EP0422173B1 - Process and device for producing monobasic propellant powders using alcohol and ether as solvents - Google Patents

Process and device for producing monobasic propellant powders using alcohol and ether as solvents Download PDF

Info

Publication number
EP0422173B1
EP0422173B1 EP19900906166 EP90906166A EP0422173B1 EP 0422173 B1 EP0422173 B1 EP 0422173B1 EP 19900906166 EP19900906166 EP 19900906166 EP 90906166 A EP90906166 A EP 90906166A EP 0422173 B1 EP0422173 B1 EP 0422173B1
Authority
EP
European Patent Office
Prior art keywords
ether
extruder
propellant
cooling
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900906166
Other languages
German (de)
French (fr)
Other versions
EP0422173A1 (en
Inventor
Wolfgang Dr. Miehling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WNC Nitrochemie GmbH
Original Assignee
WNC Nitrochemie GmbH
Nitrochemie Aschau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WNC Nitrochemie GmbH, Nitrochemie Aschau GmbH filed Critical WNC Nitrochemie GmbH
Priority to AT90906166T priority Critical patent/ATE99659T1/en
Publication of EP0422173A1 publication Critical patent/EP0422173A1/en
Application granted granted Critical
Publication of EP0422173B1 publication Critical patent/EP0422173B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/224Extrusion chambers
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0075Shaping the mixture by extrusion

Definitions

  • the invention relates to a method for producing single-base propellant powder with alcohol and ether as a solvent using an extruder device in which the propellant powder material is kneaded and mixed, and to a device for producing single-base propellant powder of the type mentioned, which at least one has a screw mounted in a housing and an extruder head which is arranged at the discharge end of the housing and has at least one die and has a cooling device for cooling the propellant powder material located at the discharge end.
  • DE-A-32 42 301 discloses a device in which the propellant powder material is mixed and kneaded using a twin-screw extruder.
  • the device has a cooling device in order to dissipate the heat generated during extrusion and to set a certain temperature profile in the powder material over the length of the extruder device. The temperature at the discharge end should be the highest for single-base powder.
  • An extruder device with a cooling device for producing propellant powder is also known from DE-A-34 07 238.
  • the invention is accordingly based on the object of specifying a method and a device of the type mentioned at the outset which, with a simple structure and reliable operability, permit the production of high-quality single-base propellant charge powders with alcohol and ether as solvent using an extruder device.
  • the inventive method for solving this problem is characterized in that the powder material is cooled behind the kneading and mixing area and before it leaves the extruder device in such a way that its temperature after the outlet is not substantially above the boiling point of the ether.
  • the method according to the invention is distinguished by a number of considerable advantages. By cooling the propellant powder material before it leaves the extruder device, the occurrence of ether bubbles can be safely avoided.
  • the mass in the extruder is thus usually heated to a temperature which is higher than the boiling point of ether (35 ° C.).
  • the temperature of the propellant powder material after it has passed through the die must not be significantly above the boiling point of the ether. According to the invention, only the area where the occurrence of ether bubbles is particularly critical, namely the exit area or the discharge end of the extruder device, is cooled, so that in this area the temperature of the powder material is reduced to or below the boiling point of the ether.
  • the invention is based on the knowledge that ether-gelatinized, single-base propellant powder masses in the extruder differ significantly from other plastics, such as such as thermoplastics or polybasic propellant powder masses.
  • thermoplastics or polybasic propellant powder the viscosity is strongly temperature-dependent, ie the flow behavior in the extruder changes with a change in temperature.
  • the temperature of the jacket elements must be adapted to the temperature of the plastic melt in the discharge area of the extruder in order to ensure a constant temperature distribution over the entire cross section so that inhomogeneities are avoided and that there is a uniform flow behavior.
  • the cooling takes place at a temperature of 35 to 40 ° C.
  • This temperature corresponds to the boiling temperature of the ether, a slight exceeding of the boiling temperature being irrelevant, since no or only insignificant amounts of ether bubbles occur.
  • the screw region of the extruder device is operated as completely as possible. This measure can be important in order to ensure a sufficient pressure of the propellant powder mass in the extruder device and to ensure that no ether bubbles occur in the non-cooled areas of the extruder device. If the extruder is also cooled in the mixing and kneading area, the complete filling supports good heat transfer from the powder mass to the extruder.
  • the alcohol content such that it is in a range between 25 and 30%.
  • the alcohol content it is also possible according to the invention to lower the alcohol content below 25%.
  • the ether content is adjusted so that the pressure at the discharge area of the extruder is 30 to 35 bar.
  • a suitable device for carrying out the method according to the invention is characterized in that a channel is provided between the end region of the screw and the die, in which a cooling mandrel is arranged.
  • the cooling mandrel can be charged with water or other suitable fluids, for example.
  • the cooling mandrel is preferably mounted centrally in the channel.
  • the discharge end of the housing is provided with a first cooling jacket surrounding the end region of the screw and the channel is provided with a second cooling jacket, so that the last screw region seen in the direction of passage is also cooled.
  • the propellant powder material can be undisturbed by flow the channel so that stable, predictable temperature gradients are adjustable.
  • the cooling mandrel provides particularly intensive cooling of the powder material in front of the die.
  • the propellant powder material is cooled both from the inside and from the outside (viewed in the radial direction), so that the propellant powder material has a uniform temperature in the radial direction when it enters the die. The formation of individual overheated areas is thus reliably avoided.
  • the device according to the invention shown in Fig. 1 comprises a housing 2, in which a twin screw 1 is rotatably mounted.
  • the extruder comprises a filling opening, which is preferably provided with a metering device, by means of which the starting materials of the propellant charge powder are added can be.
  • a metering device for adding the solvent is provided.
  • the schematic structure of the extruder is described, for example, in DE-A-30 42 697, to which reference is made here to avoid repetition.
  • the discharge end of the housing 2 is surrounded by a first cooling jacket 5, which is only partially shown in FIG. 1.
  • the cooling jacket concentrically surrounds the housing 2 and is provided with connections 9a and 9b, through which a cooling medium, for example water, can be supplied or removed.
  • an intermediate plate 13 which serves on the one hand to support the twin screw and on the other hand to close off the housing 2 or the first cooling jacket 5.
  • a transition element 14 is provided, which serves to transfer the essentially eight-shaped flow cross section of the housing 2 in the region of the double screw 1 to a circular or slot-shaped cross section.
  • the transition element 14 can also be provided with connections 10a, 10b, through which a cooling jacket (not shown) can be acted upon with cooling liquid.
  • a bearing plate 15 is provided which, together with a subsequent bearing plate 16, supports a cylinder 17 which forms a channel 7 for the passage of the propellant powder material.
  • the channel 7 is surrounded by a second cooling jacket 6, which is provided with connections 11a and 11b, through which cooling medium can be supplied or removed.
  • a die 3 or die plate is provided, which is also provided with connections 12a, 12b in order to pass cooling medium through a cooling jacket (not shown in FIG. 1).
  • the die 3 can be formed in the usual way and one Die holder plate, a sieve device and the like, as described for example in DE-A-30 42 662, to which reference is made here to avoid repetition.
  • a cooling mandrel 8 is arranged centrally.
  • the channel 7 can have a circular cross section, in which case the cooling mandrel 8 is also provided with a circular cross section.
  • the cooling mandrel 8 extends essentially over the entire length of the channel 7 and is provided in its interior with a cavity 19 into which a tube 18 opens, through which cooling liquid can be guided into the cooling mandrel 8. To simplify the illustration, the connections for discharging the cooling medium from the cooling mandrel 8 in FIG. 1 have been omitted.
  • FIG. 2 and 3 each show exemplary embodiments of the cooling mandrel 8 according to the invention.
  • a central tube 18 is provided, through which cooling medium can be introduced into the cavity 19.
  • the cooling liquid is discharged via channels 21 which extend in the radial direction in the die 3 or die holding plate and are arranged such that it enables the cooling medium to be passed between the die passage openings 20.
  • the tube 18 has no inlet opening, rather it is arranged in the cavity 19 as a flow guiding element.
  • the cooling medium is supplied and discharged via the channels 21.
  • FIG. 4 shows the configuration of a screw according to the invention in a schematic manner. This includes several right-handed screw elements as well as right and left kneading blocks and feed elements. As shown in Fig. 4, As seen in the direction of travel, five feed elements are initially provided, which are followed by four clockwise screw elements. This is followed by a right kneading block, which is followed by a clockwise screw element. In the following, a left kneading block and a clockwise screw element are alternately provided, the outlet end of the screw is formed by five clockwise screw elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Glanulating (AREA)
  • Seasonings (AREA)
  • Fats And Perfumes (AREA)
  • Formation And Processing Of Food Products (AREA)

Abstract

During the production of monobasic propellant powders using alcohol and ether as solvents, the danger exists that bubbles of ether may be formed in the propellant powder material. This may appreciably impair the quality of the propellant powder. The invention proposes that the propellant powder material be cooled before leaving the extrusion machine. To this end, the extruder head (4) is provided with a cooling device. The invention is particularly useful in the production of monobasic propellant powders using alcohol and ether as solvents.

Description

Die Erfindung bezieht sich auf ein Verfharen zur Herstellung von einbasigen Treibladungspulvern mit Alkohol und Ether als Lösungsmittel unter Verwendung einer Extrudervorrichtung, in welcher das Treibladungs-Pulvermaterial geknetet und gemischt wird, sowie auf eine Vorrichtung zur Herstellung von einbasigen Treibladungspulvern der genannten Art, die zumindest eine in einem Gehäuse gelagerte Schnecke und einen am Austragsende des Gehäuses angeordneten, zumindest eine Matrize aufweisenden Extruderkopf mit einer Kühleinrichtung zur Kühlung des an dem Austragsende befindlichen Treibladungs-Pulvermaterials aufweist.The invention relates to a method for producing single-base propellant powder with alcohol and ether as a solvent using an extruder device in which the propellant powder material is kneaded and mixed, and to a device for producing single-base propellant powder of the type mentioned, which at least one has a screw mounted in a housing and an extruder head which is arranged at the discharge end of the housing and has at least one die and has a cooling device for cooling the propellant powder material located at the discharge end.

Es ist aus dem Stand der Technik bekannt, Treibladungspulver unter Verwendung einer Extrudervorrichtung herzustellen. Aus der DE-A-32 42 301 ist beispielsweise eine Vorrichtung bekannt, bei welcher unter Verwendung eines Doppelwellen-Schneckenextruders ein Mischen und Kneten des Treibladungs-Pulvermaterials erfolgt. Die Vorrichtung weist eine Kühleinrichtung auf, um die beim Extrudieren entstehende Wärme abzuführen und im Pulvermaterial über die Durchlauflänge der Extrudervorrichtung ein bestimmtes Temperaturprofil einzustellen. Für einbasige Pulver soll hierbei die Temperatur am Austragsende am höchsten sein. Eine Extrudervorrichtung mit Kühleinrichtung zum Herstellen von Treibladungspulver ist auch aus der DE-A-34 07 238 bekannt.It is known from the prior art to produce propellant powder using an extruder device. DE-A-32 42 301, for example, discloses a device in which the propellant powder material is mixed and kneaded using a twin-screw extruder. The device has a cooling device in order to dissipate the heat generated during extrusion and to set a certain temperature profile in the powder material over the length of the extruder device. The temperature at the discharge end should be the highest for single-base powder. An extruder device with a cooling device for producing propellant powder is also known from DE-A-34 07 238.

Die Herstellung einbasiger Treibladungspulver erfordert die Anwendung von Lösungsmitteln. Üblich sind u.a. Alkohol, Aceton und Ether. Die verwendete Nitrozellulose ist gewöhnlich alkohol-feucht. Für die Herstellung einbasiger Treibladungspulver im Extruder hat man bisher nur Alkohol/Aceton als Lösungsmittel eingesetzt. Ether hat einen sehr niedrigen Siedepunkt. Da im Extruder Wärme freigesetzt wird, kann es zur Verdampfung des Ethers kommen mit der Folge, daß die aus dem Extruder austretende Pulvermasse mit Etherblasen durchsetzt ist. Die Etherblasen stören die Homogenität der Pulvermasse, führen zu poröser Oberfläche der Pulverstränge und dementsprechend zu ungenügender Produktqualität. Außerdem stellt das austretende Ether-Luft-Gemisch ein erhebliches Gefahrenpotential dar. Man mußte aus diesem Grunde bisher auf die Verwendung von Alkohol/Ether als Lösungsmittel verzichten, obwohl diese Lösungsmittel an sich erhebliche Vorteile gegenüber Alkohol/Aceton besitzen. So ist es bedeutend schwieriger, Aceton wieder aus der Treibladungs-Pulvermasse zu entfernen als Ether. So sind längere Vacuum-Trocknungszeiten sowie eine verlängerte Wässerung notwendig. Außerdem neigen mit Aceton hergestellte einbasige Treibladungspulver bei Minustemperaturen zu Kaltsprödigkeit.The production of single-base propellant powder requires the use of solvents. Common are Alcohol, acetone and ether. The nitrocellulose used is usually wet with alcohol. So far, only alcohol / acetone has been used as solvent for the production of single-base propellant powder in the extruder. Ether has a very low boiling point. Since heat is released in the extruder, the ether can evaporate, with the result that the powder mass emerging from the extruder is permeated with ether bubbles. The ether bubbles disrupt the homogeneity of the powder mass, lead to a porous surface of the powder strands and accordingly to poor product quality. In addition, the escaping ether-air mixture represents a considerable potential hazard. For this reason, the use of alcohol / ether as a solvent had to be dispensed with up to now, although these solvents themselves have considerable advantages over alcohol / acetone. It is much more difficult to remove acetone from the propellant powder mass than ether. Longer vacuum drying times and extended washing are necessary. In addition, single-base propellant powders made with acetone tend to become brittle at sub-zero temperatures.

Der Erfindung liegt dementsprechend die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, welche bei einfachem Aufbau und betriebssicherer Handhabbarkeit die Herstellung von qualitativ hochwertigen einbasigen Treibladungspulvern mit Alkohol und Ether als Lösungsmittel unter Verwendung einer Extrudervorrichtung gestatten.The invention is accordingly based on the object of specifying a method and a device of the type mentioned at the outset which, with a simple structure and reliable operability, permit the production of high-quality single-base propellant charge powders with alcohol and ether as solvent using an extruder device.

Das erfindungsgemäße Verfahren zur Lösung dieser Aufgabe ist dadurch gekennzeichnet, daß das Pulvermaterial hinter dem Knet- und Mischbereich und vor dem Austritt aus der Extrudervorrichtung so gekühlt wird, daß seine Temperatur nach dem Austritt nicht wesentlich über dem Siedepunkt des Ethers liegt.The inventive method for solving this problem is characterized in that the powder material is cooled behind the kneading and mixing area and before it leaves the extruder device in such a way that its temperature after the outlet is not substantially above the boiling point of the ether.

Das erfindungsgemäße Verfahren zeichnet sich durch eine Reihe erheblicher Vorteile aus. Durch die Kühlung des Treibladungs-Pulvermaterials vor dem Austritt aus der Extrudervorrichtung kann das Auftreten von Etherblasen in sicherer Weise vermieden werden.The method according to the invention is distinguished by a number of considerable advantages. By cooling the propellant powder material before it leaves the extruder device, the occurrence of ether bubbles can be safely avoided.

Bei dem erfindungsgemäßen Verfahren ist zu berücksichtigen, daß bei der Gelatinierung von Nitrocellulose ein Teil der Knetenergie in Wärme umgewandelt wird. Die in dem Extruder befindliche Masse wird somit üblicherweise auf eine Temperatur erwärmt, die höher als der Siedepunkt von Ether (35 °C) liegt. Zur Vermeidung der Bildung von Etherblasen an der Pulveroberfläche darf die Temperatur des Treibladungs-Pulvermaterials nach Durchtritt durch die Matrize nicht wesentlich über dem Siedepunkt des Ethers liegen. Erfindungsgemäß wird nur der Bereich, an welchem das Auftreten von Etherblasen besonders kritisch ist, nämlich der Austrittsbereich oder das Austragsende der Extrudervorrichtung gekühlt, so daß in diesem Bereich die Temperatur des Pulvermaterials auf oder unter den Siedepunkt des Ethers herabgesetzt wird.In the process according to the invention, it should be taken into account that part of the kneading energy is converted into heat during the gelatinization of nitrocellulose. The mass in the extruder is thus usually heated to a temperature which is higher than the boiling point of ether (35 ° C.). To avoid the formation of ether bubbles on the powder surface, the temperature of the propellant powder material after it has passed through the die must not be significantly above the boiling point of the ether. According to the invention, only the area where the occurrence of ether bubbles is particularly critical, namely the exit area or the discharge end of the extruder device, is cooled, so that in this area the temperature of the powder material is reduced to or below the boiling point of the ether.

Der Erfindung liegt die Erkenntnis zugrunde, daß mit Ether gelatinierte, einbasige Treibladungs-Pulvermassen im Extruder deutliche Unterschiede zu sonstigen Kunststoffen, wie etwa Thermoplasten oder mehrbasigen Treibladungs-Pulvermassen zeigen. Bei Thermoplasten oder mehrbasigen Treibladungs-Pulvermassen ist die Viskosität stark temperaturabhängig, d.h. das Fließverhalten im Extruder ändert sich mit einer Veränderung der Temperatur. Bei solchen Kunststoffen muß im Austragsbereich des Extruders die Temperatur der Mantelelemente der Temperatur der Kunststoffschmelze angepaßt werden, um eine über den gesamten Querschnitt konstante Temperaturverteilung so sicherzustellen, daß Inhomogenitäten vermieden werden und daß ein einheitliches Fließverhalten vorliegt.The invention is based on the knowledge that ether-gelatinized, single-base propellant powder masses in the extruder differ significantly from other plastics, such as such as thermoplastics or polybasic propellant powder masses. In the case of thermoplastics or polybasic propellant powder, the viscosity is strongly temperature-dependent, ie the flow behavior in the extruder changes with a change in temperature. In the case of such plastics, the temperature of the jacket elements must be adapted to the temperature of the plastic melt in the discharge area of the extruder in order to ensure a constant temperature distribution over the entire cross section so that inhomogeneities are avoided and that there is a uniform flow behavior.

Erfindungsgemäß hat es sich im Gegensatz dazu herausgestellt, daß bei mit Ether gelatinierten Treibladungs-Pulvermassen die Viskosität und damit das Fließverhalten praktisch temperaturunabhängig sind. Es ist somit möglich, diesen Treibladungs-Pulvermaterialien während der Extrusion die thermische Energie durch Kühlung zu entziehen und einen Temperaturgradienten zu schaffen, welcher sowohl in radialer als auch in axialer Richtung so ausgebildet ist, daß der Siedepunkt des Ethers nicht überschritten wird. Dabei besteht nicht die Gefahr, daß es zu Inhomogenitäten oder zu einem unterschiedlichen Fließverhalten der Pulvermaterialien kommt.In contrast, it has been found according to the invention that in the case of propellant powder compositions gelatinized with ether, the viscosity and thus the flow behavior are practically independent of temperature. It is thus possible to extract the thermal energy by cooling from these propellant charge powder materials during the extrusion and to create a temperature gradient which is designed both in the radial and in the axial direction in such a way that the boiling point of the ether is not exceeded. There is no risk of inhomogeneities or different flow behavior of the powder materials.

Erfindungsgemäß hat sich weiter herausgestellt, daß es nicht notwendig ist, die gesamte Extrudervorrichtung so auszubilden, daß die Treibladungs-Pulvermaterialien unter den Siedepunkt des Ethers abgekühlt werden können. Vielmehr ist es ausreichend, das Treibladungs-Pulvermaterial vor dem Austritt aus der Extrudervorrichtung zu kühlen, so daß dieses nach dem Durchtritt durch die Matrizen eine Temperatur aufweist, welche gleich oder niedriger als der Siedepunkt des Ethers ist. Die im übrigen Bereich der Extrudervorrichtung vorliegenden Drücke verhindern die Ether-Blasenbildung in zuverlässiger Weise.According to the invention it has further been found that it is not necessary to design the entire extruder device in such a way that the propellant powder materials can be cooled below the boiling point of the ether. Rather, it is sufficient to cool the propellant powder material before it leaves the extruder device so that it has a temperature after passing through the dies which is equal to or lower than the boiling point of the ether. The pressures present in the remaining area of the extruder device reliably prevent ether bubble formation.

Gemäß dem erfindungsgemäßen Verfahren ist es somit nicht erforderlich, über die gesamte Durchlauflänge der Extrudervorrichtung ein bestimmtes Temperaturprofil aufrecht zu erhalten, wie dies beispielsweise aus der DE-A-32 42 301 bekannt ist. Insbesondere ist es nicht erforderlich, die Temperatur der Treibladungs-Pulvermasse im Knet- und Mischbereich des Extruders unter dem Siedepunkt des Ethers zu halten.According to the method according to the invention, it is therefore not necessary to maintain a certain temperature profile over the entire length of the extruder device, as is known, for example, from DE-A-32 42 301. In particular, it is not necessary to keep the temperature of the propellant powder mass in the kneading and mixing area of the extruder below the boiling point of the ether.

In einer vorteilhaften Weiterentwicklung des erfindungsgemäßen Verfahrens ist es vorgesehen, daß die Kühlung auf eine Temperatur von 35 bis 40 °C erfolgt. Diese Temperatur entspricht der Siedetemperatur des Ethers, wobei eine geringfügige Überschreitung der Siedetemperatur unerheblich ist, da keine oder nur unwesentliche Mengen an Etherblasen auftreten.In an advantageous further development of the method according to the invention, it is provided that the cooling takes place at a temperature of 35 to 40 ° C. This temperature corresponds to the boiling temperature of the ether, a slight exceeding of the boiling temperature being irrelevant, since no or only insignificant amounts of ether bubbles occur.

Weiterhin ist es bei dem erfindungsgemäßen Verfahren besonders günstig, wenn der Schneckenbereich der Extrudervorrichtung möglichst vollständig gefüllt betrieben wird. Diese Maßnahme kann wichtig sein, um einen ausreichenden Druck der Treibladungs-Pulvermasse in der Extrudervorrichtung zu gewährleisten und um sicherzustellen, daß in den nicht gekühlten Bereichen der Extrudervorrichtung keine Etherblasen auftreten. Wird der Extruder auch im Misch- und Knetbereich gekühlt, unterstützt die vollständige Füllung einen guten Wärmeübergang von der Pulvermasse zum Extruder.Furthermore, it is particularly advantageous in the method according to the invention if the screw region of the extruder device is operated as completely as possible. This measure can be important in order to ensure a sufficient pressure of the propellant powder mass in the extruder device and to ensure that no ether bubbles occur in the non-cooled areas of the extruder device. If the extruder is also cooled in the mixing and kneading area, the complete filling supports good heat transfer from the powder mass to the extruder.

Um die Erwärmung der Pulvermasse bereits während des Gelatinierprozesses zu begrenzen, ist es vorteilhaft, wenn die Bearbeitung des Treibladungs-Pulvermaterials bzw. der Pulvermasse bei niedriger Drehzahl des Schneckenbereichs des Extruders erfolgt. Eine Erhöhung der Drehzahl würde bei sonst konstanten Bedingungen zu einer Erhöhung der Produkttemperatur führen.In order to limit the heating of the powder mass already during the gelatinization process, it is advantageous if the processing of the propellant charge powder material or the powder mass takes place at a low speed of the screw region of the extruder. An increase in the speed would lead to an increase in the product temperature under otherwise constant conditions.

Weiterhin ist es erfindungsgemäß besonders günstig, den Alkoholgehalt so zu wählen, daß dieser in einem Bereich zwichen 25 und 30% liegt. Bei Treibladungs-Pulvermaterialien mit hohem DNT-Gehalt ist es erfindungsgemäß auch möglich, den Alkoholgehalt unter 25 % abzusenken.Furthermore, it is particularly advantageous according to the invention to choose the alcohol content such that it is in a range between 25 and 30%. For propellant powder materials With a high DNT content, it is also possible according to the invention to lower the alcohol content below 25%.

In einer weiteren, besonders günstigen Ausgestaltung des erfindungsgemäßen Verfahrens ist weiterhin vorgesehen, daß der Ethergehalt so eingestellt wird, daß der Druck am Ausgabebereich des Extruders 30 bis 35 bar beträgt.In a further, particularly advantageous embodiment of the method according to the invention it is further provided that the ether content is adjusted so that the pressure at the discharge area of the extruder is 30 to 35 bar.

Unter Verwendung des erfindungsgemäßen Verfahrens ist es möglich, die Gelatinierung von einbasigen Treibladungspulvern mit Ethern selbst unter Verwendung eines relativ kurzen Extruderkopfes in sicherer Weise durchzuführen.Using the method according to the invention, it is possible to carry out the gelatinization of monobasic propellant charge powders with ethers in a safe manner even using a relatively short extruder head.

Eine geeignete Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, daß zwischen dem Endbereich der Schnecke und der Matrize ein Kanal vorgesehen ist, in welchem ein Kühldorn angeordnet ist. Der Kühldorn kann beispielsweise mit Wasser oder mit anderen geeigneten Fluiden beaufschlagt werden. Vorzugsweise ist der Kühldorn zentrisch in dem Kanal gelagert.A suitable device for carrying out the method according to the invention is characterized in that a channel is provided between the end region of the screw and the die, in which a cooling mandrel is arranged. The cooling mandrel can be charged with water or other suitable fluids, for example. The cooling mandrel is preferably mounted centrally in the channel.

Bei der erfindungsgemäßen Vorrichtung erweist es sich außerdem als günstig, wenn das Austragsende des Gehäuses mit einem den Endbereich der Schnecke umgebenden ersten Kühlmantel und der Kanal mit einem zweiten Kühlmantel versehen ist, so daß schon der in Durchlaufrichtung gesehen, letzte Schneckenbereich mit abgekühlt wird.In the device according to the invention, it also proves to be advantageous if the discharge end of the housing is provided with a first cooling jacket surrounding the end region of the screw and the channel is provided with a second cooling jacket, so that the last screw region seen in the direction of passage is also cooled.

Bei der erfindungsgemäßen Vorrichtung kann das Treibladungs-Pulvermaterial ungestört durch den Kanal strömen, so daß stabile, berechenbare Temperaturgradienten einstellbar sind. Durch den Kühldorn wird eine besonders intensive Kühlung des Pulvermaterials vor der Matrize erreicht. Das Treibladungs-Pulvermaterial wird sowohl von innen als auch von außen (in radialer Richtung gesehen) gekühlt, so daß das Treibladungs-Pulvermaterial beim Eintritt in die Matrize in radialer Richtung eine gleichmäßige Temperatur aufweist. Die Entstehung einzelner überhitzter Bereiche wird somit in zuverlässiger Weise vermieden.In the device according to the invention, the propellant powder material can be undisturbed by flow the channel so that stable, predictable temperature gradients are adjustable. The cooling mandrel provides particularly intensive cooling of the powder material in front of the die. The propellant powder material is cooled both from the inside and from the outside (viewed in the radial direction), so that the propellant powder material has a uniform temperature in the radial direction when it enters the die. The formation of individual overheated areas is thus reliably avoided.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels in Verbindung mit der Zeichnung beschrieben. Dabei zeigt:

Fig. 1
eine schematische Schnittansicht des Austragsendes einer erfindungsgemäßen Vorrichtung;
Fig. 2
eine Schnittansicht des in Fig. 1 gezeigten Kühldorns;
Fig. 3
eine Schnittansicht eines weiteren Ausführungsbeispiels eines Kühldorns; und
Fig. 4
eine schematische Darstellung des Aufbaus einer Extruderschnecke.
The invention is described below using an exemplary embodiment in conjunction with the drawing. It shows:
Fig. 1
is a schematic sectional view of the discharge end of a device according to the invention;
Fig. 2
a sectional view of the cooling mandrel shown in Fig. 1;
Fig. 3
a sectional view of another embodiment of a cooling mandrel; and
Fig. 4
is a schematic representation of the structure of an extruder screw.

Die in Fig. 1 dargestellte erfindungsgemäße Vorrichtung umfaßt ein Gehäuse 2, in welchem eine Doppelschnecke 1 drehbar gelagert ist. Bei der Darstellung gemäß Fig. 1 wurde darauf verzichtet, den Einlaufbereich des Extruders im einzelnen abzubilden. Der Extruder umfaßt an seinem in Fig. 1 nicht dargestellten Ende eine Einfüllöffnung, welche bevorzugterweise mit einer Dosiervorrichtung versehen ist, mittels derer die Ausgangsmaterialien des Treibladungspulvers zugegeben werden können. Weiterhin ist eine Dosiervorrichtung zur Zugabe des Lösemittels (Ether und Alkohol) vorgesehen. Der schematische Aufbau des Extruders ist beispielsweise in der DE-A-30 42 697 beschrieben, auf welche, zur Vermeidung von Wiederholungen, an dieser Stelle Bezug genommen wird.The device according to the invention shown in Fig. 1 comprises a housing 2, in which a twin screw 1 is rotatably mounted. In the representation according to FIG. 1, the individual images of the inlet area of the extruder have been omitted. At its end, not shown in FIG. 1, the extruder comprises a filling opening, which is preferably provided with a metering device, by means of which the starting materials of the propellant charge powder are added can be. Furthermore, a metering device for adding the solvent (ether and alcohol) is provided. The schematic structure of the extruder is described, for example, in DE-A-30 42 697, to which reference is made here to avoid repetition.

Das Austragsende des Gehäuses 2 ist mit einem ersten Kühlmantel 5 umgeben, welcher in Fig. 1 nur teilweise dargestellt ist. Der Kühlmantel umgibt das Gehäuse 2 konzentrisch und ist mit Anschlüssen 9a und 9b versehen, durch welche ein Kühlmedium, beispielsweise Wasser, zu- bzw. abführbar ist.The discharge end of the housing 2 is surrounded by a first cooling jacket 5, which is only partially shown in FIG. 1. The cooling jacket concentrically surrounds the housing 2 and is provided with connections 9a and 9b, through which a cooling medium, for example water, can be supplied or removed.

Nachfolgend an das Gehäuse 2 ist eine Zwischenplatte 13 angeordnet, welche zum einem der Lagerung der Doppelschnecke und zum anderen zum Abschluß des Gehäuses 2 bzw. des ersten Kühlmantels 5 dient. Nachfolgend an die Platte 13 ist ein Übergangselement 14 vorgesehen, welches dazu dient, den im wesentlichen achtförmigen Strömungquerschnitt des Gehäuses 2 im Bereich der Doppelschnecke 1 auf einen kreisförmigen oder schlitzförmigen Querschnitt überzuleiten. Auch das Übergangselement 14 kann mit Anschlüssen 10a, 10b versehen sein, durch welche ein nicht dargestellter Kühlmantel mit Kühlflüssigkeit beaufschlagt werden kann.Subsequent to the housing 2, an intermediate plate 13 is arranged, which serves on the one hand to support the twin screw and on the other hand to close off the housing 2 or the first cooling jacket 5. Subsequent to the plate 13, a transition element 14 is provided, which serves to transfer the essentially eight-shaped flow cross section of the housing 2 in the region of the double screw 1 to a circular or slot-shaped cross section. The transition element 14 can also be provided with connections 10a, 10b, through which a cooling jacket (not shown) can be acted upon with cooling liquid.

Anschließend an das Übergangselement 14 ist eine Lagerplatte 15 vorgesehen, welche, zusammen mit einer nachfolgenden Lagerplatte 16 einen Zylinder 17 lagert, welcher einen Kanal 7 zur Durchleitung des Treibladungs-Pulvermaterials bildet. Der Kanal 7 ist von einem zweiten Kühlmantel 6 umgeben, welcher mit Anschlüssen 11a und 11b versehen ist, durch welche Kühlmedium zu- bzw. abführbar ist.Following the transition element 14, a bearing plate 15 is provided which, together with a subsequent bearing plate 16, supports a cylinder 17 which forms a channel 7 for the passage of the propellant powder material. The channel 7 is surrounded by a second cooling jacket 6, which is provided with connections 11a and 11b, through which cooling medium can be supplied or removed.

Nachfolgend zu der Lagerplatte 16 ist eine Matrize 3 oder Matrizenplatte vorgesehen, welche ebenfalls mit Anschlüssen 12a, 12b versehen ist, um Kühlmedium durch einen in Fig. 1 nicht dargestellten Kühlmantel durchzuleiten. Die Matrize 3 kann in üblicher Weise ausgebildet sein und eine Matrizenhalteplatte, eine Siebvorrichtung und ähnliches umfassen, so wie es beispielsweise in der DE-A-30 42 662 beschrieben ist, auf welche zur Vermeidung von Wiederholungen an dieser Stelle Bezug genommen wird.Subsequent to the bearing plate 16, a die 3 or die plate is provided, which is also provided with connections 12a, 12b in order to pass cooling medium through a cooling jacket (not shown in FIG. 1). The die 3 can be formed in the usual way and one Die holder plate, a sieve device and the like, as described for example in DE-A-30 42 662, to which reference is made here to avoid repetition.

In dem Kanal 7, welcher den Hauptteil eines Extruderkopfes 4 bildet, ist zentrisch ein Kühldorn 8 angeordnet. Der Kanal 7 kann einen kreisförmigen Querschnitt aufweisen, wobei dann der Kühldorn 8 ebenfalls mit einem kreisförmigen Querschnitt versehen ist. Der Kühldorn 8 erstreckt sich im wesentlichen über die gesamte Länge des Kanals 7 und ist in seinem Inneren mit einem Hohlraum 19 versehen, in welchen ein Rohr 18 mündet, durch das Kühlflüssigkeit in den Kühldorn 8 geleitet werden kann. Zur Vereinfachung der Darstellung wurde darauf verzichtet, die Anschlüsse zur Ableitung des Kühlmediums aus dem Kühldorn 8 in Fig. 1 darzustellen.In the channel 7, which forms the main part of an extruder head 4, a cooling mandrel 8 is arranged centrally. The channel 7 can have a circular cross section, in which case the cooling mandrel 8 is also provided with a circular cross section. The cooling mandrel 8 extends essentially over the entire length of the channel 7 and is provided in its interior with a cavity 19 into which a tube 18 opens, through which cooling liquid can be guided into the cooling mandrel 8. To simplify the illustration, the connections for discharging the cooling medium from the cooling mandrel 8 in FIG. 1 have been omitted.

Die Fig. 2 und 3 zeigen jeweils Ausführungsbeispiele des erfindungsgemäßen Kühldorns 8. Bei dem in Fig. 2 gezeigten Ausführungsbeispiel ist, so wie in Fig. 1 schematisch dargestellt, ein zentrisches Rohr 18 vorgesehen, durch welches Kühlmedium in den Hohlraum 19 einführbar ist. Die Ableitung der Kühlflüssigkeit erfolgt über Kanäle 21, welche sich in radialer Richtung in der Matrize 3 oder Matrizenhalteplatte erstrecken und so angeordnet sind, daß sie zwischen den Matrizendurchtrittsöffnungen 20 eine Hindurchführung des Kühlmediums ermöglicht.2 and 3 each show exemplary embodiments of the cooling mandrel 8 according to the invention. In the exemplary embodiment shown in FIG. 2, as is shown schematically in FIG. 1, a central tube 18 is provided, through which cooling medium can be introduced into the cavity 19. The cooling liquid is discharged via channels 21 which extend in the radial direction in the die 3 or die holding plate and are arranged such that it enables the cooling medium to be passed between the die passage openings 20.

Bei dem in Fig. 3 gezeigten Ausführungsbeispiel weist das Rohr 18 keine Einlaßöffnung auf, es ist vielmehr als Strömungsleitelement in dem Hohlraum 19 angeordnet. Die Zu- und Ableitung des Kühlmediums erfolgt über die Kanäle 21.In the exemplary embodiment shown in FIG. 3, the tube 18 has no inlet opening, rather it is arranged in the cavity 19 as a flow guiding element. The cooling medium is supplied and discharged via the channels 21.

In Fig. 4 ist in schematischer Weise die Ausgestaltung einer erfindungsgemäßen Schnecke dargestellt. Diese umfaßt mehrere rechtsdrehende Schraubenelemente sowie rechte und linke Knetblöcke und Einzugselemente. Wie in Fig. 4 dargestellt, sind, in Durchlaufrichtung gesehen, zunächst fünf Einzugselemente vorgesehen, denen vier rechtsdrehende Schraubenelemente folgen. Es schließt sich ein rechter Knetblock an, welchem ein rechtsdrehendes Schraubenelement folgt. Nachfolgend sind abwechselnd jeweils ein linker Knetblock und ein rechtsdrehendes Schraubenelement vorgesehen, das Auslaßende der Schnecke wird von fünf rechtsdrehenden Schraubenelementen gebildet.4 shows the configuration of a screw according to the invention in a schematic manner. This includes several right-handed screw elements as well as right and left kneading blocks and feed elements. As shown in Fig. 4, As seen in the direction of travel, five feed elements are initially provided, which are followed by four clockwise screw elements. This is followed by a right kneading block, which is followed by a clockwise screw element. In the following, a left kneading block and a clockwise screw element are alternately provided, the outlet end of the screw is formed by five clockwise screw elements.

Nachfolgend werden zwei Beispiele aufgeführt, welche Verfahrensparameter und Vorrichtungsparameter des erfindungsgemäßen Verfahrens bzw. der dazu verwendeten Vorrichtung aufzeigen.Two examples are given below, which show process parameters and device parameters of the method according to the invention or of the device used for this purpose.

Beispiel 1 :Example 1 :

   Extrusion von D 698 mit Alkohol/Ether als LösungsmittelExtrusion of D 698 with alcohol / ether as solvent

Aufbau des Extruders :Structure of the extruder:

Länge des VerfahrensteilsLength of the procedural part
: 21 D: 21 D
SchneckenkonfigurationScrew configuration
: Nr. 1 (Abbildung 1): No. 1 (Figure 1)
Matrizenkopf:Die head:

Acht-auf-Schlitz-Stück (Zeichnung Nr. 3) mit anschließender Matrizenplatte und 2 Matrizen (D = 5.2, TK₁ = 3.0, d = 0.6)Eight-on-slot piece (drawing No. 3) with subsequent die plate and 2 dies (D = 5.2, TK₁ = 3.0, d = 0.6)

Temperierung des Extruders:Temperature control of the extruder:

Figure imgb0001
Figure imgb0001

Versuchsparameter :Test parameters:

Figure imgb0002
Figure imgb0002

Homogenes Produkt ohne erkennbare Zeichen von nicht gelatinierter NitrocelluloseHomogeneous product with no noticeable signs of non-gelatinized nitrocellulose

Beispiel 2 :Example 2:

   Extrusion von B 6320 mit Alkohol/Ether als LösungsmittelExtrusion of B 6320 with alcohol / ether as solvent

Aufbau des Extruders:Structure of the extruder:

Länge des VerfahrensteilsLength of the procedural part
: 21 D: 21 D
SchneckenkonfigurationScrew configuration
: Nr. 1 (Abbildung 1): No. 1 (Figure 1)
Matrizenkopf:Die head:

Acht-auf-Rund-Stück (Werner & Pfleiderer) mit Kühlrohr (Zeichnung Nr. 1) und Matrizenplatte mit Kühlfinger (Zeichnung Nr. 2), 12 Matrizen (D = 2,7; d = 0.45)Eight-on-round piece (Werner & Pfleiderer) with cooling tube (drawing No. 1) and die plate with cooling finger (drawing No. 2), 12 dies (D = 2.7; d = 0.45)

Temperierung des Extruders:Temperature control of the extruder:

Figure imgb0003
Figure imgb0003

Versuchsparameter:Test parameters:

Figure imgb0004

vollständig gelatiniertes Produkt
Figure imgb0004

fully gelatinized product

Die Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt, vielmehr ergeben sich für den Fachmann im Rahmen der Erfindung vielfältige Abwandlungs- und Modifikationsmöglichkeiten.The invention is not limited to the exemplary embodiments shown, rather there are various modification and modification possibilities for the person skilled in the art within the scope of the invention.

Claims (10)

  1. A process for the production of monobasic propellant powders containing alcohol and ether as solvent using an extruder in which the propellant powder material is compounded and mixed, characterized in that the propellant charge material is cooled after the compounding and mixing zone and before leaving the extruder to such an extent that its temperature is not significantly above the boiling point of the ether.
  2. A process as claimed in claim 1, characterized in that the propellant charge material is cooled to a temperature of 35 to 40°C.
  3. A process as claimed in claim 1 or 2, characterized in that the screw zone (1) of the extruder is kept completely full in operation.
  4. A process as claimed in any of claims 1 to 3, characterized in that the propellant powder material is compounded at a low rotational speed of the screws (1) of the extruder.
  5. A process as claimed in any of claims 1 to 4, characterized in that the alcohol content is between 25 and 30%.
  6. A process as claimed in any of claims 1 to 4, characterized in that the alcohol content of propellant powder material of high dinitrotoluene (DNT) content is reduced to below 25%.
  7. A process as claimed in any of claims 1 to 6, characterized in that the ether content is adjusted so that the pressure in the discharge zone of the extruder is 25 to 35 bar.
  8. A machine for the production of monobasic propellant powders containing alcohol and ether as solvent, more particularly by the process claimed in any of claims 1 to 7, comprising at least one screw (1) fixedly mounted in a housing (2) and an extruder head (4) positioned at the discharge end of the housing (2) and comprising at least one cavity block (3) and cooling means for cooling the propellant powder at the discharge end, characterized in that a passage (7) accommodating a cooling mandrel (8) is provided between the end of the screw (1) and the cavity block (3).
  9. A machine as claimed in claim 8, characterized in that the discharge end of the housing (2) is provided with a first cooling jacket (5) surrounding the end of the screw (1) and the passage (7) is provided with a second cooling jacket (6).
  10. A machine as claimed in claim 8 or 9, characterized in that the cooling mandrel (8) is mounted centrally in the passage (7).
EP19900906166 1989-04-25 1990-04-17 Process and device for producing monobasic propellant powders using alcohol and ether as solvents Expired - Lifetime EP0422173B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90906166T ATE99659T1 (en) 1989-04-25 1990-04-17 METHOD AND DEVICE FOR THE PRODUCTION OF MONOBASE PROPELLANT POWDER WITH ALCOHOL AND ETHER AS SOLVENT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3913603A DE3913603C1 (en) 1989-04-25 1989-04-25
DE3913603 1989-04-25

Publications (2)

Publication Number Publication Date
EP0422173A1 EP0422173A1 (en) 1991-04-17
EP0422173B1 true EP0422173B1 (en) 1994-01-05

Family

ID=6379418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900906166 Expired - Lifetime EP0422173B1 (en) 1989-04-25 1990-04-17 Process and device for producing monobasic propellant powders using alcohol and ether as solvents

Country Status (19)

Country Link
US (1) US5186871A (en)
EP (1) EP0422173B1 (en)
JP (1) JPH0688862B2 (en)
KR (1) KR940004633B1 (en)
CN (1) CN1045948C (en)
AR (1) AR242764A1 (en)
AU (1) AU628165B2 (en)
BR (1) BR9006725A (en)
CA (1) CA2028805C (en)
DE (1) DE3913603C1 (en)
EG (1) EG20749A (en)
ES (1) ES2049975T3 (en)
FI (1) FI98302C (en)
GR (1) GR1002291B (en)
IL (1) IL94192A (en)
NO (1) NO174580C (en)
PT (1) PT93866B (en)
WO (1) WO1990012772A2 (en)
ZA (1) ZA903075B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE298736T1 (en) * 1999-02-23 2005-07-15 Gen Dynamics Ordnance & Tactic PERFORATED FUEL AND METHOD FOR PRODUCING IT
RU2489415C1 (en) * 2011-12-05 2013-08-10 Федеральное казенное предприятие "Государственный научно-исследовательский институт химических продуктов" (ФКП "ГосНИИХП") Method to produce ball powder
CN107353170B (en) * 2017-08-23 2018-10-12 西安近代化学研究所 A kind of Dynamic calculation method of propellant powder pressure stretch technological parameter
FR3135477B1 (en) 2022-05-12 2024-05-17 Ag Bois Flat plate intended to constitute a clip, clip for fixing a strut on a post formed by folding such a plate and method of assembling a post and a strut by means of such clip

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1509362A (en) * 1922-04-25 1924-09-23 Du Pont High explosive
US1838345A (en) * 1928-04-13 1931-12-29 Du Pont Propellent powder
US1890960A (en) * 1930-03-28 1932-12-13 Weingand Richard Process of manufacturing smokeless powder
US4298552A (en) * 1968-04-29 1981-11-03 Hercules Incorporated Solventless extrusion of double base propellant prepared by a slurry process
US3599285A (en) * 1968-10-10 1971-08-17 Myron & Mallay Pelletizing die plate
US3855373A (en) * 1972-09-19 1974-12-17 Us Army New process for making nitrocellulose base propellants
FR2244733A1 (en) * 1973-09-21 1975-04-18 Bofors Ab Extruding ag. suspension of explosive powder - to safety give complex extruded sections of improved ballistic props
JPS5214656A (en) * 1975-07-25 1977-02-03 Japan Steel Works Ltd Submarged pelletizer of extruder
FR2325491A1 (en) * 1975-09-25 1977-04-22 Poudres & Explosifs Ste Nale PYROTECHNIC COMPOSITIONS PURLING PROCESS, AND SCREW PADDING
US4102953A (en) * 1976-05-25 1978-07-25 The United States Of America As Represented By The Secretary Of The Navy Method for making extruded, solventless, composite-modified double base propellant
DE2825567B1 (en) * 1978-06-10 1979-11-15 Dynamit Nobel Ag Process for the continuous production of explosive mixtures
FR2436766A1 (en) * 1978-09-21 1980-04-18 Poudres & Explosifs Ste Nale FRAGMENTABLE LOADS OF PROPULSIVE POWDER COATED WITH POLYVINYL NITRATE AND THEIR MANUFACTURING METHOD
DE3042662C2 (en) * 1980-11-12 1982-12-30 WNC-Nitrochemie GmbH, 8261 Aschau Twin screw press for the manufacture of explosives
DE3044577C2 (en) * 1980-11-26 1982-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Process and device for the continuous production of propellant charge powder
DE3242301A1 (en) * 1982-11-16 1984-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München METHOD AND DEVICE FOR THE PRODUCTION OF SINGLE OR MULTI-BASED POWDER CHARGING POWDER
DE3407238A1 (en) * 1984-02-28 1985-11-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München DEVICE FOR PRODUCING DRIVE CHARGE POWDER IN STRAND SHAPE

Also Published As

Publication number Publication date
CN1045948C (en) 1999-10-27
IL94192A0 (en) 1991-01-31
NO905578D0 (en) 1990-12-21
AR242764A1 (en) 1993-05-31
ES2049975T3 (en) 1994-05-01
CA2028805C (en) 1999-08-24
AU5426190A (en) 1990-11-16
JPH0688862B2 (en) 1994-11-09
FI98302C (en) 1997-05-26
EP0422173A1 (en) 1991-04-17
AU628165B2 (en) 1992-09-10
NO174580B (en) 1994-02-21
EG20749A (en) 2000-01-31
KR920700175A (en) 1992-02-19
CN1046888A (en) 1990-11-14
BR9006725A (en) 1991-08-06
GR900100273A (en) 1991-09-27
JPH03505198A (en) 1991-11-14
FI98302B (en) 1997-02-14
PT93866A (en) 1992-02-28
NO905578L (en) 1990-12-21
GR1002291B (en) 1996-05-03
FI906353A0 (en) 1990-12-21
ZA903075B (en) 1991-01-30
IL94192A (en) 1993-07-08
WO1990012772A2 (en) 1990-11-01
DE3913603C1 (en) 1990-03-29
WO1990012772A3 (en) 1990-12-13
KR940004633B1 (en) 1994-05-27
CA2028805A1 (en) 1990-10-26
NO174580C (en) 1994-06-01
US5186871A (en) 1993-02-16
PT93866B (en) 1996-10-31

Similar Documents

Publication Publication Date Title
EP0118847B1 (en) Method of and apparatus for filling thermoplastic material with reinforcing material
DE69906737T2 (en) BLENDER
EP2147136B1 (en) Method and system for producing a spinning solution for producing a polymer fiber
DD142681A5 (en) EXTRUDING OF PLASTIC BUBBLES, ESPECIALLY STEADY POLYVINYL CHLORIDE
DE2108936B2 (en) Method and device for manufacturing semi-finished plastic products with a foam core and non-foamed shell
DE102017003681A1 (en) Cooling when extruding melt
DE2906973A1 (en) SCREW PRESS FOR THERMOPLASTIC FOAM
DE3242301C2 (en)
DE19638994A1 (en) Device for homogenizing, mixing and / or granulating chemical substances
DE1144233B (en) Device for kneading, mixing and homogenizing viscous substances, in particular for processing and pressing thermoplastics
DE102006051104B3 (en) Extruder for hollow profiles made from thermoplastics comprises extruder head fitted with mandrel and calibration, mandrel containing turbulence chamber with cold air outlet which connects with cooling pipe extending into calibration unit
DE2836847A1 (en) LOW-VOLUME MULTI-WAVE SCREW MACHINE OUTLET DEVICE WITH SCREEN EXCHANGE DEVICE
DE3022682A1 (en) METHOD FOR PRODUCING A MIXTURE CONTAINING THE SOLID PHASE AND THE LIQUID PHASE OF A METAL ALLOY, AND DEVICE FOR CARRYING OUT THIS METHOD
DE3610159C2 (en)
DE3042662C2 (en) Twin screw press for the manufacture of explosives
EP0422173B1 (en) Process and device for producing monobasic propellant powders using alcohol and ether as solvents
DE2654774C3 (en) Screw machine for homogenizing melted polymers
DE2600715A1 (en) MIXING AND VENTING EXTRUDER
DE1729145B2 (en) Screw extruder for plastic
AT307012B (en) Device for the continuous production of fibrous molding compounds
DE69212748T2 (en) Apparatus for recuperating heterogeneous waste, especially heterogeneous plastic waste
DE4225341A1 (en) Spinneret unit for synthetic yarns - has mixer unit to homogenise the plastic melt before extrusion
EP1027836A2 (en) Process and device for producing intermediate products and mixed fodder for animals
EP0052797B1 (en) Process and apparatus for the continuous manufacture of propellant powder
DE3533349A1 (en) DEVICE FOR HEATING PLASTIC MEASURES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930316

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940105

Ref country code: BE

Effective date: 19940105

Ref country code: DK

Effective date: 19940105

REF Corresponds to:

Ref document number: 99659

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: WNC-NITROCHEMIE GMBH

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940417

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049975

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90906166.5

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030410

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030416

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030425

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040421

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040426

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040427

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050418

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050418

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051230

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051230

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050418