EP0429351A1 - Procédé et dispositif d'épuration d'un bain de métal liquide au trempé à chaud d'une bande d'acier - Google Patents

Procédé et dispositif d'épuration d'un bain de métal liquide au trempé à chaud d'une bande d'acier Download PDF

Info

Publication number
EP0429351A1
EP0429351A1 EP90403262A EP90403262A EP0429351A1 EP 0429351 A1 EP0429351 A1 EP 0429351A1 EP 90403262 A EP90403262 A EP 90403262A EP 90403262 A EP90403262 A EP 90403262A EP 0429351 A1 EP0429351 A1 EP 0429351A1
Authority
EP
European Patent Office
Prior art keywords
bath
zone
purification
coating
intermetallic compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90403262A
Other languages
German (de)
English (en)
Inventor
Bernard Francois
Robert Haaser
Pierre Commun
Jean-Paul Hennechart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of EP0429351A1 publication Critical patent/EP0429351A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/325Processes or devices for cleaning the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the subject of the present invention is a process and a device for purifying a bath of liquid metal, in particular zinc or zinc-aluminum, intended for the continuous manufacture of a steel strip coated by immersion.
  • the present invention is particularly suitable for continuous hot-dip galvanizing.
  • the iron of said strip is attacked by the liquid metal bath and dissolves in said bath. Beyond the limit of solubility, the iron reacts with the elements of the bath to form solid intermetallic compounds in the form of particles, zinc-iron, zinc-aluminum aluminum, or zinc-aluminum in the case of galvanization by quenching at hot.
  • These particles have a size ranging from a few microns to several hundred microns depending on the degree of saturation of the bath. Depending on their density and composition, these particles rise to the surface, or remain in saturation or even settle at the bottom of the bath. Consequently, the particles can be entrained by the strip and remain included in the coating. However, the inclusions of particles are detrimental to the surface appearance and to the use of hot-dip galvanized sheet, in particular for visible parts of the automobile body.
  • the object of the present invention is to limit the size and the quantity of particles present in the bath, particularly near the strip, and consequently to limit their presence in the coating.
  • the subject of the present invention is therefore a process for purifying a bath of liquid metal, in particular zinc or zinc-aluminum, intended for the continuous manufacture of a steel strip coated by immersion in a coating area, consisting of: - to put in continuous circulation, the metal coating bath between the coating zone and a purification zone, - to cause in the purification zone, the rise to the surface of the solid intermetallic compounds contained in said bath, - to accelerate the rise of said solid intermetallic components, - And to bring back to the coating zone the purified bath whose iron content is close to or below the solubility limit, characterized in that the rise of solid intermetallic compounds in the purification zone is caused by a drop in the bath temperature in said purification zone in order to lower the solubility limit of the iron.
  • the temperature of the bath in the purification zone is between 435 and 460 ° C and preferably between 440 and 450 ° C, the temperature of the bath in the coating zone being between 440 and 490 ° C and preferably between 460 and 470 ° C.
  • said ascent of the solid intermetallic compounds in the purification zone is accelerated by a higher aluminum concentration in the bath in the purification zone, - the aluminum concentration of the bath in the purification zone is between 0.15 and 0.70% and preferably between 0.20 and 0.30%.
  • the invention also relates to a device for purifying a bath of liquid metal, in particular zinc or zinc-aluminum, intended for the continuous manufacture of a steel strip coated by immersion in a tank forming a zone of coating
  • a device for purifying a bath of liquid metal in particular zinc or zinc-aluminum, intended for the continuous manufacture of a steel strip coated by immersion in a tank forming a zone of coating
  • the means for continuously circulating the bath of liquid metal comprise at least one variable speed pump and in that said variable speed pump collects the bath of polished liquid metal in the coating zone by means of a pipe and sends it to the two ends of the zone puration at a level between half and two thirds of the height of the bath in said area.
  • said variable speed pump takes up the bath of purified liquid metal at the bottom of the purification zone and returns it to the coating zone by piping
  • the means for raising the surface, in the purification zone, of the solid intermetallic compounds are formed by a circuit for cooling the bath in said zone so as to keep the temperature of said bath below the temperature bath in the coating area
  • the means for accelerating the ascent to the surface, in the purification zone, solid intermetallic compounds are formed by ingots introduced into said purification zone and whose average aluminum content is between 0.30 and 0 , 80% and preferably between 0.40 and 0.50%.
  • a tank designated as a whole by the reference 1, and filled with a bath of liquid metal 2, in particular zinc or zinc-aluminum.
  • This tank 1 optionally includes a means 3 for regulating the temperature, for example by induction, by immersion heaters or even by electrical resistances in the case of a steel tank.
  • the tank 1 comprises two compartments separated by a partition 4, for example made of refractory bricks, which define a first enclosure forming it a coating area 5a and a second enclosure 6 forming a zone 5b for cleaning the liquid metal bath.
  • a partition 4 for example made of refractory bricks, which define a first enclosure forming it a coating area 5a and a second enclosure 6 forming a zone 5b for cleaning the liquid metal bath.
  • a steel strip 7 continuously circulates by means of a roller 8.
  • the steel strip 7 is protected, as it enters the bath 2 of the coating zone 5a, by a sheath 9.
  • the iron of said strip is attacked by the bath of liquid metal and dissolves in said bath. Beyond the solubility limit, the iron reacts with the elements of bath 2 to form solid intermetallic compounds in the form of zinc-iron particles, or zinc-iron-aluminum or zinc-aluminum in the case of dip-dip galvanization. hot. Depending on their density and composition, these particles rise to the surface, or remain in saturation or even settle at the bottom of the bath 2.
  • the particles can be entrained by the strip 7 and remain included in the coating.
  • the tank 1 comprises means for continuously circulating the bath 2 of liquid metal between the coating zone 5a and the purification zone 5b.
  • These means consist of a first variable speed pump 10 which takes the bath 2 of polished liquid metal in the coating area 5a. proximity of the strip 7 and of the roller 8 via a pipe 11 and which sends it via a pipe 12 to the two ends of the treatment zone 5b at a level between half and two-thirds of the height of the bath in said purification zone 5b.
  • the means for continuously circulating the liquid metal bath also comprises a second variable speed pump 13 which takes up the bath 2 of purified liquid metal at the bottom of the purification zone 5b by means of a pipe 14 and returns it to the coating area 5a by a pipe 15 near the strip 7 and the roller 8.
  • the purification of bath 2 in zone 5b is based on the rise of solid intermetallic compounds by decreasing the solubility of iron in zone 5b of purification, when the temperature of said bath 2 decreases and / or when the aluminum content increases.
  • the purification zone 5b is provided with a circuit with cooling fluid 20, for example by circulation of a gas , such as air or a liquid such as water, so as to maintain the temperature of bath 2 in zone 5b at a level lower than the temperature of bath in zone 5a.
  • a gas such as air or a liquid such as water
  • the temperature of the bath in zone 5b is between 435 and 460 ° C and preferably between 440 and 450 ° C, while the temperature of bath 2 in zone 5a of coating is between 440 and 490 ° C and preferably between 460 and 470 ° C.
  • the aluminum content in the coating zone 5a is between 0.15 and 0.20% and in the purification zone 5b between 0.15 and 0.70%, preferably between 0.20 and 0.30%. .
  • Aluminum enrichment is carried out with pre-luminous ingots or zinc ingots plus zinc-aluminum alloy ingots introduced in A and B (Fig. 2) in the purification zone 5b.
  • the pre-illuminated ingots have an aluminum content of between 0.30 and 0.80% and preferably between 0.40 and 0.50%.
  • the enrichment is carried out by the addition of aluminum or of zinc-aluminum alloy. This higher concentration of aluminum will accelerate the formation of solid intermetallic compounds, iron-zinc-aluminum and iron-aluminum lighter than zinc.
  • zone 5b is provided with a small pipe 21 for introducing a neutral gas, such as for example nitrogen, which opens out at the bottom of said zone 5b and which creates a microbubble in this zone. forming an upward movement of liquid and solid intermetallic compounds.
  • a neutral gas such as for example nitrogen
  • the latter is provided with a cover 22 and a supply 23 of neutral gas, such as for example nitrogen, so as to maintain the upper part of said zone 5b under a neutral atmosphere.
  • neutral gas such as for example nitrogen
  • the purification zone 5b is formed by a tank 30 independent of the tank 1 and possibly provided with heating means 31.
  • the device comprises means (10, 11, 12, 13, 14, 15) for continuously circulating the bath 2 of liquid metal between the coating zone 5a and the purification zone 5b and vice versa.
  • the device also comprises means for raising the surface of the solid intermetallic compounds constituted by the cooling circuit 20 of the bath 2 in order to lower the solubility limits of the iron and / or by the introduction of pre-aluminous ingots or zinc ingots more ingots of zinc-aluminum alloy in A and B of said purification zone 5b.
  • the tank 30 is provided with a means 21 for accelerating the ascent of the solid intermetallic compounds and with a cover 22 as well as an injection 23 of neutral gas limiting the oxidation on the surface of the bath 2.
  • the device comprises a system, not shown, for regulating the level of bath 2 of liquid metal and the variable speed pumps 10 and 13 can be replaced by any other material producing the same effect.
  • the circulation rate of the bath 2 can vary between 6 and 60 T / h for example for a renewal of the bath every three hours approximately.
  • the bath 2 returning to the coating area 5a is heated and the increase in temperature has the effect of raising the solubility of iron.
  • bath 2 has a reduced iron content, which may be below the saturation limit, and it has a minimum of solid intermetallic compounds in lift.
  • the method according to the present invention makes it possible to limit the size and the quantity of particles present in the bath, particularly near the strip, and consequently to limit their presence in the coating, which makes it possible to improve the surface appearance of sheet metal, in particular for visible parts of the automobile body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

La présente invention a pour objet un procédé d'épuration d'un bain de métal liquide notamment de zinc ou de zinc-aluminium destiné à la fabrication en continu d'une bande d'acier revêtue par immersion dans une zone (5a) de revêtement, procédé selon lequel on met en ciruclation continue le bain (2) de revêtement métallique entre la zone (5a) de revêtement et une zone (5b) d'épuration, on provoque dans la zone (5b) d'épuration la remontée en surface des composés intermétalliques solides contenus dans ledit bain, on accélère la remontée desdits composés, et on ramène vers la zone (5a) le bain (2) épuré dont la teneur en fer est voisine ou inférieure à la limite de la solubilité. L'invention a également pour objet un dispositif de mise en oeuvre du procédé.

Description

  • La présente invention a pour objet un procédé et un dispositif d'épuration d'un bain de métal liquide, notamment de zinc ou de zinc-alumi­nium, destiné à la fabrication en continu d'une bande d'acier revêtue par immersion.
  • La présente invention est particulièrement adaptée à la galvanisation à chaud en continu.
  • Au cours de l'immersion de la bande d'acier dans le bain de métal liquide, le fer de ladite bande se trouve attaqué par le bain de métal liquide et se dissout dans ledit bain. Au delà de la limite de la solubilité, le fer réagit avec les éléments du bain pour former des composés intermétalliques solides sous forme de particules, zinc-fer, zinc-fer aluminium, ou zinc-aluminium dans le cas de la galvanisation au trempé à chaud.
  • Ces particules ont une taille allant de quelques microns à plusieurs centaines de microns en fonction du degré de saturation du bain. Selon leur densité et leur composition, ces particules remontent à la surface, ou restent en saturation ou encore se déposent au fond du bain. Par conséquent, les particules peuvent être entraînées par la bande et restées incluses dans le revêtement. Or, les inclusions de particules sont préjudiciables à l'aspect de surface et à l'utilisation de la tôle galvanisée à chaud, en particulier pour les pièces visibles de carrosserie automobile.
  • La présente invention a pour but de limiter la taille et la quantité de particules présentes dans le bain, particulièrement à proximité de la bande, et par conséquent de limiter leur présence dans le revétement.
  • La présente invention a ainsi pour objet un procédé d'épuration d'un bain de métal liquide, notamment de zinc ou de zinc-aluminium, destiné à la fabrication en continu d'une bande d'acier revêtue par immersion dans une zone de revêtement, consistant :
    - à mettre en circulation continue, le bain de revétement métallique entre la zone de revêtement et une zone d'épuration,
    - a provoquer dans la zone d'épuration, la remontée en surface des composés intermetalliques solides contenus dans ledit bain,
    - à accélérer la remontée desdits composants intermétalliques solides,
    - et à ramener vers la zone de revêtement le bain épuré dont la teneur en fer est voisine ou inférieure à la limite de solubilité, caractérisé en ce que la remontée des composés intermétalliques solides dans la zone d'épuration est provoquée par une baisse de la température du bain dans ladite zone d'épuration afin d'abaisser la limite de solubilité du fer.
  • Selon d'autres caractéristiques :
    - la température du bain dans la zone d'épuration est comprise entre 435 et 460°C et de préférence entre 440 et 450°C, la température du bain dans la zone de revétement étant comprise entre 440 et 490°C et de préférence entre 460 et 470°C.
    - ladite remontée des composés intermétal­liques solides dans la zone d'épuration est accé­lérée Par une concentration en aluminium plus élevée du bain dans la zone d'épuration,
    - la concentration en aluminium du bain dans la zone d'épuration est comprise entre 0,15 et 0,70% et de préférence entre 0,20 et 0,30%.
  • L'invention a également pour objet un dispo­sitif d'épuration d'un bain de métal liquide notam­ment de zinc ou de zinc-aluminium destiné à la fabrication en continu d'une bande d'acier revêtue par immersion dans une cuve formant une zone de revêtement comprenant des moyens de mise en circulation continue du bain de métal liquide entre la zone de revêtement et une enceinte formant une zone d'épuration et inversement, des moyens de remontée en surface, dans la zone d'épuration des composés intermétalliques solides contenus dans ledit bain, et des moyens d'accélération de la remontée desdits composés intermétalliques solides, caractérisé en ce que les moyens de mise en circu­lation continue du bain de métal liquide comprennent au moins une pompe à vitesse variable et en ce que ladite pompe à vitesse variable prélève le bain de métal liquide polué dans la zone de revêtement par l'intermédiaire d'une tuyauterie et l'envoi aux deux extrémités de la zone d'épuration à un niveau com­pris entre la moitié et les deux tiers de la hauteur du bain dans ladite zone.
  • Selon d'autres caractéristiques :
    - ladite pompe à vitesse variable reprend le bain de métal liquide épuré à la partie inférieure de la zone d'épuration et le renvoi dans la zone de revêtement par une tuyauterie,
    - les moyens de remontée en surface, dans la zone d'épuration, des composés intermétalliques so­lides sont formés par un circuit de refroidissement du bain dans ladite zone de façon à maintenir la température dudit bain inférieure à la température du bain dans la zone de revêtement,
    - les moyens d'accélération de la remontée en surface, dans la zone d'épuration, des composés intermétalliques solides sont formés par des lingots introduits dans ladite zone d'épuration et dont la teneur moyenne en aluminium se situe entre 0,30 et 0,80% et de préférence entre 0,40 et 0,50%.
  • L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple, faite en référence aux dessins annexés sur lesquels :
    • - la Fig. 1 est une vue schématique en coupe transversale d'une cuve de revêtement neuve ou rénovée munie du dispositif suivant l'invention,
    • - la Fig. 2 est une vue de dessus de la Fig. 1,
    • - la Fig. 3 est une vue schématique en coupe transversale d'une cuve de revêtement existante à laquelle est associée le dispositif suivant l'inven­tion,
    • - la Fig. 4 est une vue de dessus de la Fig. 3.
  • En se reportant aux Figs 1 et 2, on a représenté une cuve désignée dans son ensemble par la référence 1, et remplie d'un bain de métal liquide 2 notamment de zinc ou de zinc-aluminium.
  • Cette cuve 1 comporte éventuellement un moyen 3 de régulation de la température, par exemple par induction, par thermo-plongeurs ou encore par résistances électriques dans le cas d'une cuve en acier.
  • La cuve 1 comporte deux compartiments séparés par unà cloison 4, par exemple en briques réfractaires, qui définissent une première enceinte le formant une zone 5a de revêtement et une deuxième enceinte 6 formant une zone 5b d'épuration du bain de métal liquide.
  • Dans la zone 5a de revêtement, circule en continu une bande d'acier 7 par l'intermédiaire d'un rouleau 8. La bande d'acier 7 est protégée, à son entrée dans le bain 2 de la zone 5a de revêtement, par une gaine 9.
  • Au cours de l'immersion de la bande d'acier 7 dans le bain de métal liquide 2, le fer de ladite bande se trouve attaqué par le bain de métal liquide et se dissout dans ledit bain. Au delà de la limite de solubilité, le fer réagit avec les éléments du bain 2 pour former des composés intermétalliques solides sous forme de particules zinc-fer, ou zinc-­fer-aluminium ou zinc-aluminium dans le cas de la galvanisation au trempé à chaud. Selon leur densité et leur composition, ces particules remontent à la surface, ou restent en saturation ou encore se déposent au fond du bain 2.
  • Par conséquent, les particules peuvent être entrainées par la bande 7 et restées incluses dans le revêtement.
  • Pour éviter cela, la cuve 1 comporte des moyens de mise en circulation en continu du bain 2 de métal liquide entre la zone 5a de revêtement et la zone 5b d'épuration.
  • Ces moyens sont constitués d'une première pompe à vitesse variable 10 qui prélève le bain 2 de métal liquide polué dans la zone 5a de revêtement à. proximité de la bande 7 et du rouleau 8 par l'intermédiaire d'une tuyauterie 11 et qui l'envoie par l'intermédiaire d'une tuyauterie 12 aux deux extrémités de la zone 5b d'épuration à un niveau compris entre la moitié et les deux tiers de la hauteur du bain dans ladite zone 5b d'épuration.
  • Les moyens de mise en circulation continue du bain de métal liquide comprennent également une deuxième pompe à vitesse variable 13 qui reprend le bain 2 de métal liquide épuré à la partie inférieure de la zone 5b d'épuration par l'intermédiaire d'une tuyauterie 14 et le renvoie dans la zone 5a de revê­tement par une tuyauterie 15 à proximité de la bande 7 et du rouleau 8.
  • L'épuration du bain 2 dans la zone 5b est basée sur la remontée des composés intermétalliques solides en diminuant la solubilité du fer dans la zone 5b d'épuration, quand la température dudit bain 2 diminue et/ou quand la teneur en aluminium aug­mente.
  • A cet effet, et compte tenu des échanges thermiques entre la zone 5a de revêtement et la zone 5b d'épuration, la zone 5b d'épuration est munie d'un circuit avec fluide de refroidissement 20, par exemple par circulation d'un gaz, tel que l'air ou d'un liquide tel que de l'eau, de façon à maintenir la température du bain 2 dans la zone 5b à un niveau inférieur à la température du bain dans la zone 5a.
  • La température du bain dans la zone 5b est comprise entre 435 et 460°C et de préférence entre 440 et 450°C, tandis que la température du bain 2 dans la zone 5a de revêtement est comprise entre 440 et 490°C et de préférence entre 460 et 470°C.
  • Le taux d'aluminium dans la zone 5a de revê­tement est compris entre 0,15 et 0,20% et dans la zone 5b d'épuration entre 0,15 et 0,70% de préféren­ce entre 0,20 et 0,30%.
  • L'enrichissement en aluminium est réalisé avec des lingots préaluminés ou des lingots de zinc plus des lingots d'alliage zinc-aluminium introduits en A et B (Fig. 2) dans la zone 5b d'épuration.
  • Les lingots préaluminés ont une teneur en aluminium comprise entre 0,30 et 0,80% et de préférence entre 0,40 et 0,50%. Dans le cas d'une alimentation en zinc pur ou en zinc à teneur en aluminium faible, l'enrichissement est ralisé par addition d'aluminium ou d'alliage zinc-aluminium. Cette concentration plus élevée en aluminium va accélérer la formation des composés intermétalliques solides, fer-zinc- aluminium et fer-aluminium plus légers que le zinc.
  • Dans cette zone 5b, il n'y a pas l'effet d'appauvrissement en aluminium du bain 2 provoqué par la bande 7 comme dans la zone 5a de revêtement.
  • Cette remontée des composés intermétalliques solides étant relativement longue et devant être la plus complète que possible avant le retour du bain dans la zone 5a de revêtement, cette remontée est accélérée par un brassage local du bain 2.
  • A cet effet, la zone 5b est munie d'une petite conduite 21 d'introduction d'un gaz neutre, comme par exemple de l'azote, qui débouche à la partie inférieure de ladite zone 5b et qui crée dans cette zone un microbullage formant un mouvement ascendant du liquide et des composés intermétalli­ques solides.
  • Les composés intermétalliques dits mattes de surface sont éliminés par un opérateur ou par un dispositif automatique.
  • Afin de limiter la formation d'oxydes de zinc à la surface de la zone 5b d'épuration, cette dernière est munie d'un couvercle 22 et d'une amenée 23 de gaz neutre, comme par exemple de l'azote, de façon à maintenir la partie supérieure de ladite zone 5b sous une atmosphère neutre.
  • Dans le cas d'une cuve 1 existante, comme représentée aux Figs 3 et 4, la zone 5b d'épuration est formée par une cuve 30 indépendante de la cuve 1 et éventuellement munie de moyens de chauffage 31.
  • Comme pour le premier mode de réalisation, le dispositif comporte des moyens (10, 11, 12, 13, 14, 15) de mise en circulation continue du bain 2 de métal liquide entre la zone 5a de revêtement et la zone 5b d'épuration et inversement. Le dispositif comporte également des moyens de remontée en surface des composés intermétalliques solides constitués par le circuit de refroidissement 20 du bain 2 afin d'abaisser les limites de solubilité du fer et/ou par l'introduction de lingots préaluminés ou de lingots de zinc plus des lingots d'alliage zinc-aluminium en A et B de ladite zone 5b d'épuration.
  • La cuve 30 est munie d'un moyen 21 d'accéla­ration de la remontée des composés intermétalliques solides et d'un couvercle 22 ainsi que d'une injection 23 de gaz neutre limitant l'oxydation en surface du bain 2.
  • Dans les deux modes de réalisation, le dispositif comporte un système, non représenté, de régulation du niveau de bain 2 de métal liquide et les pompes à vitesse variable 10 et 13 peuvent être remplacées par tout autre matériel produisant le même effet. Le débit de circulation du bain 2 peut varier entre 6 et 60 T/h par exemple pour un renouvellement du bain toutes les trois heures environ. Le bain 2 revenant dans la zone 5a de revêtement est réchauffé et l'augmentation de la température a pour effet d'élever la solubilité du fer.
  • A la suite de ce traitement, le bain 2 a une teneur en fer réduite, pouvant être inférieure à la limite de saturation, et il présente un minimum de composés intermétalliques solides en sustentation.
  • Le procédé selon la présente invention permet de limiter la taille et la quantité de particules présentes dans le bain, particulièrement à proximité de la bande, et par conséquent de limiter leur présence dans le revêtement ce qui permet d'améliorer l'aspect de surface de la tôle, en particulier pour les pièces visibles de carrosserie automobile.

Claims (8)

1. Procédé d'épuration d'un bain (2) de métal liquide notamment de zinc ou de zinc-aluminium destiné à la fabrication en continu d'une bande d'acier (7) revêtue par immersion dans une zone (5a) de revêtement, consistant :
- à mettre en circulation continue le bain (2) de revêtement métallique entre la zone (5a) de revêtement et une zone (5b) d'épuration,
- à provoquer, dans la zone (5b) d'épura­tion, la remontée en surface des composés intermétalliques solides contenus dans ledit bain (2),
- à accélérer la remontée desdits composés intermétalliques solides,
- et à ramener vers la zone (5a) de revête­ment le bain (2) épuré dont la teneur en fer est voisine ou inférieure à la limite de solubilité, caractérisé en ce que la remontée des composés intermétalliques solides dans la zone (5b) d'épuration est provoquée par une baisse de la température du bain (2) dans ladite zone (5b) d'épuration afin d'abaisser la limite de solubilité du fer.
2. Procédé selon la revendication 1, carac­térisé en ce que la température du bain (2) dans la zone (5b) d'épuration est comprise entre 435 et 460°C et de préférence entre 440 et 450°C, la tempé­rature du bain (2) dans la zone (5a) de revêtement étant comprise entre 440 et 490°C et de préférence entre 460 et 470°C.
3. Procédé selon la revendication 1, carac­térisé en ce que ladite remontée des composés inter­métalliques solides dans la zone (5b) d'épuration est accélérée par une concentration en aluminium plus élevée du bain (2) dans la zone (5b) d'épura­tion.
4. Procédé selon la revendication 3, carac­térisé en ce que la concentration en aluminium du bain (2) dans la zone (5b) d'épuration est comprise entre 0,15 et 0,70% et de préférence entre 0,20 et 0,30%.
5. Dispositif d'épuration d'un bain (2) de métal liquide notamment de zinc ou de zinc-aluminium destiné à la fabrication en continu d'une bande d'acier (7) revêtue par immersion dans une cuve (1) formant une zone (5a) de revêtement, comprenant des moyens (10, 11, 12, 13, 14, 15) de mise en circulation continue du bain (2) de métal liquide entre la zone ( 5a) de revêtement et une enceinte (6, 30) formant une zone (5b) d'épuration et inversement, des moyens (20) de remontée en surface, dans la zone (5b) d'épuration des composés intermé­talliques solides contenus dans ledit bain, et des moyens. (21) d'accélération de la remontée desdits composés intermétalliques solides, caractérisé en ce que les moyens de mise en circulation continue du bain (2) de métal liquide comprennent au moins une pompe à vitesse variable (10, 13), et en ce que ladite pompe à vitesse variable (10) prélève le bain (2) de métal liquide polué dans la zone (5a) de revétement par l'intermédiaire d'une tuyauterie (11) et l'envoi aux deux extrémités de la zone (5b) d'épuration à un niveau compris entre la moitié et les deux tiers de la hauteur du bain (2) dans ladite zone (5b).
6. Dispositif selon la revendication 5, caractérisé en ce que ladite pompe à vitesse variable (13) reprend le bain (2) de métal liquide épuré à la partie inférieure de la zone (5b) d'épu­ration et le renvoi dans la zone (5a) de revêtement par une tuyauterie (14, 15).
7. Dispositif suivant la revendication 5, caractérisé en ce que les moyens de remontée en surface, dans la zone (5b) d'épuration, des composés intermétalliques solides sont formés par un circuit de refroidissement (20) du bain (2) dans ladite zone (5b) de façon à maintenir la température dudit bain inférieure à la température du bain dans la zone (5a) de revêtement.
8. Dispositif selon la revendication 5, ca­ractérisé en ce que les moyens d'accélération de la remontée en surface, dans la zone (5b) d'épuration, des composés intermétalliques solides sont formés pàr des lingots introduits dans ladite zone (5b) d'épuration et dont la teneur moyenne en aluminium se situe entre 0,30 et 0,80% et de préférence entre 0,40 et 0,50%.
EP90403262A 1989-11-21 1990-11-19 Procédé et dispositif d'épuration d'un bain de métal liquide au trempé à chaud d'une bande d'acier Withdrawn EP0429351A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8915267A FR2654749B1 (fr) 1989-11-21 1989-11-21 Procede et dispositif d'epuration d'un bain de metal liquide au temps chaud d'une bande d'acier.
FR8915267 1989-11-21

Publications (1)

Publication Number Publication Date
EP0429351A1 true EP0429351A1 (fr) 1991-05-29

Family

ID=9387605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90403262A Withdrawn EP0429351A1 (fr) 1989-11-21 1990-11-19 Procédé et dispositif d'épuration d'un bain de métal liquide au trempé à chaud d'une bande d'acier

Country Status (10)

Country Link
US (1) US5084094A (fr)
EP (1) EP0429351A1 (fr)
JP (1) JPH04503086A (fr)
KR (1) KR920701501A (fr)
AU (1) AU641447B2 (fr)
CA (1) CA2030336A1 (fr)
FI (1) FI913418A0 (fr)
FR (1) FR2654749B1 (fr)
WO (1) WO1991007515A1 (fr)
ZA (1) ZA909300B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018198A1 (fr) * 1992-03-13 1993-09-16 Mannesmann Ag Procede pour revetir la surface de produits allonges
WO2009098362A1 (fr) * 2008-02-08 2009-08-13 Siemens Vai Metals Technologies Sas Procédé de galvanisation au trempé d'une bande d'acier
WO2009098363A1 (fr) * 2008-02-08 2009-08-13 Siemens Vai Metals Technologies Sas Installation de galvanisation au trempe d'une bande d'acier
RU2463379C2 (ru) * 2008-02-08 2012-10-10 Сименс Фаи Металз Текнолоджиз Сас Способ цинкования погружением стальной полосы

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169128A (en) * 1991-09-30 1992-12-08 General Electric Company Molten solder filter
US5814126A (en) * 1994-01-12 1998-09-29 Cook; Thomas H. Method and apparatus for producing bright and smooth galvanized coatings
US5494262A (en) * 1995-02-03 1996-02-27 Wirtz Manufacturing Co., Inc. Metal delivery system
US5683650A (en) * 1995-06-12 1997-11-04 Morando; Jorge A. Bubble apparatus for removing and diluting dross in a steel treating bath
AT405945B (de) 1998-02-11 1999-12-27 Machner & Saurer Gmbh Verfahren zum abscheiden von verbindungen aus zinkmetallbädern
DE10020284A1 (de) * 2000-04-26 2001-10-31 Stolberger Metallwerke Gmbh Verfahren und Anordnung zum Regenerieren einer verunreinigten Metallschmelze
EP2612947B1 (fr) * 2010-09-02 2017-10-04 Nippon Steel & Sumitomo Metal Corporation Procédé pour produire une tôle d'acier galvanisé à chaud
KR101271857B1 (ko) * 2011-06-10 2013-06-07 주식회사 포스코 용융아연 도금장치
DE102011118197B3 (de) 2011-11-11 2013-05-08 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum Schmelztauchbeschichten eines Metallbands mit einem metallischen Überzug
DE102011118199B3 (de) 2011-11-11 2013-05-08 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum Schmelztauchbeschichten eines Metallbands mit einem metallischen Überzug
KR101493863B1 (ko) * 2013-10-30 2015-02-16 주식회사 포스코 강판 도금장치 및 강판 도금방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515140A (en) * 1922-05-20 1924-11-11 Erich A Beck Process for the elimination of aluminum and metals of the iron group from zinc, zinc alloys, etc.
GB2046796A (en) * 1979-03-26 1980-11-19 Nippon Kokan Kk Method and apparatus for continuously hot-dip galvanizing steel strip

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734819A (en) * 1956-02-14 Method and apparatus for separation of
DE2460904A1 (de) * 1974-12-21 1976-07-01 Teldix Gmbh Antiblockierregler
JPS5677373A (en) * 1979-11-29 1981-06-25 Nisshin Steel Co Ltd Recovery device and recovery method of zinc hot dipping dross
JPS5735671A (en) * 1980-08-11 1982-02-26 Nippon Kokan Kk <Nkk> Continuously galvanizing method for strip
JPS6089556A (ja) * 1983-10-19 1985-05-20 Sumitomo Electric Ind Ltd 連続溶融めつき方法
JPS62185863A (ja) * 1986-02-10 1987-08-14 Nippon Steel Corp 連続溶融メツキ法
JPH0660373B2 (ja) * 1986-08-20 1994-08-10 新日本製鐵株式会社 溶融金属メツキ浴の介在物除去方法
JPS63238252A (ja) * 1987-03-25 1988-10-04 Sumitomo Metal Ind Ltd 連続式溶融メツキ装置
JPH01147047A (ja) * 1987-12-03 1989-06-08 Sumitomo Metal Ind Ltd 溶融亜鉛めっき浴の管理方法
JPH01147046A (ja) * 1987-12-03 1989-06-08 Sumitomo Metal Ind Ltd 溶融亜鉛めっき浴の管理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515140A (en) * 1922-05-20 1924-11-11 Erich A Beck Process for the elimination of aluminum and metals of the iron group from zinc, zinc alloys, etc.
GB2046796A (en) * 1979-03-26 1980-11-19 Nippon Kokan Kk Method and apparatus for continuously hot-dip galvanizing steel strip

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 13, no. 408 (C-634)[3756], 8 septembre 1989; & JP-A-1 147 047 (SUMITOMO METAL IND.) 08-06-1989 *
PATENT ABSTRACTS OF JAPAN, vol. 5, no. 144 (C-71)[816], 11 septembre 1981; & JP-A-56 77 373 (NITSUSHIN SEIKOU) 25-06-1981 *
PATENT ABSTRACTS OF JAPAN, vol. 6, no. 106 (C-108)[984], 16 juin 1982; & JP-A-57 35 671 (NIPPON KOKAN) 26-02-1982 *
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 228 (C-303)[1951], 13 septembre 1985; & JP-A-60 89 556 (SUMITOMO DENKI) 20-05-1985 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018198A1 (fr) * 1992-03-13 1993-09-16 Mannesmann Ag Procede pour revetir la surface de produits allonges
WO2009098362A1 (fr) * 2008-02-08 2009-08-13 Siemens Vai Metals Technologies Sas Procédé de galvanisation au trempé d'une bande d'acier
WO2009098363A1 (fr) * 2008-02-08 2009-08-13 Siemens Vai Metals Technologies Sas Installation de galvanisation au trempe d'une bande d'acier
RU2463379C2 (ru) * 2008-02-08 2012-10-10 Сименс Фаи Металз Текнолоджиз Сас Способ цинкования погружением стальной полосы
AU2008350133B2 (en) * 2008-02-08 2012-11-22 Clecim SAS Method for the hardened galvanisation of a steel strip
CN101939461B (zh) * 2008-02-08 2013-01-02 西门子Vai金属科技有限公司 用于钢带的硬化电镀的方法
CN102037149B (zh) * 2008-02-08 2013-05-29 西门子Vai金属科技有限公司 钢带的热浸镀锌设备
US8464654B2 (en) 2008-02-08 2013-06-18 Siemens Vai Metals Technologies Sas Hot-dip galvanizing installation for steel strip
KR101502198B1 (ko) * 2008-02-08 2015-03-12 지멘스 바이 메탈스 테크놀로지 에스에이에스 강철 스트립의 경화 아연도금을 위한 방법
US9238859B2 (en) 2008-02-08 2016-01-19 Primetals Technologies France SAS Method for the hardened galvanization of a steel strip

Also Published As

Publication number Publication date
WO1991007515A1 (fr) 1991-05-30
JPH04503086A (ja) 1992-06-04
ZA909300B (en) 1992-06-24
AU641447B2 (en) 1993-09-23
FR2654749A1 (fr) 1991-05-24
AU6675190A (en) 1991-05-30
FI913418A0 (fi) 1991-07-15
CA2030336A1 (fr) 1991-05-22
FR2654749B1 (fr) 1994-03-25
KR920701501A (ko) 1992-08-11
US5084094A (en) 1992-01-28

Similar Documents

Publication Publication Date Title
EP0429351A1 (fr) Procédé et dispositif d&#39;épuration d&#39;un bain de métal liquide au trempé à chaud d&#39;une bande d&#39;acier
JPS63504B2 (fr)
FR2501724A1 (fr) Procede et appareil de revetement en continu d&#39;une bande de metal ferreux
KR20210019582A (ko) 금속-코팅된 강철 스트립
KR100197184B1 (ko) 목적물을 액체인 피복 제품에 통과시킴으로써 상기 목적물을 연속적/간헐적으로 피복시키는 방법과 하우징 및 설비
US3828723A (en) Galvanizing apparatus for wire and the like
FR2782326B1 (fr) Procede de galvanisation d&#39;une bande metallique
US3809570A (en) Galvanizing technique for wire and the like
EP0308435B1 (fr) Procede pour reguler l&#39;epaisseur d&#39;une couche intermetallique sur un produit en acier continu dans un processus continu de zingage a chaud
CA2428485C (fr) Procede et installation de revetement au trempe d&#39;une bande metallique, notamment d&#39;une bande d&#39;acier
EP0125173B1 (fr) Procédé de production de particules solides métalliques à partir d&#39;un bain métallique
US3066041A (en) Method of hot-dip metallising metal strips
US2224578A (en) Method and apparatus for coating strip or the like
JP2005171361A (ja) 溶融金属めっきにおけるスナウト内浴面の異物除去装置
US4352838A (en) Dipless metallizing process
JP5168883B2 (ja) 溶融金属めっき装置
BE1007793A6 (fr) Procede et installation de traitement continu d&#39;une bande d&#39;acier galvanisee.
EP0093040A1 (fr) Procédé pour améliorer la durée de vie d&#39;éléments réfractaires perméables logés dans le fond des récipients métallurgiques d&#39;affinage, notamment des convertisseurs d&#39;aciérie à soufflage d&#39;oxygène par le haut
KR20010098823A (ko) 오염된 금속 용융물의 재생 방법 및 장치
US4422403A (en) Dipless metallizing apparatus
JPH0617214A (ja) 連続溶融金属めっき浴のトップドロス除去装置
JPH0765148B2 (ja) 溶融亜鉛浴槽
GB2124659A (en) Hot dip galvanising bath
WO1983000885A1 (fr) Perfectionnements aux procedes de galvanisation des toles ou bandes en acier
JP2004156142A (ja) 鋼ストリップコーティングラインにおいて融解金属コーティングの組成を切り替える方法と装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910424

17Q First examination report despatched

Effective date: 19930324

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19931005