins In addition to the above-mentioned structural proteins, three non-structural proteins (NSI, NS2 and NS3) appear in BTV infected cells. Their function in the replication or morphogenesis of BTV is not known. Two viral specific entities, tubules and granular inclusion bodies, are routinely obserbed in BTV infected cells (Lecatsas, 1968) . These morphological structures are attached to the intermediate filament component of the cell's cytoskeleton (Eaton, B.T. et al. , 1988) and are presumed to be involved in the virus assembly process.
- tubular structures are composed entirely of one type of polypeptide, namely the 64,000 Dalton (64 kD) NSI protein, which is the gene product of BTV dsRNA middle size segment No. 6 (M6) .
- 64,000 Dalton (64 kD) NSI protein which is the gene product of BTV dsRNA middle size segment No. 6 (M6) .
- M6 BTV dsRNA middle size segment No. 6
- a process for producing a polypeptide comprising a bluetongue virus non-structural protein in antigenic form which comprises infecting susceptible insects or cultured insect cells with an expression vector having a DNA segment coding for said polypeptide.
- An example of such a polypeptide is the NSI protein of bluetongue virus.
- insects and cultured insect cells are capable of producing bluetongue virus non- structural proteins in morphological forms which resemble structures observed in bluetongue-virus infected mammalian, cells.
- BTV-NSI when produced in accordance with the invention in insect cells has been found to "self-assemble" into tubules which are similar to tubules observed in bluetongue virus infected sheep cells.
- the expression vectors used in the method of the invention may comprise a recombinant baculovirus having a DNA segment coding for a polypeptide comprising a bluetongue virus non-structural protein.
- Such recombinant baculoviruses may include promoter systems native to naturally occurring baculoviruses, for example the so-called “polyhedrin” promoter, or they may include other promoter systems capable of directing expression of polypeptide in transformed insect or cultured insect cells.
- Especially suitable cultured insect cells are those of Spodoptera f_vugipe ⁇ da.
- antigenic form as used herein to refer to a protein is meant a protein which is capable of exhibiting an antigenic property of a native bluetongue virus protein, e.g. the capability of binding to an antibody to said protein.
- BTV serotype 10 (BTV-10) NSI gene product using an expression system based on recombinant baculoviruses is illustrated by the following Example.
- the expressed protein has been shown to be similar in size and antigenic properties to the authentic BTV NSI protein. It reacts with BTV ' antibody and forms numerous tubular structures in the cytoplasm of the infected insect cells. The tubular structures have been purified to homogeneity from infected cell extracts. Further the expressed polypeptide has been used to identify antibodies to five United States BTV serotypes in infected sheep sera, indicating the potential of the expressed protein as a group reactive antigen in the diagnosis of BTV infections.
- Example the BTV-10 M6 gene product is expressed in an insect baculovirus expression vector derived from AcNV.
- A. Viruses and cells United States prototype BTV-10 was plaque cloned using monolayers of BHK-21 cells. The viral dsRNA was purified as described by Yamaguchi et al. (1988) and the 10 individual RNA segments separated and isolated as described previously (Purdy et al. , 1984). AcNPV and recombinant baculovirus stocks were grown and assayed in confluent monolayers of S. fvugipe ⁇ da cells in medium containing 10 fetal calf serum according to the procedures described by Brown and Faulkner (1977) • Occasionally virus stocks were made using spinner cultures of these insect cells.
- B DNA cloning of the BTV10-M6 RNA.
- Polyadenylation of BTV-10 dsRNA and synthesis of cDNA copies of the polyadenylated M6 RNA using an oligo(dT) 1 _ 1 o primer were undertaken as described previously (Purdy et al. , 1984).
- the RNA templates were removed by treatment with 0.5 M K0H and double-stranded DNA generated by self-annealing. The products were repaired using the Klenow large fragment of DNA polymerase, followed by 3' tailing with dC and annealing to Pstl-cut, dG-tailed, pBR322 plasmid DNA (Maniatis et al. , 1982).
- RNA gel electrophoresis blotting and hybridization.
- Purified BTV-10 RNA was resolved on an agarose gel, blotted onto a Genescreen membrane (New England Nuclear, Boston MA) and hybridized to nick- translated cloned DNA by procedures described previously (Purdy et al. , 1984).
- Plasmid DNA manipulations were carried out following the procedures described by Maniatis and associates (Maniatis et al. , 1982) . Restriction enzymes, T4 DNA ligase and the Klenow large fragment of DNA polymerase, were purchased from New England Biolabs, Inc. (Beverly, MA) . Calf intestine alkaline phosphatase was obtained from Boehringer Mannheim (FGR) .
- S. fvugipevda cells were transfected with mixtures of infectious AcNPV DNA and DNA obtained from plasmid pAcBTV 10-6. Recombinant viruses were obtained as described previously (Inumaru and Roy, 1987) . One of the derived recombinant viruses was designated AcBTV 10-6.
- glycerol, 5% ⁇ -mercaptoethanol, 62.5 mM Tris-HCl, 0.01 bromophenol blue, pH 6.8) were added to each sample and the mixture heated at 100°C for 10 min.
- Proteins were analysed by electrophoresis in a 10-30$ linear gradient polyacrylamide gel in the presence of SDS (SDS-PAGE) as described by Laemmli (1970) . After electrophoresis, the gel was stained with 0.25% Coomassie brilliant blue.
- the membrane was soaked for 1 hr at room temperature in anti-rabbit IgG-goat IgG-alkaline phosphatase conjugate (Sigma Chemical Co.), also diluted in blocking buffer. After further washing with PBST, bound antibodies were detected by incubating using Fast BB salt and a-Naphthyl phosphate (Sigma Chemical Co.) as substrate.
- PBST PBS
- a solid phase indirect micro-ELISA was used to demonstrate the reactivity of recombinant AcBTV 10-6 antigen with various polyclonal BTV antisera.
- S. fs gipexda cells infected 2 hr previously with recombinant AcBTV 10-6 virus (see above) were collected and subjected to freezing and thawing followed by low speed centrifugation to remove cellular debris.
- the supernatant was diluted (1:10- to 1:10,000-fold) with sodium carbonate buffer (15 mM Na-CO-, 36 mM NaHC0_, pH 9-6)-
- sodium carbonate buffer 15 mM Na-CO-, 36 mM NaHC0_, pH 9-6)
- a 96-well polyvinylchloride microplate (Flow Laboratories) was coated overnight at 4xC with 50fl of the diluted antigen.
- the plate was washed three times between each step of the following protocol by flooding the wells of the plate with PBST buffer.
- the antigen-coated microplate was washed and blocked with blocking solution for 3 hr at room temperature.
- BTV antisera were diluted (1:100- to 1:12,800-fold) in blocking solution and 50 ⁇ l of diluted sera were added to each well.
- Cells were infected with the AcBTV 10-6 recombinant baculovirus and the infected cells harvested 4 or 5 days post-infection. The cells were recovered, washed twice with PBS and resuspended in 10 mM Tris-HCl (pH 7-4) and disrupted by sonication. The resulting cell extract was loaded oh a 10% to 50 (wt/v) sucrose gradient in TE buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 7.4) and centrifuged at 40,000 rpm for 3 hr using an SW4l rotor. After centrifugation, the gradient was fractionated and a portion of each fraction was subjected to gel electrophoresis. The peak fractions containing NSI protein were pooled and pelleted by centrifugation for 2 hr at 40,000 rpm. The pellet was resuspended in 10 mM Tris HC1 buffer (pH 7.4).
- a plasmid (pBTV10-6) containing the complete BTV-10 M6 sequence was constructed from two overlapping clones as described above (Fig. 2) .
- the restriction enzyme M ⁇ el was used to isolate the entire coding region of the M6 DNA (including 1 bases upstream from the ATG initiation codon and 59 bases downstream from the TAG stop codon) and the DNA used to prepare a recombinant baculovirus transfer vector.
- the 60 kD protein was NSI
- a sample of the AcBTV 10-6 infected cell extract was electrophoresed, transferred onto a Durapore membrane and subjected to Western analyses using anti-BTV-10 sera as described in Methods.
- the 60 kD protein (lane c) was identified by the alkaline phosphatase conjugate detection procedure.
- tubules of various lengths were evident. In cross-section, they exhibited a diameter of ca 60 nm. Many of the tubules appeared to contain ribosome-like particles (Fig. 5. R arrowheads). Both the structures and arrangement of the tubules were comparable to the tubular structures reported by others in BTV infected BHK-21 cells (Huismans and Els, 1979). As expected, polyhedra were only evident in the AcNPV infected cells (Fig. 5. P arrowheads).
- Fibrous structures were observed both in AcNPV and in the recombinant virus infected cells (Fig. 5) • In the latter, the tubules appeared to be aligned along the edges of bundles of the fibrous material (Fig. 5c and d) . Both the tubules and the fiberous structures were randomly oriented with respect to one another. In some cells bundles of fibers were seen in both the nucleus and the cytoplasm (Fig. 5e, f) , with tubules mostly, but not exclusively associated with the cytoplasmic fibers. Fewer tubules were seen in the nuclei (Fig. f)• Whether these tubules were formed in the nucleus, or occurred there because the cell was in the terminal stage of infection, is not known.
- Recombinant virus infected cell extracts were absorbed to microtiter plates (representing some 50 ng of NSI protein per well) and incubated with either polyclonal BTV-2, or BTV-10, or BTV-11, or BTV-13, or BTV-17 sheep antisera, or with normal sheep serum as a control.
- the derived antigen-antibody complexes were detected by incubating with anti-sheep-alkaline phosphatase conjugates followed by the addition of an enzyme substrate.
- Fig. 7 all five BTV antisera reacted with the recombinant antigen in proportion to the end point titer of the antisera. No reaction was detected with the normal sheep serum. No reactivity was obtained when each of the BTV antisera was tested with AcNPVinfected cell extracts.
- NSI is the major viral protein synthesized in BTV-infected cells and is a major constituent of the tubules which are observed in such cells. (Huismans and Els, 1979). It has now unexpectedly been found that baculovirus expressed NSI protein also form tubules in insect cells. The two overlapping clones (#14 and 39) were used to construct a plasmid containing the complete gene (pBTV 10-6) . A recombinant baculovirus was prepared with the NSI gene sequences under the control of the AcNPV polyhedrin promoter. The data herein shows that the BTV NSI protein is expressed to a high level in insect cells infected with this recombinant baculovirus.
- NSI, NS2 and NS3 can be used as group specific probes to detect the presence of bluetongue virus (all 24 serotypes); Ritter and Roy, 1988.
- BTV 10 NSI antigen can be used to detect antibodies to the US strains (BTV-2, BTV-10, BTV-11, BTV-14 and BTV-17) ; Urakawa and Roy, 1988.
- a culture of AcNPV-BTV-10 has been deposited at the European Collection of Animal Cell Cultures (ECACC) on 10th August 1989 under Accession No. 89081017.
- Fig. 1 Strategy used to determine the sequences of cDNA clones of the BTV- 10 M6 gene. The distance and directions in which individual strands of two overlapping clones were sequenced are shown by the solid arrows. Restriction enzyme sites used are as follows: Ma, Mael; Hd, Hind l; R, HinfI; D, DdeI; Pv,PuuI; Ms, spI.
- FIG. 2 Schematic diagram of the construction of the transfer vector pAcBTVlO-6.
- a pBR332-based plasmid (pBTV 10-6) containing the entire coding region of the BTV-10 M6 DNA was constructed from two overlapping partial clones as described in Methods.
- the complete clone (pBTV10-6) was used to construct the transfer vector (pAcBTVlO-6) as described in Methods.
- the sequence of the 5' insertion site was determined by the method of Maxam and Gilbert (18) using a Hin ⁇ HL restriction fragment (BTV DNA residue #296).
- Fig. 3 Hydropathic plot and distribution of cvsteine residues for the predicted M6 gene product of BTV-10.
- the plot involves a span setting of 21 amino acids.
- Fig.4 Expression of NSl protein bv recombinant baculoviruses derived from the pAcBTV10-6 transfer vector.
- S. frugiperda cells were infected with recombinant (c) or wild type AcNPV (b). Proteins were recovered at 72 hr post-infection and an aliquot of each sample was resolved by gel electrophoresis. Uninfected cells were treated similarly (a). The resolved protein bands were either detected by staining with Coomassie brilliant blue (A), or blotted onto nitrocellulose membranes and detected immunolog ⁇ cally with a ti BTV-10 serum (B) as described in Methods. The positions of NSI and the AcNPV polyhedrin protein (P) are indicated. Molecular weights (in kD) are indicated on the left.
- FIG. 5 Electron micrographs of NSl-derived tubules produced by S. frugiperda cells infected with recombinant viruses.
- S. frugiperda cells infected with AcNPV (panel a), or a recombinant virus (panels b-f) were fixed with 2% glutaraldehyde 72 hr post-infection and processed for electron microscopy as described in Methods.
- P polyhedrin
- V virus particles
- M mitochondria
- R ribosomes
- F fibrous structure
- T tubules
- N nuclear membrane.
- FIG. 6 Three-dimensional arrangement of the tubules in the infected S. frugiperda cells.
- A A series of representative virus (A-H) of the single arrays in a thin section of the tubules were photographed at 10° intervals of specimen tilt.
- B A schematic three-dimensional interpretation of the structure are represented (a, b and c).
- Fig. 7 Reaction of bluetongue antibodies to recombinant baculovirus derived antigen using indirect ELISA: Recombinant AcBTV 10-6 infected cell extracts were adsorbed to the solid phase and examined using 1:100 to 1:12800 dilutions of sheep anti-BTV-2 serum ( ⁇ e), or anti-BTV- 10 serum (o o), or anti-BTV-11 serum ( ⁇ A), or anti-BTV-13 serum ( ⁇ ⁇ ), or anti-BTV-17 serum (G ⁇ ), or with normal sheep serum (gg U).
- Fig. 8 SDS-PAGE of purified NSI protein stained with Coomassie brilliant blue: AcBTV10-6 recombinant baculovirus infected cells were disrupted and tubules were recovered by sedimenting in sucrose gradient (10-50% w/v) centrifugation as described in Methods. The peak fractions containing NSl were pooled and subjected to SDS-PAGE analysis. The proteins recovered from unpurif ⁇ ed recombinant virus infected cells (1) are compared with NSl protein purified through sucrose gradient centrifugation (2). - /S
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB888819453A GB8819453D0 (en) | 1988-08-16 | 1988-08-16 | Production of bluetongue virus non-structural proteins using baculovirus expression vector |
GB8819453 | 1988-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0431038A1 true EP0431038A1 (de) | 1991-06-12 |
Family
ID=10642209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89909839A Withdrawn EP0431038A1 (de) | 1988-08-16 | 1989-08-15 | Herstellung von nichtstrukturellen proteinen des bluetongue-virus unter verwendung eines baculovirus-expressionsvektors |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0431038A1 (de) |
AU (1) | AU4198889A (de) |
GB (1) | GB8819453D0 (de) |
WO (1) | WO1990002186A1 (de) |
ZA (1) | ZA896202B (de) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1324770A2 (de) * | 2000-09-27 | 2003-07-09 | The UAB Research Foundation | Nichtreplizierendes partikelhaltiges impfstoffverabreichungssystem und verfahren zur dessen herstellung und verwendung |
US8906676B2 (en) | 2004-02-02 | 2014-12-09 | Ambrx, Inc. | Modified human four helical bundle polypeptides and their uses |
KR101699142B1 (ko) | 2004-06-18 | 2017-01-23 | 암브룩스, 인코포레이티드 | 신규 항원-결합 폴리펩티드 및 이의 용도 |
CN103520735B (zh) | 2004-12-22 | 2015-11-25 | Ambrx公司 | 包含非天然编码的氨基酸的人生长激素配方 |
SG158148A1 (en) | 2004-12-22 | 2010-01-29 | Ambrx Inc | Compositions containing, methods involving, and uses of non-natural amino acids and polypeptides |
JP2008525473A (ja) | 2004-12-22 | 2008-07-17 | アンブレツクス・インコーポレイテツド | 修飾されたヒト成長ホルモン |
MX2007007591A (es) | 2004-12-22 | 2007-07-25 | Ambrx Inc | Metodos para expresion y purificacion de hormona de crecimiento humano recombinante. |
CA2590429C (en) | 2004-12-22 | 2014-10-07 | Ambrx, Inc. | Compositions of aminoacyl-trna synthetase and uses thereof |
JP2008541769A (ja) | 2005-06-03 | 2008-11-27 | アンブレツクス・インコーポレイテツド | 改善されたヒトインターフェロン分子及びそれらの使用 |
PT2339014E (pt) | 2005-11-16 | 2015-10-13 | Ambrx Inc | Métodos e composições compreendendo aminoácidos não-naturais |
WO2008030613A2 (en) | 2006-09-08 | 2008-03-13 | Ambrx, Inc. | Hybrid suppressor trna for vertebrate cells |
ES2465473T3 (es) | 2006-09-08 | 2014-06-05 | Ambrx, Inc. | Transcripción de arnt supresor en células de vertebrado |
KR20090060294A (ko) | 2006-09-08 | 2009-06-11 | 암브룩스, 인코포레이티드 | 변형된 인간 혈장 폴리펩티드 또는 Fc 스캐폴드 및 그의 용도 |
CN104163864B (zh) | 2007-03-30 | 2017-08-01 | Ambrx公司 | 经修饰fgf‑21多肽和其用途 |
AU2008247815B2 (en) | 2007-05-02 | 2012-09-06 | Ambrx, Inc. | Modified interferon beta polypeptides and their uses |
JP5547083B2 (ja) | 2007-11-20 | 2014-07-09 | アンブルックス,インコーポレイテッド | 修飾されたインスリンポリペプチドおよびそれらの使用 |
CN103694337B (zh) | 2008-02-08 | 2016-03-02 | Ambrx公司 | 经修饰瘦素多肽和其用途 |
UA118536C2 (uk) | 2008-07-23 | 2019-02-11 | Амбркс, Інк. | Модифікований поліпептид бичачого гранулоцитарного колонієстимулювального фактора та його застосування |
NZ607477A (en) | 2008-09-26 | 2014-09-26 | Ambrx Inc | Non-natural amino acid replication-dependent microorganisms and vaccines |
KR101647164B1 (ko) | 2008-09-26 | 2016-08-09 | 암브룩스, 인코포레이티드 | 변형된 동물 에리트로포이에틴 폴리펩티드 및 이의 용도 |
CN107056929A (zh) | 2009-12-21 | 2017-08-18 | Ambrx 公司 | 经过修饰的猪促生长素多肽和其用途 |
CN107674121A (zh) | 2009-12-21 | 2018-02-09 | Ambrx 公司 | 经过修饰的牛促生长素多肽和其用途 |
MX346786B (es) | 2010-08-17 | 2017-03-31 | Ambrx Inc | Polipeptidos de relaxina modificados y sus usos. |
US9567386B2 (en) | 2010-08-17 | 2017-02-14 | Ambrx, Inc. | Therapeutic uses of modified relaxin polypeptides |
AR083006A1 (es) | 2010-09-23 | 2013-01-23 | Lilly Co Eli | Formulaciones para el factor estimulante de colonias de granulocitos (g-csf) bovino y variantes de las mismas |
PL3412302T3 (pl) | 2014-10-24 | 2021-11-02 | Bristol-Myers Squibb Company | Zmodyfikowane polipeptydy fgf-21 i ich zastosowania |
CN110637027B (zh) | 2017-02-08 | 2024-08-30 | 百时美施贵宝公司 | 包含药代动力学增强子的修饰的松弛素多肽及其用途 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU591459B2 (en) * | 1984-08-31 | 1989-12-07 | Research Corporation | cDNA probe for the detection of bluetongue virus |
AP114A (en) * | 1987-02-19 | 1991-02-01 | Oxford Virology Ltd | Production of bluetongue virus antigens using a baculovirus expression vector. |
-
1988
- 1988-08-16 GB GB888819453A patent/GB8819453D0/en active Pending
-
1989
- 1989-08-15 WO PCT/GB1989/000939 patent/WO1990002186A1/en not_active Application Discontinuation
- 1989-08-15 AU AU41988/89A patent/AU4198889A/en not_active Abandoned
- 1989-08-15 ZA ZA896202A patent/ZA896202B/xx unknown
- 1989-08-15 EP EP89909839A patent/EP0431038A1/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9002186A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU4198889A (en) | 1990-03-23 |
GB8819453D0 (en) | 1988-09-21 |
WO1990002186A1 (en) | 1990-03-08 |
ZA896202B (en) | 1990-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0431038A1 (de) | Herstellung von nichtstrukturellen proteinen des bluetongue-virus unter verwendung eines baculovirus-expressionsvektors | |
Urakawa et al. | Bluetongue virus tubules made in insect cells by recombinant baculoviruses: expression of the NS1 gene of bluetongue virus serotype 10 | |
Belyaev et al. | Development of baculovirus triple and quadruple expression vectors: co-expression of three or four bluetongue virus proteins and the synthesis of bluetongue virus-like particles in insect cells | |
French et al. | Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV | |
DE69223939T2 (de) | Verfahren zur herstellung von untereinheitsimpfstoff gegen hundeparvovirus und verwandten viren | |
CA1339732C (en) | Synthesis and immunogenicity of rotavirus genes using baculovirus expression system | |
CA1331155C (en) | Baculovirus transfer vectors | |
Emery et al. | The development of multiple expression vectors for high level synthesis of eukaryotic proteins: expression of LCMV-N and AcNPV polyhedrin protein by a recombinant baculovirus | |
Roy et al. | Identification of bluetongue virus VP6 protein as a nucleic acid-binding protein and the localization of VP6 in virus-infected vertebrate cells | |
WO1990010078A1 (en) | Improved baculovirus expression system capable of producing foreign gene proteins at high levels | |
Le Blois et al. | Synthesis and characterization of chimeric particles between epizootic hemorrhagic disease virus and bluetongue virus: functional domains are conserved on the VP3 protein | |
DE69019359T2 (de) | Menschliche parvovirus-b19-proteine und virusähnliche partikeln, deren herstellung sowie deren verwendung in diagnostischen tests und in impfstoffen. | |
Tsunemitsu et al. | First detection of bovine group B rotavirus in Japan and sequence of its VP7 gene | |
JPH0365191A (ja) | スフェロイジン単離dnaおよび組み換え昆虫ポックスウィルス発現ベクター | |
JPH05292976A (ja) | マレック病ウイルスワクチン | |
AP114A (en) | Production of bluetongue virus antigens using a baculovirus expression vector. | |
Taylor et al. | Transient expression and mutational analysis of the rotavirus intracellular receptor: the C-terminal methionine residue is essential for ligand binding | |
US6379885B1 (en) | Human parvovirus B19 proteins and virus-like particles, their production and their use in diagnostic assays and vaccines | |
KR100224331B1 (ko) | 조환수두 대상포진바이러스 및 그 제작방법 | |
US6204044B1 (en) | Human parvovirus B19 proteins and virus-like particles, their production and their use in diagnostic assays and vaccines | |
JPH02501114A (ja) | 蛋白質合成用発現ベクター及びかゝるベクター構成に使用するプラスミドレプリコン及び配列カセット | |
EP0284791B1 (de) | DNA- und RNA-Moleküle des westlichen Subtyps des FSME-Virus, Polypeptide, die von diesen Molekülen codiert werden, und deren Verwendung | |
Monastyrskaya et al. | Characterization and modification of the carboxy-terminal sequences of bluetongue virus type 10 NS1 protein in relation to tubule formation and location of an antigenic epitope in the vicinity of the carboxy terminus of the protein | |
AU667796B2 (en) | Production of antigens by self-assembly of polypeptide components | |
US5686270A (en) | Production of antigens by self-assembly of polypeptide components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19910215 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19920303 |