EP0424471B1 - Schuh mit natürlich profilierter sohle - Google Patents
Schuh mit natürlich profilierter sohle Download PDFInfo
- Publication number
- EP0424471B1 EP0424471B1 EP89909337A EP89909337A EP0424471B1 EP 0424471 B1 EP0424471 B1 EP 0424471B1 EP 89909337 A EP89909337 A EP 89909337A EP 89909337 A EP89909337 A EP 89909337A EP 0424471 B1 EP0424471 B1 EP 0424471B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sole
- shoe sole
- foot
- shoe
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000000386 athletic effect Effects 0.000 claims abstract description 7
- 210000002683 foot Anatomy 0.000 claims description 167
- 210000000474 heel Anatomy 0.000 claims description 76
- 230000033001 locomotion Effects 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 17
- 210000004744 fore-foot Anatomy 0.000 claims description 16
- 210000001872 metatarsal bone Anatomy 0.000 claims description 16
- 210000000459 calcaneus Anatomy 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 210000000544 articulatio talocruralis Anatomy 0.000 claims description 6
- 206010024453 Ligament sprain Diseases 0.000 claims description 5
- 230000008901 benefit Effects 0.000 claims description 5
- 230000037396 body weight Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 6
- 238000013461 design Methods 0.000 description 110
- 230000005484 gravity Effects 0.000 description 9
- 210000003423 ankle Anatomy 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 208000014674 injury Diseases 0.000 description 5
- 230000006872 improvement Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 210000003371 toe Anatomy 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229920004934 Dacron® Polymers 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/12—Soles with several layers of different materials
- A43B13/125—Soles with several layers of different materials characterised by the midsole or middle layer
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/141—Soles; Sole-and-heel integral units characterised by the constructive form with a part of the sole being flexible, e.g. permitting articulation or torsion
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/143—Soles; Sole-and-heel integral units characterised by the constructive form provided with wedged, concave or convex end portions, e.g. for improving roll-off of the foot
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/143—Soles; Sole-and-heel integral units characterised by the constructive form provided with wedged, concave or convex end portions, e.g. for improving roll-off of the foot
- A43B13/145—Convex portions, e.g. with a bump or projection, e.g. 'Masai' type shoes
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/143—Soles; Sole-and-heel integral units characterised by the constructive form provided with wedged, concave or convex end portions, e.g. for improving roll-off of the foot
- A43B13/146—Concave end portions, e.g. with a cavity or cut-out portion
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/143—Soles; Sole-and-heel integral units characterised by the constructive form provided with wedged, concave or convex end portions, e.g. for improving roll-off of the foot
- A43B13/148—Wedged end portions
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B5/00—Footwear for sporting purposes
- A43B5/06—Running shoes; Track shoes
Definitions
- This invention relates to a shoe, such as a street shoe, athletic shoe, and especially a running shoe, with a contoured sole. More particularly, this invention relates to a novel contoured sole design for a shoe which improves the inherent stability and efficient motion of the load bearing shod foot in extreme lateral motion. Still more particularly, this invention relates to a shoe wherein the shoe sole has a side portion or portions that conform to the natural shape of the foot, particularly the sides. Finally, this invention relates to a shoe sole with sole portions and contoured side portions that have a constant thickness, when measured in frontal plane cross sections, permitting the foot to react naturally with the ground as it would if the foot were Dare, while continuing to protect and cushion the foot.
- a wide variety of designs are available for running shoes which are intended to provide stability, but which lead to a constraint in the natural efficient motion of the foot and ankle.
- such designs which can accommodate free, flexible motion in contrast create a lack of control or stability.
- a popular existing shoe design incorporates an inverted, outwardly-flared shoe sole wherein the ground engaging surface is wider than the heel engaging portion.
- such shoes are unstable in extreme situations because the shoe sole, when inverted or on edge, immediately becomes supported only by the sharp bottom sole edge where the entire weight of the body, multiplied by a factor of approximately three at running peak, is concentrated.
- existing shoes maintain a constant distance from the ground - the thickness of the shoe sole - only when they are perfectly flat on the ground. As soon as the shoe is tilted, the distance between foot and ground begins to change unnaturally, as the shoe sole pivots around the outside corner edge. With conventional athletic shoes, the distance most typically increases at first due to the flared sides and then decreases; many street shoes with relatively wide heel width follow that pattern, though some with narrower heels only decrease. All existing shoes continue to decrease the distance all the way down to zero, by tilting through 90 degrees, resulting in ankle sprains and breaks.
- a corrected shoe sole design avoids such unnatural interference by neutrally maintaining a constant distance between foot and ground, even when the shoe is tilted sideways, as if in effect the shoe sole were not there except to cushion and protect. Unlike existing shoes, the corrected shoe would move with the foot's natural sideways pronation and supination motion on the ground.
- there are two possible geometric solutions depending upon whether just the lower horizontal plane of the shoe sole surface varies to achieve natural contour or both upper and lower surface planes vary.
- both upper and lower surfaces or planes of the shoe sole vary to conform to the natural contour of the human foot.
- the two plane solution is the most fundamental concept and naturally most effective. It is the only pure geometric solution to the mathematical problem of maintaining constant distance between foot and ground, and the most optimal, in the same sense that round is only shape for a wheel and perfectly round is most optimal. On the other hand, it is the least similar to existing designs of the two possible solutions and requires computer aided design and injection molding manufacturing techniques.
- CA-A-1 176 458 shows footwear with an outsole, particularly contructed for anti-skid characteristics on an ice surface, with a contoured side portion that does not maintain the same thickness as the underneath sole portion, when measured in frontal plane cross sections.
- a normal barefoot running motion which approximately includes a 7° inversion and a 7° eversion motion, does not occur with shod feet, where a 30° inversion and eversion is common.
- Such a normal barefoot motion is geometrically unattainable because the average running shoe heel is approximately 60% larger than the width of the human heel.
- the shoe heel and the human heel cannot pivot together in a natural manner; rather, the human heel has to pivot within the shoe but is resisted from doing so by the shoe heel counter, motion control devices, and the lacing and binding of the shoe upper, as well as various types of anatomical supports interior to the shoe.
- FIG. 1 A perspective view of an athletic shoe, such as a typical running shoe, according to the prior art, is shown in Fig. 1 wherein a running shoe 20 includes an upper portion 21 and a sole 22.
- a sole typically, such a sole includes a truncated outwardly flared construction of the type best seen in Fig. 2 wherein the lower portion 22a of the sole heel is significantly wider than the upper portion 22b where the sole 22 joins the upper 21.
- a number of alternative sole designs are known to the art, including the design shown in U.S. Patent No. 4,449,306 to Cavanagh wherein an outer portion of the sole of the running shoe includes a rounded portion having a radius of curvature of about 20mm.
- the rounded portion lies along approximately the rear-half of the length of the outer side of the midsole and heel edge areas wherein the remaining border area is provided with a conventional flaring with the exception of a transition zone.
- the U.S Patent to Misevich, No. 4,557,059 also shows an athletic shoe having a contoured sole bottom in the region of the first foot strike, in a shoe which otherwise uses an inverted flared sole.
- the typical design attempts to achieve stability by flaring the heel as shown in Figs. 2A and 2B to a width of, for example, 3 to 3-1/2 inches on the bottom outer sole 22a of the average male shoe size (10D).
- the width of the corresponding human heel foot print, housed in the upper 21, is only about 2.25 in. for the average foot. Therefore, a mismatch occurs in that the heel is locked by the design into a firm shoe heel counter which supports the human heel by holding it tightly and which may also be re-enforced by motion control devices to stabilize the heel.
- Fig. 2A illustrates the impossibility of pivoting about the center edge of the human heel as would be conventional for barefoot support about a point 23 defined by a line 23a perpendicular to the heel and intersecting the bottom edge of upper 21 at a point 24.
- the lever arm force moment of the flared sole is at a maximum at 0° and only slightly less at a normal 7° inversion or eversion and thus strongly resists such a natural motion as is illustrated in Figs. 2A and 2B.
- Fig. 2A illustrates the impossibility of pivoting about the center edge of the human heel as would be conventional for barefoot support about a point 23 defined by a line 23a perpendicular to the heel and intersecting the bottom edge of upper 21 at a point 24.
- the lever arm force moment of the flared sole is at a maximum at 0° and only slightly less at a normal 7° inversion or eversion and thus strongly resists such a natural motion as is illustrated in Figs. 2A and 2
- Fig. 2A illustrates that normal natural motion of the shoe is inefficient in that the center of gravity of the shoe, and the shod foot, is forced upwardly, as discussed later in connection with Fig. 17.
- a narrow rectangular shoe sole design of heel width approximating human heel width is also known and is shown in Figs. 2C and 2D. It appears to be more efficient than the conventional flared sole shown in Figs. 2A and 2B. Since the shoe sole width is the same as human sole width, the shoe can pivot naturally with the normal 7° inversion/eversion motion of the running barefoot. In such a design, the lever arm length and the vertical motion of the center of gravity are approximately half that of the flared sole at a normal 7° inversion/eversion running motion. However, the narrow, human heel width rectangular shoe design is extremely unstable and therefore prone to ankle sprain, so that it has not been well received. Thus, neither of these wide or narrow designs is satisfactory.
- Fig. 3 shows in a frontal plane cross section at the heel (center of ankle joint) the general concept of the applicant's design: a shoe sole 28 that conforms to the natural shape of the human foot 27 and that has a constant thickness (s) in frontal plane cross sections.
- the surface 29 of the bottom and sides of the foot 27 should correspond exactly to the upper surface 30 of the shoe sole 28.
- the shoe sole thickness as measured in frontal plane cross sections is defined as the shortest distance (s) between any point on the upper surface 30 of the shoe sole 28 and the lower surface 31 by definition, the surfaces 30 and 31 are consequently parallel (Figs. 23 and 24 will discuss measurement methods more fully).
- the applicant's general concept is a shoe sole 28 that wraps around and conforms to the natural contours of the foot 27 as if the shoe sole 28 were made of a theoretical single flat sheet of shoe sole material of uniform thickness, wrapped around the foot with no distortion or deformation of that sheet as it is bent to the foot's contours.
- actual construction of the shoe sole contours of uniform thickness will preferably involve the use of multiple sheet lamination or injection molding techniques.
- Figs. 4A, 4B, and 4C illustrate in frontal plane cross section a significant element of the applicant's shoe design in its use of naturally contoured stabilizing sides 28a at the outer edge 28b of a shoe sole 28 illustrated generally at the reference numeral 28. It is thus a main feature of the applicant's invention to eliminate the unnatural sharp bottom edge, especially of flared shoes, in favor of a naturally contoured shoe sole outside 31 as shown in Fig. 3.
- the side or inner edge 30a of the shoe sole stability side 28a is contoured like the natural form on the side or edge of the human foot, as is the outside or outer edge 31a of the shoe sole stability side 28a to follow a theoretically ideal stability plane.
- the thickness (s) of the shoe sole 28 is maintained exactly constant, even if the shoe sole is tilted to either side, or forward or backward.
- the naturally contoured stabilizing sides 28a are defined as the same as the thickness 33 of the shoe sole 28 so that, in cross section, the shoe sole comprises a stable shoe sole 28 having at its outer edge naturally contoured stabilizing sides 28a with a surface or outer edge 31a representing a portion of a theoretically ideal stability plane and described by naturally contoured sides equal to the thickness (s) of the sole 28.
- the top of the shoe sole 30b coincides with the shoe wearer's load-bearing footprint, since in the case shown the shape of the foot is assumed to be load-bearing and therefore flat along the bottom.
- a top edge 32 of the naturally contoured stability side 28a can be located at any point along the contoured side 29 of the foot, while the inner edge 33 of the naturally contoured side 28a coincides with the perpendicular sides 34 of the load-bearing portions 28b of the shoe sole 28.
- the shoe sole 28 is preferably integrally formed from the portions 28b and 28a.
- the theoretically ideal stability plane includes the contours 31a merging into the lower surface 31b of the sole 28.
- the peripheral extent 36 of the load-bearing portion of the sole 28b of the shoe includes all of the support structures of the foot but extends no further than the outer edge of the foot sole 37 as defined by a load-bearing footprint, as shown in Fig. 4D, which is a top view of the upper shoe sole surface 30b.
- Fig. 4D thus illustrates a foot outline at numeral 37 and a recommended sole outline 36 relative thereto.
- a horizontal plane outline of the top of the load-bearing portion of the shoe sole therefore exclusive of contoured stability sides, should, preferably, coincide as nearly as practicable with the load-bearing portion of the foot sole with which it comes into contact.
- Such a horizontal outline, as best seen in Figs. 4D and 7D should remain uniform throughout the entire thickness of the shoe sole eliminating negative or positive sole flare so that the sides are exactly perpendicular to the horizontal plane as shown in Fig. 4B.
- the density of the shoe sole material is uniform.
- Fig. 5 Another significant feature of the applicant's invention is illustrated diagrammatically in Fig. 5.
- the heel lift or wedge 38 of thickness (s1) increases the total thickness (s + s1) of the combined mid-sole and outersole 39 of thickness (s) in an aft direction of the shoe
- the naturally contoured sides 28a increase in thickness exactly the same amount according to the principles discussed in connection with Fig. 4.
- the thickness of the inner edge 33 of the naturally contoured side is always equal to the constant thickness (s) of the load-bearing shoe sole 28b in the frontal cross-sectional plane.
- the sole can be improved significantly according to the applicant's invention by the addition of a naturally contoured side 28a which correspondingly varies with the thickness of the shoe sole and changes in the frontal plane according to the shoe heel lift 38.
- the thickness of the naturally contoured side 28a in the heel section is equal to the thickness (s + s1) of the shoe sole 28 which is thicker than the shoe sole 39 thickness (s) shown in Fig. 5A by an amount equivalent to the heel lift 38 thickness (s1).
- the thickness (s) of the shoe contoured side portion is thus always equal to the thickness (s) at the forefoot of the shoe sole portion.
- Fig. 6 illustrates a side cross-sectional view of a shoe to which the invention has been applied and is also shown in a top plane view in Fig. 7.
- Figs. 7A, 7B and 7C represent frontal plane cross-sections taken along the forefoot, at the base of the fifth metatarsal, and at the heel, thus illustrating that the shoe sole thickness is constant at each frontal plane cross-section, even though that thickness varies from front to back, due to the heel lift 38 as shown in Fig. 6, and that the thickness of the naturally contoured sides is equal to the shoe sole thickness in each Fig. 7A-7C cross section.
- Fig. 7D a horizontal plane overview of the left foot, it can be seen that the contour of the sole follows the preferred principle in matching, as nearly as practical, the load-bearing sole print shown in Fig. 4D.
- Fig. 8 thus contrasts in frontal plane cross section the conventional flared sole 22 shown in phantom outline and illustrated in Fig. 2 with the contoured shoe sole 28 according to the invention as shown in Figs. 3-7.
- Fig. 9 is suitable for analyzing the shoe sole design according to the applicant's invention by contrasting the neutral situation shown in Fig. 9A with the extreme tilting situations shown in Figs. 9B and 9C.
- the effect of the applicant's invention having a naturally contoured side 28a is totally neutral allowing the shod foot to react naturally with the ground 43, in either an inversion or eversion mode. This occurs in part because of the unvarying thickness along the shoe sole edge which keeps the foot sole equidistant from the ground in a preferred case.
- any point 40 on the top surface 30b of the shoe sole 30 closest to ground lies at a distance (s) from the ground surface 43. That distance (s) remains constant even for extreme situations as seen in Figs. 9B and 9C.
- the theoretically ideal plane of stability is where the stability plane is defined as sole thickness which is constant under all load-bearing points of the foot sole for any amount from 0° to 90° rotation of the sole to either side or front and back.
- the stability plane is defined as sole thickness which is constant under all load-bearing points of the foot sole for any amount from 0° to 90° rotation of the sole to either side or front and back.
- the foot will remain stable because the sole thickness (s) between the foot and the ground always remain constant because of the exactly contoured sides.
- the stable shoe By remaining a constant distance from the ground, the stable shoe allows the foot to react to the ground as if the foot were bare while allowing the foot to be protected and cushioned by the shoe.
- the new naturally contoured sides will effectively position and hold the foot onto the load-bearing foot print section of the shoe sole, reducing or eliminating the need for heel counters and other relatively rigid motion control devices.
- FIG. 10A illustrates how the inner edge 30a of the naturally contoured sole side 28a is maintained at a constant distance (s) from the ground through various degrees of rotation of the edge 31a of the shoe sole such as is shown in Fig. 9.
- Figure 10B shows how a conventional shoe sole pivots around its lower edge 42, which is its center of rotation, instead of around the upper edge 40, which, as a result, is not maintained at constant distance (s) from the ground, as with the invention, but is lowered to .7(s) at 45° rotation and to zero at 90° rotation.
- Fig. 11 shows typical conventional sagittal plane shoe sole thickness variations, such as heel lifts or wedges 38, or toe taper 38a, or full sole taper 38b, in Figs. 11A-11E and how the naturally contoured sides 28a equal and therefore vary with those varying thicknesses as discussed in connection with Fig. 5.
- Fig. 12 illustrates an embodiment of the invention which utilizes varying portions of the theoretically ideal stability plane 51 in the naturally contoured sides 28a in order to reduce the weight and bulk of the sole, while accepting a sacrifice in some stability of the shoe.
- Fig. 12A illustrates the preferred embodiment as described above in connection with Fig. 5 wherein the outer edge 31a of the naturally contoured sides 28a follows a theoretically ideal stability plane 51.
- the contoured surfaces 31a, and the lower surface 31b of the sole 28 lie along the theoretically ideal stability plane 51.
- the theoretically ideal stability plane 51 is defined as the plane of the surface of the bottom or lower surface 31b of the shoe sole, wherein the shoe sole 28 conforms to the natural shape of the wearer's foot sole particularly the sides, and has a constant thickness in frontal plane cross sections.
- an engineering trade-off results in an abbreviation within the theoretically ideal stability plane 51 by forming a naturally contoured side surface 53a approximating the natural contour of the foot (or more geometrically regular, which is less preferred) at an angle relative to the upper plane of the shoe sole 28 so that only a smaller portion of the contoured side 28a defined by the constant thickness lying along the contoured surface 31a is coplanar with the theoretically ideal stability plane 51.
- Fig. 12 may be desirable for portions of the shoe sole which are less frequently used so that the additional part of the side is used less frequently.
- a shoe may typically roll out laterally, in an inversion mode, to about 20° on the order of 100 times for each single time it rolls out to 40°.
- the extra stability is needed for a basketball shoe, shown in Fig. 12B.
- the added shoe weight to cover that infrequently experienced range of motion is about equivalent to covering the frequently encountered range. Since, in a racing shoe this weight might not be desirable, an engineering trade-off of the type shown in Fig. 12D is possible.
- a typical running/jogging shoe id shown in Fig. 12C The range of possible variations is limitless, but includes at least the maximum of 90° in inversion or eversion, as shown here in Fig. 12A and at lease 120°, as shown previously in Fig. 3.
- Fig. 13 shows the theoretically ideal stability plane 51 in defining embodiments of the shoe sole having differing tread or cleat patterns.
- Fig. 13 illustrates that the invention is applicable to shoe soles having conventional bottom treads.
- Fig. 13A is similar to Fig. 12B further including a tread portion 60
- Fig. 13B is also similar to Fig. 12B wherein the sole includes a cleated portion 61.
- the surface 63 to which the cleat bases are affixed should preferably be on the same plane and parallel the theoretically ideal stability plane 51, since in soft ground that surface rather than the cleats become load-bearing.
- the embodiment in Fig. 13C is similar to Fig. 12C showing still an alternative tread construction 62. In each case, the load-bearing outer surface of the tread or cleat pattern 60-62 lies along the theoretically ideal stability plane 51.
- Fig. 14 shows, in a rear cross sectional view, the application of the invention to a shoe to produce an aesthetically pleasing and functionally effective design.
- a practical design of a shoe incorporating the invention is feasible, even when applied to shoes incorporating heel lifts 38 and a combined midsole and outersole 39.
- use of a sole surface and sole outer contour which track the theoretically ideal stability plane does not detract from the commercial appeal of shoes incorporating the invention.
- Fig. 15 shows a fully contoured shoe sole design that follows the natural contour of all of the foot, the bottom as well as the sides.
- the fully contoured shoe sole assumes that the resulting slightly rounded bottom when unloaded will deform under load and flatten just as the human foot bottom is slightly rounded unloaded but flattens under load; therefore, shoe sole material must be of such Composition as to allow the natural deformation following that of the foot.
- the design applies particularly to the heel, but to the rest of the shoe sole as well.
- the fully contoured design allows the foot to function as naturally as possible. Under load, Fig. 15 would deform by flattening to look essentially like Fig. 14. Seen in this light, the naturally contoured side design in Fig.
- Fig. 14 is a more conventional, conservative design that is a special case of the more general fully contoured design in Fig. 15, which is the closest to the natural form of the foot, but the least conventional.
- the amount of deformation flattening used in the Fig. 14 design, which obviously varies under different loads, is not an essential element of the applicant's invention.
- Figs. 14 and 15 both show in frontal plane cross section the essential concept underlying this invention, the theoretically ideal stability plane, which is also theoretically ideal for efficient natural motion of all kinds, including running, jogging or walking.
- Fig. 15 shows the most general case of the invention, the fully contoured design, which conforms to the natural shape of the unloaded foot.
- the theoretically ideal stability plane 51 is determined, first, by the desired shoe sole thickness (s) in a frontal plane cross section, and, second, by the natural shape of the individual's foot surface 29, to which the theoretically ideal stability plane 51 is by definition parallel.
- the theoretically ideal stability plane for any particular individual is determined, first, by the given frontal plane cross section shoe sole thickness (s); second, by the natural shape of the individual's foot; and, third, by the frontal plane cross section width of the individual's load-bearing footprint 30b, which is defined as the upper surface of the shoe sole that is in physical contact with and supports the human foot sole, as shown in Fig. 4.
- the theoretically ideal stability plane for the special case is composed conceptually of two parts. Shown in Figs. 14 and 4 the first part is a line segment 31b of equal length and parallel to 30b at a constant distance (s) equal to shoe sole thickness. This corresponds to a conventional shoe sole directly underneath the human foot, and also corresponds to the shoe sole portion 28b under flattened portion of the bottom of the load-bearing foot sole.
- the second part is the naturally contoured stability side outer edge 31a located at each side of the first part, line segment 31b. Each point on the contoured side outer edge 31a is located at a distance which is exactly shoe sole thickness (s) from the closest point on the contoured side inner edge 30a, consequently, the inner and outer contoured edges 31A and 30A are by definition parallel.
- the theoretically ideal stability plane is the essence of this invention because it is used to determine a geometrically precise bottom contour of the shoe sole based on a top contour that conforms to the contour of the foot.
- This invention specifically claims the exactly determined geometric relationship just described. It can be stated unequivocally that any shoe sole contour, even of similar contour, that exceeds the theoretically ideal stability plane will restrict natural foot motion, while any less than that plane will degrade natural stability, in direct proportion to the amount of the deviation.
- Fig. 16 illustrates in a curve 70 the range of side to side inversion/eversion motion of the ankle center of gravity 71 from the shoe according to the invention shown in frontal plane cross section at the ankle.
- the locus of points of motion for the center of gravity thus defines the curve 70 wherein the center of gravity 71 maintains a steady level motion with no vertical component through 40° of inversion or eversion.
- the shoe sole stability equilibrium point is at 28° (at point 74) and in no case is there a pivoting edge to define a rotation point as in the case of Fig. 2.
- the inherently superior side to side stability of the design provides pronation control (or eversion), as well as lateral (or inversion) control.
- pronation control or eversion
- lateral or inversion
- Fig. 17 thus compares the range of motion of the center of gravity for the invention, as shown in curve 70, in comparison to curve 80 for the conventional wide heel flare and a curve 82 for a narrow rectangle the width of a human heel. Since the shoe stability limit is 28° in the inverted mode, the shoe sole is stable at the 20° approximate barefoot inversion limit. That factor, and the broad base of support rather than the sharp bottom edge of the prior art, make the contour design stable even in the most extreme case as shown in Figs. 16A-16C and permit the inherent stability of the barefoot to dominate without interference, unlike existing designs, by providing constant, unvarying shoe sole thickness in frontal plane cross sections.
- the stability superiority of the contour side design is thus clear when observing how much flatter its center of gravity curve 70 is than in existing popular wide flare design 80.
- the curve demonstrates that the contour side design has significantly more efficient natural 7° inversion/eversion motion than the narrow rectangle design the width of a human heel, and very much more efficient than the conventional wide flare design; at the same time, the contour side design is more stable in extremis than either conventional design because of the absence of destabilizing torque.
- Fig. 18A illustrates, in a pictorial fashion, a comparison of a cross section at the ankle joint of a conventional shoe with a cross section of a shoe according to the invention when engaging a heel.
- the heel of the foot 27 of the wearer engages an upper surface of the shoe sole 22
- the shape of the foot heel and the shoe sole is such that the conventional shoe sole 22 conforms to the contour of the ground 43 and not to the contour of the sides of the foot 27.
- the conventional shoe sole 22 cannot follow the natural 7° inversion/eversion motion of the foot, and that normal motion is resisted by the shoe upper 21, especially when strongly reinforced by firm heel counters and motion control devices. This interference with natural motion represents the fundamental misconception of the currently available designs.
- the new design illustrates a correct conception of the shoe sole 28 as a part of the foot and an extension of the foot, with shoe sole sides contoured exactly like those of the foot, and with the frontal plane thickness of the shoe sole between the foot and the ground always the same and therefore completely neutral to the natural motion of the foot.
- the shoe can move naturally with the foot, instead of restraining it, so both natural stability and natural efficient motion coexist in the same shoe, with no inherent contradiction in design goals.
- the contoured shoe design of the invention brings together in one shoe design the cushioning and protection typical of modern shoes, with the freedom from injury and functional efficiency, meaning speed, and/or endurance, typical of barefoot stability and natural freedom of motion.
- Significant speed and endurance improvements are anticipated, based on both improved efficiency and on the ability of a user to train harder without injury.
- Figs. 19A-D illustrate, in frontal plane cross sections, the naturally contoured sides design extended to the other natural contours underneath the load-bearing foot, such as the main longitudinal arch, the metatarsal (or forefoot) arch, and the ridge between the heads of the metatarsals (forefoot) and the heads of the distal phalanges (toes).
- the shoe sole thickness remains constant as the contour of the shoe sole follows that of the sides and bottom of the load-bearing foot.
- Fig. 19E shows a sagittal plane cross section of the shoe sole conforming to the contour of the bottom of the load-bearing foot, with thickness varying according to the heel lift 38.
- Fig. 19A-D illustrate, in frontal plane cross sections, the naturally contoured sides design extended to the other natural contours underneath the load-bearing foot, such as the main longitudinal arch, the metatarsal (or forefoot) arch, and the ridge between the heads of the metatarsals (forefoot) and
- FIG. 19F shows a horizontal plane top view of the left foot that shows the areas 85 of the shoe sole that correspond to the flattened portions of the foot sole that are in contact with the ground when load-bearing.
- Contour lines 86 and 87 show approximately the relative height of the shoe sole contours above the flattened load-bearing areas 85 but within roughly the peripheral extent 35 of the upper surface of sole 30 shown in Fig. 4.
- a horizontal plane bottom view (not shown) of Fig. 19F would be the exact reciprocal or converse of Fig. 19F (i.e. peaks and valleys contours would be exactly reversed).
- Figs. 20A-D show, in frontal plane cross sections, the fully contoured shoe sole design extended to the bottom of the entire non-load-bearing foot.
- Fig. 20E shows a sagittal plane cross section.
- the shoe sole contours underneath the foot are the same as Figs. 19A-E except that there are no flattened areas corresponding to the flattened areas of the load-bearing foot.
- the exclusively rounded contours of the shoe sole follow those of the unloaded foot.
- a heel lift 38 the same as that of Fig. 19, is incorporated in this embodiment, but is not shown in Fig. 20.
- Fig. 21 shows the horizontal plane top view of the left foot corresponding to the fully contoured design described in Figs. 20A-E, but abbreviated along the sides to only essential structural support and propulsion elements.
- Shoe sole material density can be increased in the unabbreviated essential elements to compensate for increased pressure loading there.
- the essential structural support elements are the base and lateral tuberosity of the calcaneus 95, the heads of the metatarsals 96, and the base of the fifth metatarsal 97. They must be supported both underneath and to the outside for stability.
- the essential propulsion element is the head of first distal phalange 98.
- the medial (inside) and lateral (outside) sides supporting the base of the calcaneus are shown in Fig.
- Fig. 21 oriented roughly along either side of the horizontal plane subtalar ankle joint axis, but can be located also more conventionally along the longitudinal axis of the shoe sole.
- Fig. 21 shows that the naturally contoured stability sides need not be used except in the identified essential areas. Weight savings and flexibility improvements can be made by omitting the non-essential stability sides.
- Contour lines 86 through 89 show approximately the relative height of the shoe sole contours within roughly the peripheral extent 35 of the undeformed upper surface of shoe sole 30 shown in Fig. 4.
- a horizontal plane bottom view (not shown) of Fig. 21 would be the exact reciprocal or converse of Fig. 21 (i.e. peaks and valleys contours would be exactly reversed).
- Fig. 22A shows a development of street shoes with naturally contoured sole sides incorporating the features of the invention.
- Fig. 22A develops a theoretically ideal stability plane 51, as described above, for such a street shoe, wherein the thickness of the naturally contoured sides equals the shoe sole thickness.
- the resulting street shoe with a correctly contoured sole is thus shown in frontal plane heel cross section in Fig. 22A, with side edges perpendicular to the ground, as is typical.
- Fig. 22B shows a similar street shoe with a fully contoured design, including the bottom of the sole.
- the invention can be applied to an unconventional heel lift shoe, like a simple wedge, or to the most conventional design of a typical walking shoe with its heel separated from the forefoot by a hollow under the instep.
- the invention can be applied just at the shoe heel or to the entire shoe sole. With the invention, as so applied, the stability and natural motion of any existing shoe design, except high heels or spike heels, can be significantly improved by the naturally contoured shoe sole design.
- Fig. 23 shows a method of measuring shoe sole thickness to be used to construct the theoretically ideal stability plane of the naturally contoured side design.
- the constant shoe sole thickness of this design is measured at any point on the contoured sides along a line that, first, is perpendicular to a line tangent to that point on the surface of the naturally contoured side of the foot sole and, second, that passes through the same foot sole surface point.
- Fig. 24 illustrates another approach to constructing the theoretically ideal stability plane, and one that is easier to use, the circle radius method.
- the pivot point (circle center) of a compass is placed at the beginning of the foot sole's natural side contour (frontal plane cross section) and roughly a 90° arc (or much less, if estimated accurately) of a circle of radius equal to (s) or shoe sole thickness is drawn describing the area farthest away from the foot sole contour. That process is repeated all along the foot sole's natural side contour at very small intervals (the smaller, the more accurate).
- Fig. 25A shows a frontal plane cross section of a design wherein the sole material in areas 107 is so relatively soft that it deforms easily to the contour of shoe sole 28 of the proposed invention.
- the heel cross section includes a sole upper surface 101 and a bottom sole edge surface 102 following when deformed an inset theoretically ideal stability plane 51.
- the sole edge surface 102 terminates in a laterally extending portion 103 joined to the heel of the sole 28.
- the laterally-extending portion 103 is made from a flexible material and structured to cause its lower surface 102 to terminate during deformation to parallel the inset theoretically ideal stability plane 51. Sole material in specific areas 107 is extremely soft to allow sufficient deformation. Thus, in a dynamic case, the outer edge contour assumes approximately the theoretically ideal stability shape described above as a result of the deformation of the portion 103.
- the top surface 101 similarly deforms to approximately parallel the natural contour of the foot as described by lines 30a and 30b shown in Fig. 4.
- the controlled or programmed deformation can be provided by either of two techniques.
- the shoe sole sides, at especially the midsole can be cut in a tapered fashion or grooved so that the bottom sole bends inwardly under pressure to the correct contour.
- the second uses an easily deformable material 107 in a tapered manner on the sides to deform under pressure to the correct contour. While such techniques produce stability and natural motion results which are a significant improvement over conventional designs, they are inherently inferior to contours produced by simple geometric shaping.
- the actual deformation must be produced by pressure which is unnatural and does not occur with a bare foot and second, only approximations are possible by deformation, even with sophisticated design and manufacturing techniques, given an individual's particular running gait or body weight. Thus, the deformation process is limited to a minor effort to correct the contours from surfaces approximating the ideal curve in the first instance.
- the theoretically ideal stability plane can also be approximated by a plurality of line segments 110, such as tangents, chords, or other lines. as shown in Fig. 26.
- line segments 110 such as tangents, chords, or other lines.
- Both the upper surface of the shoe sole 28, which coincides with the side 30a of the foot 27, and the bottom surface 31a of the naturally contoured side can be approximated.
- a single flat plane 110 approximation may correct many of the biomechanical problems occurring with existing designs, because it can provide a gross approximation of the both natural contour of the foot and the theoretically ideal stability plane 51, the single plane approximation is presently not preferred, since it is the least optimal.
- Single and double plane approximations are shown as line segments in the cross section illustrated in Fig. 26.
- Fig. 27 shows a frontal plane cross section of an alternate embodiment for the invention showing stability sides component 28a that are determined in a mathematically precise manner to conform approximately to the sides of the foot.
- the center or load-bearing shoe sole portion 28b would be as described in Fig. 4.
- the side portions 28a would be a quadrant of a circle of radius (r + r 1 ), where distance (r) must equal sole thickness (s); consequently the sub-quadrant of radius (r 1 ) is removed from quadrant (r + r 1 ).
- the component side 28a is thus a quarter or other section of a ring.
- the center of rotation 115 of the quadrants is selected to achieve a sole upper side surface 30a that closely approximates the natural contour of the side of the human foot.
- Fig. 27 provides a direct bridge to another invention by the applicant, a shoe sole design with quadrant stability sides.
- Fig. 28 shows a shoe sole design that allows for unobstructed natural inversion/eversion motion of the calcaneus by providing maximum shoe sole flexibility particularly between the base of the calcaneus 125 (heel) and the metatarsal heads 126 (forefoot) along an axis 120.
- An unnatural torsion occurs about that axis if flexibility is insufficient so that a conventional shoe sole interferes with the inversion/eversion motion by restraining it.
- the object of the design is to allow the relatively more mobile (in eversion and inversion) calcaneus to articulate freely and independently from the relatively more fixed forefoot, instead of the fixed or fused structure or lack of stable structure between the two in conventional designs.
- the forefoot can be subdivided (not shown) into its component essential structural support and propulsion elements, the individual heads of the metatarsal and the heads of the distal phalanges, so that each major articulating joint set of the foot is paralleled by a freely articulating shoe sole support propulsion element, an anthropomorphic design; various aggregations of the subdivisions are also possible.
- An added benefit of the design is to provide better flexibility along axis 122 for the forefoot during the toe-off propulsive phase of the running stride, even in the absence of any other embodiments of the applicant's invention; that is, the benefit exists for conventional shoe sole designs.
- Fig. 28A shows in sagittal plane cross section a specific design maximizing flexibility, with large non-essential sections removed for flexibility and connected by only a top layer (horizontal plane) of non-stretching fabric 123 like Dacron polyester or Kevlar.
- Fig. 28B shows another specific design with a thin top sole layer 124 instead of fabric and a different structure for the flexibility sections: a design variation that provides greater structural support, but less flexibility, though still much more than conventional designs.
- Fig. 28C shows a bottom view (horizontal plane) of the inversion/eversion flexibility design.
- Fig. 29 shows a non-optimal but interim or low cost approach to shoe sole construction, whereby the midsole and heel lift 127 are produced conventionally, or nearly so (at least leaving the midsole bottom surface flat, though the sides can be contoured), while the bottom or outer sole 128 includes most or all of the special contours of the new design. Not only would that completely or mostly limit the special contours to the bottom sole, which would be molded specially, it would also ease assembly, since two flat surfaces of the bottom of the midsole and the top of the bottom sole could be mated together with less difficulty than two contoured surfaces, as would be the case otherwise.
- the advantage of this approach is seen in the naturally contoured design example illustrated in Fig. 29, which shows some contours on the relatively softer midsole sides, which are subject to less wear but benefit from greater traction for stability and ease of deformation, while the relatively harder contoured bottom sole provides good wear for the load-bearing areas.
- Fig. 29B shows in bottom view the outline of a bottom sole 128 made from flat material which can be conformed topologically to a contoured midsole of either the one or two plane designs by limiting the side areas to be mated to the essential support areas discussed in Fig. 21; by that method, the contoured midsole and flat bottom sole surfaces can be made to join satisfactorily by coinciding closely, which would be topologically impossible if all of the side areas were retained on the bottom sole.
- Figs. 30A-30C frontal plane cross sections, show an enhancement to the previously described embodiments of the shoe sole naturally contoured side invention.
- one major purpose of that design is to allow the shoe sole to pivot easily from side to side with the foot 90, thereby following the foot's natural inversion and eversion motion; in conventional designs shown in Fig. 39a, such foot motion is forced to occur within the shoe upper 21, which resists the motion.
- the enhancement is to position exactly and stabilize the foot, especially the heel, relative to the preferred embodiment of the shoe sole; doing so facilitates the shoe sole's responsiveness in following the foot's natural motion. As shown in Fig.
- the form of the enhancement is inner shoe sole stability sides 131 that follow the natural contour of the sides 91 of the heel of the foot 27, thereby cupping the heel of the foot.
- the inner stability sides 131 can be located directly on the top surface of the shoe sole and heel contour, or directly under the shoe insole (or integral to it), or somewhere in between.
- the inner stability sides are similar in structure to heel cups integrated in insoles currently in common use, but differ because of its material density, which can be relatively firm like the typical mid-sole, not soft like the insole. The difference is that because of their higher relative density, preferably like that of the uppermost midsole, the inner stability sides function as part of the shoe sole, which provides structural support to the foot, not just gentle cushioning and abrasion protection of a shoe insole.
- insoles should be considered structurally and functionally as part of the shoe sole, as should any shoe material between foot and ground, like the bottom of the shoe upper in a slip-lasted shoe or the board in a board-lasted shoe.
- the inner stability side enhancement is particularly useful in Converting existing conventional shoe sole design embodiments, as constructed within prior art, to an effective embodiment of the side stability quadrant 26 invention. This feature is important in constructing prototypes and initial production of the invention, as well as an ongoing method of low cost production, since such production would be very close to existing art.
- the inner stability sides enhancement is most essential in cupping the sides and back of the heel of the foot and therefore is essential on the upper edge of the heel 27 of the shoe sole 28, but may also be extended around all or any portion of the remaining shoe sole upper edge.
- the size of the inner stability sides should, however, taper down in proportion to any reduction in shoe sole thickness in the sagittal plane.
- the inner shoe sole stability sides 131 enhancement positions and stabilizes the foot relative to the shoe sole, and maintains the constant shoe sole thickness (s) of the naturally contoured sides 28a design, as shown in Figs. 30B and 30C; Fig. 30A shows a conventional design.
- the inner shoe sole stability sides 131 conform to the natural contour of the foot sides 29, which determine the theoretically ideal stability plane 51 for the shoe sole thickness (s). In essence, the approach provides a low cost or interim method of adapting existing conventional "flat sheet" shoe manufacturing to the naturally contoured design described in previous figures.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Handling Of Sheets (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Claims (37)
- Schuhsohle (28) für einen Schuh (20) oder andere Schuhwaren, wie ein Straßen- oder Sportschuh, mit:einer oberen Fläche (30, 30a, 30b), die im wesentlichen der natürlichen Form von zumindest einem Teil einer Sohle (29) eines Fußes (27) von einem Träger entspricht, wobei die Form zumindest einen Teil des gewichttragenden Abschnitts von zumindest einem gekrümmten Seitenbereich der Fußsohle (29) umfaßt; undeiner unteren Fläche (31), die mit dem Boden Kontakt hat; undzumindest einem Sohlenabschnitt (28b), der die obere Fläche (30b) umfaßt, und zumindest einem natürlich angepaßten Seitenabschnitt (28a), der mit dem Sohlenabschnitt (28b) und der oberen Fläche (30a) verbunden ist, die im wesentlichen der Form des zugehörigen Seitenbereichs der Sohle (29) des Fußes (27) entspricht;
wobei die Schuhsohle (28) eine veränderliche Dicke (S) hat, wenn etwa in Sagittalebenen-Querschnitten gemessen wird;
dadurch gekennzeichnet, daßder Sohlenabschnitt (28b) und der angepaßte Seitenabschnitt (28a) eine im wesentlichen gleichbleibende Dicke (S) haben, wenn etwa in Frontalebenen-Querschnitten gemessen wird;die Schuhsohlendicke (S) als etwa der kürzeste Abstand zwischen jedem Punkt auf etwa der oberen Fläche (30), die mit dem Fuß Kontakt hat, und dem nächstliegenden Punkt auf etwa der unteren Fläche (31) definiert ist, die mit dem Boden Kontakt hat, wenn etwa in Frontalebenen-Querschnitten gemessen wird; unddie im wesentlichen gleichbleibende Dicke (S) unterschiedlich ist, wenn zumindest in zwei verschiedenen Frontalebenen-Querschnitten gemessen wird, wobei die Schuhsohle (28) zumindest einen angepaßten Seitenabschnitt (28a) mit im wesentlichen gleichbleibender Dicke (S) von zumindest 20° hat, so daß zumindest zwei unterschiedliche Dicken (S) des zumindest einen angepaßten Seitenabschnitts (28a) vorhanden sind, wenn in den beiden verschiedenen Frontalebenen-Querschnitten gemessen wird. - Schuhsohle (28) nach Anspruch 1, bei der die Schuhsohlendicke (S) in einem Fersenbereich (125) größer ist als die in einem Vorderfußbereich (126).
- Schuhsohle (28) nach Anspruch 1 oder 2, bei der die Schuhsohle (28) aus einem nachgiebigen Material besteht, das eine ausreichende Nachgiebigkeit hat, um im wesentlichen zu erreichen, daß sich die Fußsohle (29) des Trägers unter einer Last des Körpergewichts in der gleichen Art natürlich abflacht, als wenn die Fußsohle (29) direkt auf dem Boden (43) lastet;wobei unter der Last des Körpergewichts durch die Nachgiebigkeit der Fußsohle (29) erreicht wird, daß die gewichttragende Fläche (30) der Schuhsohle (28) und die damit in Kontakt stehende gewichttragende Fläche der Fußsohle (29) im wesentlichen parallel zu der Fläche des Bodens (43) verlaufen, wenn in Frontalebenen-Querschnitten gemessen wird;und wobei durch die Nachgiebigkeit der Schuhsohle (28) außerdem erreicht wird, daß die obere Fläche (30) der Schuhsohle (28), die zumindest den angepaßten Seitenabschnitt (28a) umfaßt, sich im wesentlichen ständig der sich verändernden Form der Fußsohle (29) des Trägers anpaßt, sogar dann, wenn sich die Fußsohle auf natürliche Art und Weise unter der Last des Körpergewichts abflacht.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 3, bei der der angepaßte Seitenabschnitt (28a) von zumindest 20° mit zumindest einem Sohlenabschnitt (28b) verbunden ist, der sich im wesentlichen nahe der Metatarsalknochenköpfe (96) des Fußes des Trägers befindet.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 4, bei der der angepaßte Seitenabschnitt (28a) von zumindest 20° mit zumindest einem Sohlenabschnitt (28b) verbunden ist, der sich im wesentlichen nahe einer Basis des fünften Metatarsalknochens (97) des Fußes des Trägers befindet.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 5, bei der der angepaßte Seitenabschnitt (28a) von zumindest 20° mit zumindest einem Sohlenabschnitt (28b) verbunden ist, der sich im wesentlichen nahe einer seitlichen Tuberositas des Kalkaneus (95) des Fußes (27) des Trägers befindet.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 6, bei der der angepaßte Seitenabschnitt (28a) von zumindest 20° mit zumindest einem medialen Sohlenabschnitt (28b) verbunden ist, der sich im wesentlichen nahe einer Basis des Kalkaneus (95) des Fußes (27) des Trägers befindet.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 7, bei der der angepaßte Seitenabschnitt (28a) von zumindest 20° mit zumindest einem Sohlenabschnitt (28b) verbunden ist, der sich im wesentlichen nahe der Metatarsalknochenköpfe (96) des Fußes (27) des Trägers befindet.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 8, bei der der angepaßte Seitenabschnitt (28a) von zumindest 20° mit zumindest einem Sohlenabschnitt (28b) verbunden ist, der sich im wesentlichen nahe des Kopfes des ersten distalen Phalanx (98) des Fußes (27) des Trägers befindet.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 9, bei der zumindest ein wesentlicher Teil des zumindest einen Sohlenabschnitts (28b) mit dem zumindest einen angepaßten Seitenabschnitt (28a) verbunden ist.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 10, bei der zumindest zwei angepaßte Seitenabschnitte (28a), die einen Abschnitt, der sich im wesentlichen nahe des ersten Metatarsalknochenkopfes (96) befindet, und einen Abschnitt umfassen, der sich im wesentlichen nahe der ersten distalen Phalanx (98) befindet, durch einen Bereich getrennt sind, der direkt zwischen diesen liegt und keinen angepaßten Seitenabschnitt (28a) hat.
- Schuhsohle (28) nach einem-der Ansprüche 1 bis 11, bei der zumindest zwei angepaßte Seitenabschnitte (28a) durch einen Bereich getrennt sind, der direkt zwischen diesen liegt und einen Sohlenabschnitt (28b) umfaßt, der mit einem angepaßten Seitenabschnitt verbunden ist, der eine Dicke hat, die kleiner ist als die Dicke des Sohlenabschnitts (28b); wobei die Dicke des angepaßten Seitenabschnitts (28a) und die des Sohlenabschnitts (28b) in Frontalebenen-Querschnitten gemessen wird.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 12, bei der zumindest ein Teil der oberen Fläche (30b) des zumindest einen Sohlenabschnitts (28b) im wesentlichen der natürlichen Form der Sohle (29) des gewichttragenden Fußes (27) des Trägers entspricht.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 13, bei der zumindest ein Teil der oberen Fläche (30b) des zumindest einen Sohlenabschnitts (28b) im wesentlichen der natürlichen Form der Unterseite der Sohle (29) des Fußes (27) des Trägers entspricht, wenn dieser nicht unter einer Last steht.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 14, bei der zumindest in dem Bereich des Kalkaneus (95) zumindest ein Teil der oberen Fläche (30b) des zumindest einen Sohlenabschnitts (28b) im wesentlichen der natürlichen Form der Unterseite der Sohle (29) des Fußes (27) des Trägers entspricht, wenn dieser nicht unter einer Last steht.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 15, bei der zumindest ein Teil der oberen Fläche (30b) des zumindest einen Sohlenabschnitts (28b) im wesentlichen eben ist.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 16, bei der die angepaßten Seitenabschnitte (28a) ausreichend sind, um eine Seitenstabilität des Fußes (27) des Trägers über dessen gesamten Bereich der seitwärts gerichteten Pronations- und Supinationsbewegung auf eine Weise aufrechtzuerhalten, die im wesentlichen gleich der des nackt auf dem Boden (43) stehenden Fußes (27) des Trägers ist;wobei eine feste Seitenstabilität durch einen einfachen Vergleichstest demonstriert werden kann, der von dem Träger durchgeführt wird, der eine Inversionsbewegung des Knöchels simulieren kann, während er eine unbewegliche Stellung einnimmt;wobei erstens der Fuß (27) des Trägers ohne Schuh eine seitliche Inversionsbewegung bis zum äußersten 20°-Grenzwert des Bewegungsbereichs eines subtalaren oberen Sprunggelenks des Fußes des Trägers durchführt, um die feste Seitenstabilität zu demonstrieren;zweitens die gleiche Inversionsbewegung von dem Träger wiederholt wird, der einen Schuh mit einer Schuhsohle (28) trägt, die die angepaßten Seitenabschnitte (28a) mit im wesentlichen gleichbleibender Dicke (s) enthält, um die im wesentlichen gleiche feste Seitenstabilität zu demonstrieren;und drittens im Gegensatz dazu die gleiche Inversionsbewegung sehr vorsichtig von dem Träger wiederholt wird, der einen Schuh mit einer herkömmlichen Schuhsohle (22) trägt, um das Fehlen der Seitenstabilität festzustellen.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 17, bei der die Dichte des zumindest einen angepaßten Seitenabschnitts (28a) größer ist als die Dichte des Materials, das für den Sohlenabschnitt (28b) verwendet wird, um die erhöhte Druckbelastung während der Inversionsbewegung und der Eversionsbewegung des Fußes auszugleichen.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 18, bei der zumindest der angepaßte Seitenabschnitt (28a) von zumindest 30° mit einem Fersenbereich (125) des Sohlenabschnitts (28b) verbunden ist;und die im wesentlichen gleichbleibende Dicke (S) der Schuhsohle (28) im Fersenbereich (125) mit einem angepaßten Seitenabschnitt (28a) von zumindest 30°, bei Messung in einem Frontalebenen-Querschnitt, verschieden von der im wesentlichen gleichbleibenden Dicke (S) der Schuhsohle in dem Vorderfußbereich (126) ist, die sich über den zumindest einen angepaßten Seitenabschnitt (28a) von zumindest 30° erstreckt, ebenfalls bei Messung etwa in Frontalebenen-Querschnitten.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 19, bei der die im wesentlichen gleichbleibende Dicke (S) der Schuhsohle (28) sich über zumindest einen angepaßten Seitenabschnitt (28a) erstreckt, durch den eine direkte Abstützung zwischen der Sohle (29) des Fußes (27) und dem Boden (43) über eine Seitwärtsneigung von zumindest 45° erreicht wird;die gleichbleibende Dicke (S) der Schuhsohle (28) in zumindest zwei unterschiedlichen Frontalebenen-Querschnitten verschieden ist, wobei die Schuhsohle (28) einen angepaßten Seitenabschnitt (28a) von zumindest 45° hat, so daß zumindest zwei verschiedene Dicken (S) der angepaßten Seitenabschnitte (28a) vorhanden sind, wenn etwa in Frontalebenen-Querschnitten gemessen wird;wobei die Dicke (S) des zumindest einen angepaßten Seitenabschnitts (28a) in zumindest einem Frontalebenen-Querschnitt nahe einer Ferse der Metatarsalknochen (96) des Trägers und die Dicke (S) eines anderen angepaßten Seitenabschnitts (28a) in zumindest einem anderen etwa Frontalebenen-Querschnitt nahe einer Basis des fünften Metataralknochens (97) des Trägers gemessen wird.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 20, bei der die im wesentlichen gleichbleibende Dicke (S) der Vorderfußes (126) der Schuhsohle (28) in zumindest zwei verschiedenen Frontalebenen-Querschnitten unterschiedlich ist, wobei die Schuhsohle (28) zumindest einen angepaßten Seitenabschnitt (28a) mit einer im wesentlichen gleichbleibenden Dicke hat, der sich über eine Seitwärtsneigung von zumindest 45° erstreckt, so daß zumindest zwei verschiedene Dicken (S) der angepaßten Seitenabschnitte (28a) im Vorderfußbereich (126) der Schuhsohlen vorhanden sind, wenn etwa in Frontalebenen-Querschnitten gemessen wird.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 21, bei der die Schuhsohle, wenn etwa in Frontalebenen-Querschnitten gemessen wird, eine im wesentlichen gleichbleibende Dicke (S) in allen Teile der Schuhsohle (28) hat, die eine direkte Abstützung zwischen der das Gewicht des Trägers aufnehmenden Sohle (29) des Fußes (27) und dem Boden (43) bilden;der direkt das Gewicht tragende Abschnitt der Schuhsohle (28) sowohl einen Bereich des zumindest einen Sohlenabschnitts (28b) und einen Bereich des zumindest einen angepaßten Seitenabschnitts (28a) umfaßt, der direkt Gewicht aufnimmt, wenn die Schuhsohle (28) auf dem Boden (43) von einer aufrechten Position zur Seite geneigt wird;die im wesentlichen gleichbleibende Dicke der Schuhsohle (28) sich über zumindest einen angepaßten Seitenabschnitt (28a) erstreckt, der bei einer Seitwärtsneigung von zumindest 20° die direkte Abstützung zwischen der Sohle (29) des Fußes (27) und dem Boden (43) bewirkt;
wobei, wenn etwa in Frontalebenen-Querschnitten gemessen wird, die im wesentlichen gleichbleibende Dicke (S) der Schuhsohle (28), die insbesondere den angepaßten Seitenabschnitt (28a) umfaßt, eine Seitenstabilität des Fußes (27) auf der Schuhsohle (28) aufrechterhält, ähnlich der, wenn der Fuß (27) nackt auf dem Untergrund (43) steht, speziell während einer Pronations- und einer Suptinationsbewegung, die stattfindet, wenn die Schuhsohle (28) Kontakt mit dem Boden (43) hat. - Schuhsohle (28) nach einem der Ansprüche 1 bis 22, bei der die im wesentlichen gleichbleibende Dicke (S) der Schuhsohle (28), wenn etwa in Frontalebenen-Querschnitten gemessen wird, sich über zumindest einen Teil des zumindest einen angepaßten Seitenabschnitts (28a) von zumindest 30° erstreckt.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 23, bei der die im wesentlichen gleichbleibende Dicke (S) der Schuhsohle (28), wenn etwa in Frontalebenen-Querschnitten gemessen wird, sich über zumindest einen Teil des zumindest einen angepaßten Seitenabschnitts (28a) von zumindest 45° erstreckt.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 24, bei der die im wesentlichen gleichbleibende Dicke (S) der Schuhsohle (28), wenn etwa in Frontalebenen-Querschnitten gemessen wird, sich über zumindest einen Teil des zumindest einen angepaßten Seitenabschnitts (28a) von zumindest 90° erstreckt;
wobei der Anteil des angepaßten Seitenabschnitts (28a) der Schuhsohle, durch den die Schuhsohle (28) gebildet ist, ausreichend ist, um eine Seitenstabilität des Fußes (27) des Trägers über den äußersten Bereich der zur Seite gerichteten Bewegung aufrechterhält, einschließlich von zumindest 90° der Inversion und der Eversion; wobei die Seitenstabilität ähnlich der des nackten Fußes (27) des Trägers ist. - Schuhsohle (28) nach einem der Ansprüche 1 bis 25, bei der die im wesentlichen gleichbleibende Dicke (S) der Schuhsohle (28), wenn etwa in Frontalebenen-Querschnitten gemessen wird, sich über zumindest einen Teil des zumindest einen angepaßten Seitenabschnitts (28a) von 120° erstreckt;
wobei der Anteil des angepaßten Seitenabschnitts (28a) der Schuhsohle, durch den die Schuhsohle (28) gebildet ist, ausreichend ist, um die Seitenstabilität des Fußes (27) des Trägers über den äußersten Bereich der zur Seite gerichteten Bewegung aufrechtzuerhalten; wobei die Seitenstabilität ähnlich der des nackten Fußes (27) des Trägers ist. - Schuhsohle (28) nach einem der Ansprüche 1 bis 26, bei der die untere Fläche (31) der Schuhsohle (28), die mit dem Boden Kontakt hat, mit der oberen Fläche (30) durch eine kein Gewicht tragende Fläche (53a) verbunden ist, die eine äußere Kante der Schuhsohle (28) bildet;wobei, wenn etwa in Frontalebenen-Querschnitten gemessen wird, der Abstand zwischen einem Punkt auf der äußeren Kantenfläche (53a) und dem nächstliegenden Punkt der oberen Fläche (30) der Schuhsohle kleiner ist als die vorstehend definierte, im wesentlichen gleichbleibende Dicke (S) der gewichttragenden Bereiche der Schuhsohle;sich der kleinere Abstand ausgehend von der Dicke des gewichttragenden Abschnitts allmählich vermindert, so daß sich die äußere Kante (53a) allmählich von der unteren Fläche (31), die mit dem Boden Kontakt hat, zu der oberen Fläche (30) verjüngt, die mit dem Fuß Kontakt hat, wodurch für die Schuhsohle (28) die Bildung von scharfen Kanten verhindert wird, um sie in den instabilen Bereich schwenken zu können, wenn sie extrem zur Seite geneigt wird.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 27, bei der zumindest ein Teil des zumindest einen angepaßten Abschnitts (28) in einem vorgegebenen Frontalebenen-Querschnitt im wesentlichen unter Verwendung einer mathematischen Näherung konstruiert ist, und zwar in der Form eines Teils eines Ringes, der eine Dicke (r) hat, die im wesentlichen gleich der Schuhsohlendicke (S) in dem Frontalebenen-Querschnitt ist;wobei in dem vorgegebenen Frontalebenen-Querschnitt zumindest ein Teil der oberen Fläche (30) der Schuhsohle (28), die mit dem Fuß Kontakt hat, als ein relativ kleiner Kreis konstruiert ist, durch den eine Innenfläche des Ringes bestimmt ist, der einen passenden Radius (r') und einen Mittelpunkt (115) hat, um ungefähr mit zumindest einem Teil der angepaßten Fläche (30) der Sohle (29) des Fußes (27) des Trägers übereinzustimmen;und wobei zumindest ein Teil der unteren Fläche (31) der Schuhsohle (28), die mit dem Boden Kontakt hat, als ein relativ großer Kreis konstruiert ist, durch den eine Außenfläche des Ringes bestimmt ist, der im wesentlichen den gleichen Mittelpunkt (115) hat und durch einen Radius (r' + r) gebildet ist, der um einen Wert (r) größer ist, der im wesentlichen gleich der Dicke (S) der Schuhsohle (28) in dem vorgegebenen Frontalebenen-Querschnitt ist.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 28, bei der die äußere Fläche (31) der Schuhsohle (28) eine Anzahl von daran angebrachten Vorsprüngen aufweist;die Fläche (63), an der die Vorsprünge (61) angebracht sind, das Gewicht auf irgendeinem Boden (43) trägt, der weich genug ist, damit die Vorsprünge vollständig in den Boden eindringen können, wodurch sie ihren Reibungsvorteil erreichen; wobei zum Messen der Schuhsohlendicke (S) folglich die gewichttragende Fläche (63) als die untere Fläche (31), die mit dem Boden Kontakt hat, definiert ist.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 29, bei der zumindest ein Teil der gekrümmten Struktur des angepaßten Seitenabschnitts (28a), wie beispielsweise ein Sohlenprofil (60) der mit dem Boden in Kontakt stehenden Fläche (31), angenähert ist, indem zumindest ein gerades Liniensegment (110) verwendet wird, um zumindest einen Bereich der Kurve auszubilden, wenn etwa in Frontalebenen-Querschnitten gemessen wird.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 30, bei der zumindest ein Sohlenabschnitt (28b) und der zumindest eine angepaßte Seitenabschnitt (28a) integriert zu einer einteiligen Schuhsohlenstruktur (28) ausgebildet sind.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 31, bei der die Schuhsohle (28) zumindest eine Mittelsohle (127) und eine Außensohle (128) enthält.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 32, bei der die Schuhsohle (28) zumindest drei Schichten aufweist: eine Brandsohle, die Mittelsohle (127) und die Außensohle (128).
- Schuhsohle (28) nach einem der Ansprüche 1 bis 33, bei der der Vorderfußbereich (126) der Schuhsohle (28) zumindest die Brandsohle und die Außensohle (128) enthält.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 34, bei der zumindest ein Sohlenabschnitt (28b) und der zumindest eine Seitenabschnitt (28a) der Schuhsohle (28) ausreichend sind, um den gewichttragenden Bereich der Sohle (29) des Fußes (27) des Trägers bei einem etwa konstanten Abstand (S) von dem Boden (43) zu halten, wenn etwa in Frontalebenen-Querschnitten gemessen wird, wobei der konstante Abstand die Dicke (S) der Schuhsohle (28) ist, und zwar auch dann, wenn der Schuh (20) durch eine natürliche seitliche Fußbewegung auf dem Boden (43) geneigt wird, wie bei einer normalen oder extremen Pronation oder Supination.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 35, bei der zumindest ein Teil einer unteren Fläche einer Mittelsohle (127) und zumindest ein zugehöriger Teil einer oberen Fläche einer Außensohle (128) im wesentlichen ebene Flächen sind, wobei zumindest ein Teil der Konturen des Schuhsohlenseitenabschnitts (28a) durch die Form der Außensohle (128) gebildet ist, so daß die beiden Sohlen (127, 128) bei der Herstellung einfach und auf herkömmliche Weise miteinander verbunden werden können.
- Schuhsohle (28) nach einem der Ansprüche 1 bis 36, bei der ein Schuhoberteil (21) mit der Schuhsohle (28) verbunden ist.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00200095A EP1038457B1 (de) | 1988-07-15 | 1989-07-14 | Abgerundete Mittelsohlenseite mit grösserer Stärke |
EP99204164A EP0983734B1 (de) | 1988-07-15 | 1989-07-14 | Schuhsolenstrukturen mit sich verjüngender Dicke in einer horizontalen Ebene |
EP97250029A EP0811330B1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
EP00204038A EP1104658A1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
EP00201348A EP1034714A3 (de) | 1988-07-15 | 1989-07-14 | Seitenteile einer Mittelsohle |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21938788A | 1988-07-15 | 1988-07-15 | |
US219387 | 1988-07-15 | ||
US23966788A | 1988-09-02 | 1988-09-02 | |
US239667 | 1988-09-02 | ||
PCT/US1989/003076 WO1990000358A1 (en) | 1988-07-15 | 1989-07-14 | Shoe with naturally contoured sole |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97250029A Division EP0811330B1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
EP97250029.2 Division-Into | 1997-02-10 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0424471A1 EP0424471A1 (de) | 1991-05-02 |
EP0424471A4 EP0424471A4 (en) | 1991-10-16 |
EP0424471B1 true EP0424471B1 (de) | 1997-09-24 |
Family
ID=26913838
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01204088A Withdrawn EP1199001A1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
EP00200095A Expired - Lifetime EP1038457B1 (de) | 1988-07-15 | 1989-07-14 | Abgerundete Mittelsohlenseite mit grösserer Stärke |
EP00204038A Withdrawn EP1104658A1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
EP99204164A Revoked EP0983734B1 (de) | 1988-07-15 | 1989-07-14 | Schuhsolenstrukturen mit sich verjüngender Dicke in einer horizontalen Ebene |
EP97250029A Expired - Lifetime EP0811330B1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
EP89909337A Expired - Lifetime EP0424471B1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlich profilierter sohle |
EP00201348A Withdrawn EP1034714A3 (de) | 1988-07-15 | 1989-07-14 | Seitenteile einer Mittelsohle |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01204088A Withdrawn EP1199001A1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
EP00200095A Expired - Lifetime EP1038457B1 (de) | 1988-07-15 | 1989-07-14 | Abgerundete Mittelsohlenseite mit grösserer Stärke |
EP00204038A Withdrawn EP1104658A1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
EP99204164A Revoked EP0983734B1 (de) | 1988-07-15 | 1989-07-14 | Schuhsolenstrukturen mit sich verjüngender Dicke in einer horizontalen Ebene |
EP97250029A Expired - Lifetime EP0811330B1 (de) | 1988-07-15 | 1989-07-14 | Schuh mit natürlicher Sohlenkontur |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00201348A Withdrawn EP1034714A3 (de) | 1988-07-15 | 1989-07-14 | Seitenteile einer Mittelsohle |
Country Status (11)
Country | Link |
---|---|
EP (7) | EP1199001A1 (de) |
JP (4) | JP3138770B2 (de) |
KR (1) | KR900701188A (de) |
AT (4) | ATE207316T1 (de) |
AU (1) | AU641126B2 (de) |
CA (2) | CA1341238C (de) |
DE (4) | DE68929338T2 (de) |
ES (1) | ES2166631T3 (de) |
HK (2) | HK1028939A1 (de) |
NZ (1) | NZ229949A (de) |
WO (1) | WO1990000358A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023122836A1 (en) * | 2021-12-31 | 2023-07-06 | Cormier Marc | Auxiliary or integrated inner sole structure for footwear |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE198408T1 (de) * | 1989-10-03 | 2001-01-15 | Anatomic Res Inc | Korrigierende schuhsohlenstrukturen mit die theoretisch ideale stabilitätsfläche übersteigendem umriss |
JP3293071B2 (ja) * | 1990-01-10 | 2002-06-17 | アナトミック リサーチ、インク. | 靴底構造 |
AU7324591A (en) * | 1990-02-08 | 1991-09-03 | Frampton E. Ellis Iii | Shoe sole structures with deformation sipes |
CH681947A5 (de) * | 1990-10-16 | 1993-06-30 | Bernhard Georg Prof Dr M Weber | |
US6266897B1 (en) * | 1994-10-21 | 2001-07-31 | Adidas International B.V. | Ground-contacting systems having 3D deformation elements for use in footwear |
EP0955820A1 (de) | 1995-06-26 | 1999-11-17 | ELLIS, Frampton E. III | Schuhsolenstrukturen |
FR2749485B1 (fr) * | 1996-06-11 | 1998-08-07 | Lefebvre Deterpigny Therese | Chaussure avec une semelle conformee |
US5893221A (en) * | 1997-10-16 | 1999-04-13 | Forest Footwear L.L.C. | Footwear having a protuberance |
CA2356623C (en) | 1998-12-23 | 2005-10-18 | Medispectra, Inc. | Systems and methods for optical examination of samples |
US7334350B2 (en) | 1999-03-16 | 2008-02-26 | Anatomic Research, Inc | Removable rounded midsole structures and chambers with computer processor-controlled variable pressure |
CA2370058A1 (en) | 1999-04-26 | 2000-11-02 | Frampton E. Ellis, Iii | Shoe sole orthotic structures and computer controlled compartments |
US7010869B1 (en) | 1999-04-26 | 2006-03-14 | Frampton E. Ellis, III | Shoe sole orthotic structures and computer controlled compartments |
US6519875B1 (en) * | 1999-12-17 | 2003-02-18 | Piloti Inc. | Driving and walking shoe |
EP1278435A2 (de) | 2000-04-26 | 2003-01-29 | Anatomic Research, Inc. | Abnehmbarer mittelsohlenaufbau und kammern mit gesteuertem veränderlichen druck |
EP1304939A2 (de) | 2000-07-28 | 2003-05-02 | Ellis, Frampton E. III | Orthopädische einlage |
US7100307B2 (en) | 2001-08-15 | 2006-09-05 | Barefoot Science Technologies Inc. | Footwear to enhance natural gait |
JP4733957B2 (ja) * | 2004-10-08 | 2011-07-27 | 高橋 毅 | 靴用インソール |
US8256147B2 (en) | 2004-11-22 | 2012-09-04 | Frampton E. Eliis | Devices with internal flexibility sipes, including siped chambers for footwear |
JP4958505B2 (ja) * | 2006-02-10 | 2012-06-20 | ヨネックス株式会社 | スポーツシューズ |
JP2008178570A (ja) | 2007-01-25 | 2008-08-07 | Ykk Corp | バックル |
US8125796B2 (en) | 2007-11-21 | 2012-02-28 | Frampton E. Ellis | Devices with faraday cages and internal flexibility sipes |
HUP0800101A2 (en) * | 2008-02-18 | 2011-11-28 | Laszlo Solymosi | Shoes with unstable sole construction |
KR101075789B1 (ko) | 2011-01-06 | 2011-10-21 | (주)지원에프알에스 | 발 폭의 조절이 가능한 신발창 |
JP4916586B1 (ja) * | 2011-08-24 | 2012-04-11 | 要次 平松 | 靴 |
EP2958450B1 (de) * | 2013-02-22 | 2017-05-03 | Kenney Sport, LLC | Schuhsohle zur simulation eines hufs |
US10226103B2 (en) | 2015-01-05 | 2019-03-12 | Markforged, Inc. | Footwear fabrication by composite filament 3D printing |
JP5844952B1 (ja) | 2015-03-23 | 2016-01-20 | 株式会社アシックス | グリップ性能を改良した靴底 |
JP6162784B2 (ja) | 2015-12-24 | 2017-07-12 | 美津濃株式会社 | シューズ用アウトソール構造およびそれを用いたクリーツシューズ |
US10455898B1 (en) | 2018-12-21 | 2019-10-29 | Nike, Inc. | Footwear article with tongue reinforcer |
US10617174B1 (en) * | 2018-12-21 | 2020-04-14 | Nike, Inc. | Footwear article with doffing ledge |
US10721994B2 (en) | 2018-12-28 | 2020-07-28 | Nike, Inc. | Heel structure with locating pegs and method of manufacturing an article of footwear |
US11344077B2 (en) | 2018-12-28 | 2022-05-31 | Nike, Inc. | Footwear article with collar elevator |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE23257C (de) * | 1900-01-01 | J. FARMER in Salford (England) | Schlägerwerk zur Düngerpulverbereitung unter Anwendung von Wasserdampf | |
US288127A (en) * | 1883-11-06 | Zfew jeeset | ||
US1289106A (en) * | 1916-10-24 | 1918-12-31 | Converse Rubber Shoe Company | Sole. |
FR602501A (fr) * | 1925-08-26 | 1926-03-20 | Procédé de fabrication de semelles pour chaussures et produits en résultant | |
FR1004472A (fr) * | 1947-04-28 | 1952-03-31 | Le Caoutchouc S I T | Perfectionnements aux bottes en caoutchouc |
DE1290844B (de) * | 1962-08-29 | 1969-03-13 | Continental Gummi Werke Ag | Formsohle fuer Schuhwerk |
US3308560A (en) * | 1965-06-28 | 1967-03-14 | Endicott Johnson Corp | Rubber boot with fibreglass instep guard |
US4128951A (en) * | 1975-05-07 | 1978-12-12 | Falk Construction, Inc. | Custom-formed insert |
IN145239B (de) * | 1975-05-16 | 1978-09-16 | M Delport | |
CH611140A5 (de) * | 1975-06-09 | 1979-05-31 | Dassler Puma Sportschuh | |
DE2613312A1 (de) * | 1976-03-29 | 1977-10-13 | Dassler Puma Sportschuh | In einer form hergestellte profilierte laufsohle fuer schuhwerk, insbesondere sportschuhe |
DE2737765A1 (de) * | 1977-08-22 | 1979-03-08 | Dassler Puma Sportschuh | Aus gummi oder einem anderen material mit gummielastischen eigenschaften bestehende schalenfoermige laufsohle fuer sportschuhe |
DE2836793A1 (de) * | 1978-08-23 | 1980-03-06 | Continental Gummi Werke Ag | Schalensohle |
US4305212A (en) * | 1978-09-08 | 1981-12-15 | Coomer Sven O | Orthotically dynamic footwear |
US4272899A (en) * | 1979-10-15 | 1981-06-16 | Brooks Jeffrey S | Footwear |
DE3037108A1 (de) * | 1980-10-01 | 1982-05-13 | Herbert Dr.-Ing. 8032 Lochham Funck | Polstersohle mit orthopaedischen eigenschaften |
CA1176458A (en) * | 1982-04-13 | 1984-10-23 | Denys Gardner | Anti-skidding footwear |
US4449306A (en) * | 1982-10-13 | 1984-05-22 | Puma-Sportschuhfabriken Rudolf Dassler Kg | Running shoe sole construction |
CA1213139A (en) * | 1983-01-17 | 1986-10-28 | Norbert Hamy | Sports shoe |
US4557059A (en) * | 1983-02-08 | 1985-12-10 | Colgate-Palmolive Company | Athletic running shoe |
US4578882A (en) * | 1984-07-31 | 1986-04-01 | Talarico Ii Louis C | Forefoot compensated footwear |
DE3471870D1 (en) * | 1984-12-19 | 1988-07-14 | Funck Herbert | Shoe sole of plastic material or rubber |
US4694591A (en) * | 1985-04-15 | 1987-09-22 | Wolverine World Wide, Inc. | Toe off athletic shoe |
AT388488B (de) * | 1985-06-18 | 1989-06-26 | Hartjes Rudolf | Golfschuh |
DE3527938A1 (de) * | 1985-08-03 | 1987-02-12 | Paul Ganter | Schuh- oder laufsohle |
US4689898A (en) * | 1985-09-11 | 1987-09-01 | Fahey Brian W | Running shoe |
DE3629245A1 (de) * | 1986-08-28 | 1988-03-03 | Dassler Puma Sportschuh | Laufsohle fuer sportschuhe, insbesondere fuer hallensportarten |
AU586049B2 (en) * | 1986-09-19 | 1989-06-29 | Malcolm G. Blissett | Parabola-flex sole |
US4747220A (en) * | 1987-01-20 | 1988-05-31 | Autry Industries, Inc. | Cleated sole for activewear shoe |
US4748753A (en) * | 1987-03-06 | 1988-06-07 | Ju Chang N | Golf shoes |
-
1989
- 1989-07-14 DE DE68929338T patent/DE68929338T2/de not_active Expired - Fee Related
- 1989-07-14 WO PCT/US1989/003076 patent/WO1990000358A1/en active IP Right Grant
- 1989-07-14 DE DE68929355T patent/DE68929355T2/de not_active Expired - Fee Related
- 1989-07-14 AT AT99204164T patent/ATE207316T1/de not_active IP Right Cessation
- 1989-07-14 KR KR1019900700586A patent/KR900701188A/ko not_active Application Discontinuation
- 1989-07-14 CA CA000605797A patent/CA1341238C/en not_active Expired - Fee Related
- 1989-07-14 EP EP01204088A patent/EP1199001A1/de not_active Withdrawn
- 1989-07-14 CA CA000617033A patent/CA1340997C/en not_active Expired - Fee Related
- 1989-07-14 AT AT89909337T patent/ATE158479T1/de not_active IP Right Cessation
- 1989-07-14 DE DE68928347T patent/DE68928347T2/de not_active Expired - Fee Related
- 1989-07-14 EP EP00200095A patent/EP1038457B1/de not_active Expired - Lifetime
- 1989-07-14 NZ NZ229949A patent/NZ229949A/xx unknown
- 1989-07-14 EP EP00204038A patent/EP1104658A1/de not_active Withdrawn
- 1989-07-14 AT AT00200095T patent/ATE209867T1/de not_active IP Right Cessation
- 1989-07-14 JP JP01508780A patent/JP3138770B2/ja not_active Expired - Fee Related
- 1989-07-14 DE DE68929335T patent/DE68929335T2/de not_active Expired - Fee Related
- 1989-07-14 ES ES99204164T patent/ES2166631T3/es not_active Expired - Lifetime
- 1989-07-14 EP EP99204164A patent/EP0983734B1/de not_active Revoked
- 1989-07-14 EP EP97250029A patent/EP0811330B1/de not_active Expired - Lifetime
- 1989-07-14 EP EP89909337A patent/EP0424471B1/de not_active Expired - Lifetime
- 1989-07-14 AT AT97250029T patent/ATE206884T1/de not_active IP Right Cessation
- 1989-07-14 AU AU40609/89A patent/AU641126B2/en not_active Ceased
- 1989-07-14 EP EP00201348A patent/EP1034714A3/de not_active Withdrawn
-
1999
- 1999-06-08 JP JP16065799A patent/JP3248151B2/ja not_active Expired - Fee Related
- 1999-07-07 JP JP11192539A patent/JP3079182B2/ja not_active Expired - Fee Related
-
2000
- 2000-09-08 HK HK00105692A patent/HK1028939A1/xx unknown
- 2000-11-29 HK HK00107661A patent/HK1031178A1/xx not_active IP Right Cessation
-
2001
- 2001-08-21 JP JP2001249786A patent/JP3312340B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023122836A1 (en) * | 2021-12-31 | 2023-07-06 | Cormier Marc | Auxiliary or integrated inner sole structure for footwear |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0424471B1 (de) | Schuh mit natürlich profilierter sohle | |
US5544429A (en) | Shoe with naturally contoured sole | |
US6115941A (en) | Shoe with naturally contoured sole | |
US6708424B1 (en) | Shoe with naturally contoured sole | |
US6314662B1 (en) | Shoe sole with rounded inner and outer side surfaces | |
US4989349A (en) | Shoe with contoured sole | |
US6675499B2 (en) | Shoe sole structures | |
US6308439B1 (en) | Shoe sole structures | |
US6609312B1 (en) | Shoe sole structures using a theoretically ideal stability plane | |
US7127834B2 (en) | Shoe sole structures using a theoretically ideal stability plane | |
US20010049887A1 (en) | Shoe sole with rounded inner and outer surfaces | |
US6789331B1 (en) | Shoes sole structures | |
US20020007572A1 (en) | Shoe sole structure having midsole sides | |
US20020116841A1 (en) | Shoe soles with midsole sides of increased thickness | |
CA1341350C (en) | Shoe with naturally contoured sole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19901229 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19910826 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19931008 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
DX | Miscellaneous (deleted) | ||
REF | Corresponds to: |
Ref document number: 158479 Country of ref document: AT Date of ref document: 19971015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: AMMANN PATENTANWAELTE AG BERN Ref country code: CH Ref legal event code: EP |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 68928347 Country of ref document: DE Date of ref document: 19971030 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020812 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020821 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020828 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020829 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020830 Year of fee payment: 14 Ref country code: LU Payment date: 20020830 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020831 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020919 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20021113 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030714 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030714 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030731 |
|
BERE | Be: lapsed |
Owner name: *ELLIS FRAMPTON E. III Effective date: 20030731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040203 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030714 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050714 |