EP0425052A1 - Photomultiplier tube comprising a stacked dynode multiplier and providing a high collection efficiency and reduced size - Google Patents

Photomultiplier tube comprising a stacked dynode multiplier and providing a high collection efficiency and reduced size Download PDF

Info

Publication number
EP0425052A1
EP0425052A1 EP90202838A EP90202838A EP0425052A1 EP 0425052 A1 EP0425052 A1 EP 0425052A1 EP 90202838 A EP90202838 A EP 90202838A EP 90202838 A EP90202838 A EP 90202838A EP 0425052 A1 EP0425052 A1 EP 0425052A1
Authority
EP
European Patent Office
Prior art keywords
photocathode
multiplier
photomultiplier tube
stackable
dynodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90202838A
Other languages
German (de)
French (fr)
Inventor
Pierre L'hermitte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonis SAS
Koninklijke Philips NV
Original Assignee
Photonis SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonis SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Photonis SAS
Publication of EP0425052A1 publication Critical patent/EP0425052A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements

Definitions

  • the present invention relates to a photomultiplier tube comprising a photocathode, an input electrode and an electron multiplier with stackable dynodes.
  • the invention finds a particularly advantageous application in the field of photomultiplier tubes with electron multiplier with stackable dynodes.
  • stacking multiplier dynode electron is meant all the multiplying devices having a layer structure as the multiplier of the type "sheet” (see e.g. French Patent No. 2549288) or the multipliers dynodes shutters in which each dynode consists of parallel blades inclined relative to the axis of the multiplier.
  • a general technical problem which arises in any photomultiplier tube is to ensure the largest possible collection of photoelectrons from the photocathode.
  • this general technical problem is coupled with another problem, namely that of coupling the first dynode to the multiplier device so that the secondary electrons emitted by the photocathode can arrive with little loss to the stacking dynode multiplier.
  • the known photomultiplier tube of the state of the art has the disadvantage of a relatively large lateral size, mainly due to the fact that, given the fairly large dimensions of the first dynode and the dispersion of the secondary electrons emitted by the latter, the leaf multiplier cannot be placed in the immediate vicinity of the first dynode.
  • this known tube also has the drawback of a large longitudinal bulk, linked to the need to have a sufficient distance between the photocathode and the first dynode, to allow the input electrode to focus d 'ensure its photoelectron concentration function on the first dynode.
  • the technical problem to be solved by the object of the present invention is to provide a photomultiplier tube comprising a photocathode deposited on an entry window sealed at one end of a sleeve, an entry electrode, and a multiplier d electrons with stackable dynodes, tube through which a very high collection efficiency could be obtained, that is to say a perfect coupling between the photocathode and the electron multiplier with stackable dynodes, while offering lateral bulk and reduced longitudinal.
  • the solution to the technical problem posed consists, according to the present invention, in that said input electrode comprises a truncated cone of conductor inside which is placed the electron multiplier with stackable dynodes.
  • the electron multiplier with stackable dynodes occupying a central position in the tube, the lateral bulk is considerably reduced.
  • the ideal coupling situation is achieved between the photocathode and the multiplier, and therefore d perfect collection efficiency, since, in the space between the photocathode and the input electrode-multiplier assembly, the accelerating electric field of the photoelectrons comes essentially from the first dynode of the stackable dynode multiplier. Insofar as the electrons produced by the photocathode inevitably reach the multiplier, it is possible to envisage bringing said multiplier closer to the photocathode, thereby reducing the longitudinal dimensions of the tube.
  • the photomultiplier tube according to the invention is further characterized in that it comprises at least one generator of a material constituting the photocathode placed in the space located between the electrode inlet and sleeve.
  • the generator of material constituting the photocathode is kept relatively distant from said photocathode by taking advantage of the space left free between the input electrode and the sleeve, due to the truncated cone shape given to said electrode d 'Entrance. This arrangement makes it possible to obtain very homogeneous photocathodes despite the reduction in length of the tube.
  • FIG. 1 shows, in section, a photomultiplier tube comprising a photocathode 10, made of alkali antimonide for example, deposited on an inlet window 20 sealed at one end of a cylindrical sleeve 30.
  • the photocathode 10 emits photoelectrons 11 which must reach, for secondary multiplication purposes, an electron multiplier 50, with stackable dynodes, whose multiplication axis is substantially coincident with l axis of the cylindrical sleeve 30.
  • An example of an electron multiplier with stackable dynodes which could be suitable for the present invention is described in patent application FR-A-2 549 288.
  • An anode 80 placed at the output of the multiplier 50 collects the electrons resulting from the multiplication by the stackable dynodes.
  • the photomultiplier tube also includes an input electrode 40 constituted by a conductive truncated cone inside which is placed the electron multiplier 50.
  • the photocathode is brought to the potential V1, which will be taken equal to 0V
  • the first dynode 51 of the multiplier 50 is at a potential V3 of approximately 300 V
  • the input electrode 40 has a potential V2 from 0 to 25 V, and generally less than 10% of the potential V3.
  • the cathode 10 being brought to the potential V1
  • the potential V2 of the input electrode 40 is between V1 and V1 increased by 10% of the difference between the potential V3 of the first dynode 51 of the multiplier 50 and the potential V1 of the photocathode 10.
  • all the electrons 11 emitted by the photocathode 10 are captured by the first stackable dynode 51 since, in the space of input of the tube, the electric field is produced exclusively by said first dynode 51 at potential V3.
  • the coupling and the collection are perfect, whatever the value of V3 and the distance between the photocathode 10 and the multiplier 50.
  • the multiplier 50 can therefore bring the multiplier 50 closer to the photocathode 10 without harming the collection, resulting in a shorter tube.
  • the section of the tube can be reduced because the coupling is independent of the incidence of electrons. Therefore, the useful input area can be limited to the small area in itself of the stackable dynodes.
  • the theoretical limit to reducing the photocathode-multiplier distance of a photomultiplier tube is the possibility of producing, at least partially, the photocathode using generators of material constituting said photocathode. Indeed, these generators, antimony grains in particular, must be placed opposite the photocathode and relatively distant from the latter to obtain a homogeneous photocathode. As illustrated in FIG. 1, it is possible to satisfy this requirement while maintaining the electron multiplier 50 near photocathode 10 by placing said generators 61, 62 in the space 70 located between electrode 40 d entry and the sleeve 30. As shown by the arrows from the generator 61, the antimony produced by the generators 61 and 62 can cover the photocathode 10 homogeneously.

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

Photomultiplier tube comprising a photocathode (10) laid down on an entrance window (20) sealed to one end of a sleeve (30), an entrance electrode (40) and an electron multiplier (50) with stackable dynodes. <??>According to the invention, the said entrance electrode (4) consists of a conductive truncated cone inside which is arranged the electron multiplier (50) with stackable dynodes. Advantageously, a generator (61, 62) of a constitutive material of the photocathode (10) is placed in the space (70) situated between the entrance electrode (40) and the sleeve (30). <??>Application to photomultiplier tubes with electron multipliers with stackable dynodes. <IMAGE>

Description

La présente invention concerne un tube photomulti­plicateur comportant une photocathode, une électrode d'entrée et un multiplicateur d'électrons à dynodes empilables.The present invention relates to a photomultiplier tube comprising a photocathode, an input electrode and an electron multiplier with stackable dynodes.

L'invention trouve une application particulièrement avantageuse dans le domaine des tubes photomultiplicateurs à multiplicateur d'électrons à dynodes empilables. Par "multi­plicateur d'électrons à dynodes empilables", on entend tous les dispositifs multiplicateurs à structure lamellaire comme les multiplicateurs du type "à feuilles" (voir par exemple le brevet français no 2 549 288) ou encore les multiplicateurs à dynodes en persiennes dans lesquels chaque dynode est consti­tuée de lames parallèles inclinées par rapport à l'axe du mul­tiplicateur.The invention finds a particularly advantageous application in the field of photomultiplier tubes with electron multiplier with stackable dynodes. By "stacking multiplier dynode electron" is meant all the multiplying devices having a layer structure as the multiplier of the type "sheet" (see e.g. French Patent No. 2549288) or the multipliers dynodes shutters in which each dynode consists of parallel blades inclined relative to the axis of the multiplier.

Un problème technique général qui se pose à tout tube photomultiplicateur est d'assurer une collection des pho­toélectrons issus de la photocathode qui soit la plus grande possible. Dans le cas des tubes comportant un dispositif mul­tiplicateur à dynodes empilables, ce problème technique géné­ral se double d'un autre problème, à savoir celui de coupler la première dynode au dispositif multiplicateur de sorte que les électrons secondaires émis par la photocathode puissent parvenir avec peu de perte au dispositif multiplicateur à dy­nodes empilables.A general technical problem which arises in any photomultiplier tube is to ensure the largest possible collection of photoelectrons from the photocathode. In the case of tubes comprising a multiplier device with stackable dynodes, this general technical problem is coupled with another problem, namely that of coupling the first dynode to the multiplier device so that the secondary electrons emitted by the photocathode can arrive with little loss to the stacking dynode multiplier.

Une solution à ce double problème technique est donnée, par exemple, dans le brevet français no 2 549 288 (fi­gure 12), qui décrit un tube photomultiplicateur conforme au préambule, et dont la première dynode est cylindrique, de gé­nératrices orthogonales à l'axe du tube. Dans ce tube connu, le couplage entre la première dynode et le dispositif multi­plicateur d'électrons à dynodes empilables du type "à feuilles" est réalisé en plaçant le multiplicateur en sortie de la première dynode, l'axe du multiplicateur à feuilles étant disposé perpendiculairement à l'axe du tube. Ainsi, dans cette configuration, le dispositif multiplicateur offre la plus grande section de capture aux électrons secondaires émis par la première dynode, d'où une bonne efficacité de collec­tion.One solution to this double technical problem is given, for example, in French Patent No. 2,549,288 (Figure 12), which describes a photomultiplier tube according to the preamble, and the first dynode is cylindrical, with generatrices orthogonal to the axis of the tube. In this known tube, the coupling between the first dynode and the electron multiplier device with stackable dynodes of the "leaf" type is carried out by placing the multiplier at the outlet. of the first dynode, the axis of the leaf multiplier being arranged perpendicular to the axis of the tube. Thus, in this configuration, the multiplier device offers the largest capture section to the secondary electrons emitted by the first dynode, hence good collection efficiency.

Toutefois, le tube photomultiplicateur connu de l'état de la technique présente l'inconvénient d'un encombre­ment latéral relativement grand, dû principalement au fait que, compte-tenu des dimensions assez importantes de la pre­mière dynode et de la dispersion des électrons secondaires émis par cette dernière, le multiplicateur à feuilles ne peut être placé à proximité immédiate de la première dynode. De plus, il faut prévoir un dégagement vers l'arrière du multi­plicateur pour les connexions de sortie, ce qui contribue à augmenter les dimensions du manchon servant d'enveloppe au tu­be.However, the known photomultiplier tube of the state of the art has the disadvantage of a relatively large lateral size, mainly due to the fact that, given the fairly large dimensions of the first dynode and the dispersion of the secondary electrons emitted by the latter, the leaf multiplier cannot be placed in the immediate vicinity of the first dynode. In addition, it is necessary to provide a rearward clearance of the multiplier for the outlet connections, which contributes to increasing the dimensions of the sleeve serving as an envelope for the tube.

Par ailleurs, ce tube connu présente également l'inconvénient d'un encombrement longitudinal important, lié à la nécessité de devoir disposer d'une distance suffisante en­tre la photocathode et la première dynode, pour permettre à l'électrode d'entrée de focalisation d'assurer sa fonction de concentration des photoélectrons sur la première dynode.Furthermore, this known tube also has the drawback of a large longitudinal bulk, linked to the need to have a sufficient distance between the photocathode and the first dynode, to allow the input electrode to focus d 'ensure its photoelectron concentration function on the first dynode.

Aussi, le problème technique à résoudre par l'objet de la présente invention est de proposer un tube photomulti­plicateur comportant une photocathode déposée sur une fenêtre d'entrée scellée à une extrémité d'un manchon, une électrode d'entrée, et un multiplicateur d'électrons à dynodes empila­bles, tube grâce auquel on pourrait obtenir une efficacité de collection très élevée, c'est-à-dire un couplage parfait entre la photocathode et le multiplicateur d'électrons à dynodes em­pilables, tout en offrant un encombrement latéral et longitudinal réduit.Also, the technical problem to be solved by the object of the present invention is to provide a photomultiplier tube comprising a photocathode deposited on an entry window sealed at one end of a sleeve, an entry electrode, and a multiplier d electrons with stackable dynodes, tube through which a very high collection efficiency could be obtained, that is to say a perfect coupling between the photocathode and the electron multiplier with stackable dynodes, while offering lateral bulk and reduced longitudinal.

La solution au problème technique posé consiste, selon la présente invention en ce que ladite électrode d'en­trée comporte un tronc de cône conducteur à l'intérieur duquel est disposé le multiplicateur d'électrons à dynodes empila­bles.The solution to the technical problem posed consists, according to the present invention, in that said input electrode comprises a truncated cone of conductor inside which is placed the electron multiplier with stackable dynodes.

Ainsi, d'une part, le multiplicateur d'électrons à dynodes empilables occupant une position centrale dans le tu­be, l'encombrement latéral se trouve sensiblement réduit. D'autre part, comme on le verra plus loin en détail, en appli­quant à l'électrode d'entrée un potentiel électrique voisin de celui de la photocathode, on réalise la situation de couplage idéal entre la photocathode et le multiplicateur, et donc d'efficacité de collection parfaite, puisque, dans l'espace situé entre la photocathode et l'ensemble électrode d'entrée-­multiplicateur, le champ électrique accélérateur des photo­électrons provient essentiellement de la première dynode du multiplicateur à dynodes empilables. Dans la mesure où les électrons produits par la photocathode parviennent immanqua­blement jusqu'au multiplicateur, on peut envisager de rappro­cher ledit multiplicateur de la photocathode, d'où une réduc­tion de l'encombrement longitudinal du tube.Thus, on the one hand, the electron multiplier with stackable dynodes occupying a central position in the tube, the lateral bulk is considerably reduced. On the other hand, as will be seen in detail below, by applying an electrical potential close to that of the photocathode to the input electrode, the ideal coupling situation is achieved between the photocathode and the multiplier, and therefore d perfect collection efficiency, since, in the space between the photocathode and the input electrode-multiplier assembly, the accelerating electric field of the photoelectrons comes essentially from the first dynode of the stackable dynode multiplier. Insofar as the electrons produced by the photocathode inevitably reach the multiplier, it is possible to envisage bringing said multiplier closer to the photocathode, thereby reducing the longitudinal dimensions of the tube.

Selon un mode préféré de mise en oeuvre, le tube photomultiplicateur selon l'invention est caractérisé en outre en ce qu'il comporte au moins un générateur d'un matériau constitutif de la photocathode placé dans l'espace situé entre l'électrode d'entrée et le manchon. Le générateur de matériau constitutif de la photocathode se trouve maintenu relativement éloigné de ladite photocathode en tirant parti de l'espace laissé libre entre l'électrode d'entrée et le manchon, du fait de la forme en tronc de cône donnée à ladite électrode d'en­trée. Cette disposition permet l'obtention de photocathodes très homogènes malgré la réduction de longueur du tube.According to a preferred embodiment, the photomultiplier tube according to the invention is further characterized in that it comprises at least one generator of a material constituting the photocathode placed in the space located between the electrode inlet and sleeve. The generator of material constituting the photocathode is kept relatively distant from said photocathode by taking advantage of the space left free between the input electrode and the sleeve, due to the truncated cone shape given to said electrode d 'Entrance. This arrangement makes it possible to obtain very homogeneous photocathodes despite the reduction in length of the tube.

La description qui va suivre en regard du dessin annexé, donné à titre d'exemple non limitatif, fera bien com­prendre en quoi consiste l'invention et comment elle peut être réalisée.

  • La figure 1 est une vue en coupe d'un tube photomultiplicateur selon l'invention.
The description which follows with reference to the appended drawing, given by way of nonlimiting example, will make it clear what the invention consists of and how it can be implemented.
  • Figure 1 is a sectional view of a photomultiplier tube according to the invention.

La figure 1 montre, en coupe, un tube photomultiplica­teur comportant une photocathode 10, en antimoniure d'alcalins par exemple, déposée sur une fenêtre 20 d'entrée scellée à une extrémité d'un manchon 30 cylindrique. Sous l'effet d'un ra­yonnement lumineux incident, la photocathode 10 émet des pho­toélectrons 11 qui doivent atteindre, aux fins de multiplica­tion secondaire, un multiplicateur 50 d'électrons, à dynodes empilables, dont l'axe de multiplication est sensiblement con­fondu avec l'axe du manchon 30 cylindrique. Un exemple de mul­tiplicateur d'électrons à dynodes empilables qui pourrait con­venir à la présente invention est décrit dans la demande de brevet FR-A-2 549 288. Une anode 80 placée en sortie du multi­plicateur 50 recueille les électrons résultant de la multipli­cation par les dynodes empilables.FIG. 1 shows, in section, a photomultiplier tube comprising a photocathode 10, made of alkali antimonide for example, deposited on an inlet window 20 sealed at one end of a cylindrical sleeve 30. Under the effect of an incident light radiation, the photocathode 10 emits photoelectrons 11 which must reach, for secondary multiplication purposes, an electron multiplier 50, with stackable dynodes, whose multiplication axis is substantially coincident with l axis of the cylindrical sleeve 30. An example of an electron multiplier with stackable dynodes which could be suitable for the present invention is described in patent application FR-A-2 549 288. An anode 80 placed at the output of the multiplier 50 collects the electrons resulting from the multiplication by the stackable dynodes.

Comme l'indique la figure 1, le tube photomultiplicateur comporte également une électrode 40 d'entrée constituée par un tronc de cône conducteur à l'intérieur duquel est disposé le multiplicateur 50 d'électrons. En fonctionnement, la photoca­thode est portée au potentiel V₁, que l'on prendra égal à 0V, la première dynode 51 du multiplicateur 50 est à un potentiel V₃ de 300 V environ, tandis que l'électrode 40 d'entrée a un potentiel V₂ de 0 à 25 V, et d'une façon générale moins de 10% du potentiel V₃. De manière générale, selon l'invention la ca­thode 10 étant portée au potentiel V₁, le potentiel V₂ de l'é­lectrode 40 d'entrée est compris entre V₁ et V₁ augmenté de 10% de la différence entre le potentiel V₃ de la première dy­node 51 du multiplicateur 50 et le potentiel V₁ de la photoca­thode 10. Si l'électrode d'entrée est à V₂ = V₁, tous les électrons 11 émis par la photocathode 10 sont capturés par la première dynode empilable 51 puisque, dans l'espace d'entrée du tube, le champ électrique est produit exclusivement par la­dite première dynode 51 au potentiel V₃. Le couplage et la collection sont parfaits, quelque soit la valeur de V₃ et la distance entre la photocathode 10 et le multiplicateur 50. On peut donc rapprocher le multiplicateur 50 de la photocathode 10 sans nuire à la collection, d'où un tube plus court. De mê­me, la section du tube peut être réduite du fait que le cou­plage est indépendant de l'incidence des électrons. Par consé­quent, la surface d'entrée utile peut être limitée à la surfa­ce, petite en elle-même, des dynodes empilables.As shown in FIG. 1, the photomultiplier tube also includes an input electrode 40 constituted by a conductive truncated cone inside which is placed the electron multiplier 50. In operation, the photocathode is brought to the potential V₁, which will be taken equal to 0V, the first dynode 51 of the multiplier 50 is at a potential V₃ of approximately 300 V, while the input electrode 40 has a potential V₂ from 0 to 25 V, and generally less than 10% of the potential V₃. In general, according to the invention, the cathode 10 being brought to the potential V₁, the potential V₂ of the input electrode 40 is between V₁ and V₁ increased by 10% of the difference between the potential V₃ of the first dynode 51 of the multiplier 50 and the potential V₁ of the photocathode 10. If the input electrode is at V₂ = V₁, all the electrons 11 emitted by the photocathode 10 are captured by the first stackable dynode 51 since, in the space of input of the tube, the electric field is produced exclusively by said first dynode 51 at potential V₃. The coupling and the collection are perfect, whatever the value of V₃ and the distance between the photocathode 10 and the multiplier 50. We can therefore bring the multiplier 50 closer to the photocathode 10 without harming the collection, resulting in a shorter tube. Similarly, the section of the tube can be reduced because the coupling is independent of the incidence of electrons. Therefore, the useful input area can be limited to the small area in itself of the stackable dynodes.

On observe cependant qu'avec des potentiels V₁ et V₂ égaux, la réponse temporelle du tube n'est pas très bonne car le temps de transit des photoélectrons peut varier nota­blement entre les électrons issus du centre de la photocathode 11 et ceux provenant des bords. C'est pour remédier à cet in­convénient qu'on envisage également de porter l'électrode 40 d'entrée à un potentiel V₂ de 25 V par exemple, (V₁ étant sup­posé égal à 0 Volt) qui améliore le temps de réponse du tube sans dégrader sensiblement l'efficacité de collection.It is observed however that with equal potentials V₁ and V₂, the temporal response of the tube is not very good because the transit time of the photoelectrons can vary notably between the electrons coming from the center of photocathode 11 and those coming from the edges. It is to remedy this drawback that it is also envisaged to bring the input electrode 40 to a potential V₂ of 25 V for example, (V₁ being assumed to be equal to 0 Volt) which improves the response time of the tube without significantly reduce the efficiency of the collection.

La limite théorique à la réduction de la distance photocathode-multiplicateur d'un tube photomultiplicateur est la possibilité de réaliser, au moins partiellement, la photo­cathode à l'aide de générateurs de matériau constitutif de la­dite photocathode. En effet ces générateurs, grains d'antimoi­ne notamment, doivent être placés en regard de la photocathode et relativement éloignés de celle-ci pour obtenir une photoca­thode homogène. Comme l'illustre la figure 1, il est possible de satisfaire à cette exigence tout en maintenant le multipli­cateur 50 d'électrons à promixité de la photocathode 10 en plaçant lesdits générateurs 61, 62 dans l'espace 70 situé en­tre l'électrode 40 d'entrée et le manchon 30. Ainsi que le montre les flèches issues du générateur 61, l'antimoine pro­duit par les générateurs 61 et 62 peut recouvrir la photoca­thode 10 de façon homogène.The theoretical limit to reducing the photocathode-multiplier distance of a photomultiplier tube is the possibility of producing, at least partially, the photocathode using generators of material constituting said photocathode. Indeed, these generators, antimony grains in particular, must be placed opposite the photocathode and relatively distant from the latter to obtain a homogeneous photocathode. As illustrated in FIG. 1, it is possible to satisfy this requirement while maintaining the electron multiplier 50 near photocathode 10 by placing said generators 61, 62 in the space 70 located between electrode 40 d entry and the sleeve 30. As shown by the arrows from the generator 61, the antimony produced by the generators 61 and 62 can cover the photocathode 10 homogeneously.

Claims (3)

1. Tube photomultiplicateur comportant une photocatho­de (10) déposée sur une fenêtre (20) d'entrée scellée à une extrémité d'un manchon (30), une électrode (40) d'entrée, un multiplicateur (50) d'électrons à dynodes empilables, caracté­risé en ce que ladite électrode (40) d'entrée comporte un tronc de cône conducteur à l'intérieur duquel est disposé le multiplicateur (50) d'électrons à dynodes empilables.1. Photomultiplier tube comprising a photocathode (10) deposited on an inlet window (20) sealed at one end of a sleeve (30), an inlet electrode (40), an electron multiplier (50) to stackable dynodes, characterized in that said input electrode (40) has a conductive truncated cone inside which is placed the electron multiplier (50) with stackable dynodes. 2. Tube photomultiplicateurs selon la revendication 1, caractérisé en ce que le tube photomultiplicateur comporte au moins un générateur (61, 62) d'un matériau constitutif de la photocathode placé dans l'espace (70) situé entre l'électrode (40) d'entrée et le manchon (30).2. Photomultiplier tube according to claim 1, characterized in that the photomultiplier tube comprises at least one generator (61, 62) of a material constituting the photocathode placed in the space (70) located between the electrode (40) inlet and the sleeve (30). 3 Utilisation d'un tube photomultiplicateur selon la revendication 1, caractérisée en ce que, la photocathode (10) étant portée au potentiel V₁, le potentiel V₂ de l'électrode (40) d'entrée est compris entre V₁ et V₁ augmenté de 10% de la différence entre le potentiel V₃ de la première dynode (51) du multiplicateur (50) et le potentiel V₁ de la photocathode (10).3 Use of a photomultiplier tube according to claim 1, characterized in that, the photocathode (10) being brought to the potential V₁, the potential V₂ of the input electrode (40) is between V₁ and V₁ increased by 10 % of the difference between the potential V₃ of the first dynode (51) of the multiplier (50) and the potential V₁ of the photocathode (10).
EP90202838A 1989-10-27 1990-10-24 Photomultiplier tube comprising a stacked dynode multiplier and providing a high collection efficiency and reduced size Withdrawn EP0425052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8914143 1989-10-27
FR8914143A FR2653934A1 (en) 1989-10-27 1989-10-27 PHOTOMULTIPLIER TUBE COMPRISING A MULTIPLIER WITH STACKABLE DYNODES AND HAVING HIGH COLLECTION EFFICIENCY AND REDUCED SIZE.

Publications (1)

Publication Number Publication Date
EP0425052A1 true EP0425052A1 (en) 1991-05-02

Family

ID=9386869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90202838A Withdrawn EP0425052A1 (en) 1989-10-27 1990-10-24 Photomultiplier tube comprising a stacked dynode multiplier and providing a high collection efficiency and reduced size

Country Status (4)

Country Link
US (1) US5126551A (en)
EP (1) EP0425052A1 (en)
JP (1) JPH03171543A (en)
FR (1) FR2653934A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728014A (en) * 1951-04-26 1955-12-20 Rca Corp Electron lens for multiplier phototubes with very low spherical aberration
US2908840A (en) * 1955-09-01 1959-10-13 Rca Corp Photo-emissive device
DE1464882A1 (en) * 1964-06-19 1969-10-16 Akad Wissenschaften Ddr Photomultiplier without pre-pulses, especially for short-term measurement and processes for its manufacture
EP0264992A1 (en) * 1986-10-03 1988-04-27 Philips Composants Segmented photomultiplier tube
US4855642A (en) * 1988-03-18 1989-08-08 Burle Technologies, Inc. Focusing electrode structure for photomultiplier tubes
EP0345888A1 (en) * 1988-06-10 1989-12-13 Philips Photonique Coupling device between the first dynode of a photomultiplier and a sheet multiplier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668388A (en) * 1971-02-24 1972-06-06 Gte Sylvania Inc Multi-channel photomultiplier tube
US4333031A (en) * 1979-03-30 1982-06-01 Rca Corporation Photomultiplier tube having directional alkali metal vapor evaporation means
FI75948C (en) * 1983-10-28 1988-08-08 Wallac Oy FOTOMULTIPLIKATOR FOER ANVAENDNING VID VAETSKESCINTILLATIONSRAEKNING.
JP2516995B2 (en) * 1987-08-05 1996-07-24 浜松ホトニクス株式会社 Photomultiplier tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728014A (en) * 1951-04-26 1955-12-20 Rca Corp Electron lens for multiplier phototubes with very low spherical aberration
US2908840A (en) * 1955-09-01 1959-10-13 Rca Corp Photo-emissive device
DE1464882A1 (en) * 1964-06-19 1969-10-16 Akad Wissenschaften Ddr Photomultiplier without pre-pulses, especially for short-term measurement and processes for its manufacture
EP0264992A1 (en) * 1986-10-03 1988-04-27 Philips Composants Segmented photomultiplier tube
US4855642A (en) * 1988-03-18 1989-08-08 Burle Technologies, Inc. Focusing electrode structure for photomultiplier tubes
EP0345888A1 (en) * 1988-06-10 1989-12-13 Philips Photonique Coupling device between the first dynode of a photomultiplier and a sheet multiplier

Also Published As

Publication number Publication date
FR2653934A1 (en) 1991-05-03
JPH03171543A (en) 1991-07-25
US5126551A (en) 1992-06-30

Similar Documents

Publication Publication Date Title
EP0110734B1 (en) X-ray tube generating a high power beam, particularly a collimated beam
EP0554145B1 (en) Image intensifier tube, particularly of the proximity focusing type
EP0428215B1 (en) Segmented photomultiplier tube with high collection efficiency and reduced cross-talk
FR2760127A1 (en) ELECTRON CANON AND KLYSTRON COMPRISING THE SAME
EP0402549A1 (en) Travelling-wave tube with a helical delay line made of boron nitride and attached to the vacuum tube
EP0230694B1 (en) Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier
FR2604824A1 (en) SEGMENTED PHOTOMULTIPLIER TUBE
EP0239466A1 (en) Klystron output circuit, and klystron comprising it
EP0350111B1 (en) Sheet-type dynode, electron multiplier and photomultiplier having such dynodes
EP0389051B1 (en) Photomultiplier tube with a large collection homogeneity
EP0379243A1 (en) Photomultiplier tube provided with a big first dynode and a stacked dynodes multiplier
EP0425052A1 (en) Photomultiplier tube comprising a stacked dynode multiplier and providing a high collection efficiency and reduced size
EP0345888B1 (en) Coupling device between the first dynode of a photomultiplier and a sheet multiplier
EP0044239B1 (en) Microchannels image intensifier tube and image pick-up assembly comprising such a tube
EP0350358A1 (en) Electron gun and electron tube including such an electron gun
FR2658361A1 (en) Device for detecting and amplifying weak positive and negative ion currents
FR2602089A1 (en) SHORT CIRCUIT AND USE OF THIS SHORT CIRCUIT IN A PHOTOELECTRIC TUBE
FR2522878A1 (en) IMPROVED ELECTRONIC GUNS SYSTEM
EP0956581B1 (en) Photoelectric multiplier tube of reduced length
FR2599557A1 (en) MULTIPLICATION DIRECTED MULTIPLICATION ELECTRONIC PLATE, MULTIPLIER ELEMENT COMPRISING SAID PLATE, MULTIPLIER DEVICE COMPRISING SAID ELEMENT AND APPLICATION OF SAID DEVICE TO A PHOTOMULTIPLIER TUBE
FR2688938A1 (en) Radiological image intensifier
FR2481004A1 (en) Photo multiplier with grid anode - is formed by ladder network of coplanar spaced leaf collectors in parallel planes
EP0540384A1 (en) Cooling arrangement for a microwave tube
FR2586326A1 (en) ELECTRON CANON FOR CATHODE RAY TUBES, IN PARTICULAR FOR COLOR TELEVISION
JP3547901B2 (en) Photomultiplier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19911028

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PHOTONIQUE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930504