EP0420768A1 - Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition - Google Patents

Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition Download PDF

Info

Publication number
EP0420768A1
EP0420768A1 EP90420390A EP90420390A EP0420768A1 EP 0420768 A1 EP0420768 A1 EP 0420768A1 EP 90420390 A EP90420390 A EP 90420390A EP 90420390 A EP90420390 A EP 90420390A EP 0420768 A1 EP0420768 A1 EP 0420768A1
Authority
EP
European Patent Office
Prior art keywords
fuel
evaporator
flow
burner
flow regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90420390A
Other languages
German (de)
French (fr)
Other versions
EP0420768B1 (en
Inventor
René Frigière
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feudor SA
Original Assignee
Feudor SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feudor SA filed Critical Feudor SA
Priority to AT90420390T priority Critical patent/ATE73219T1/en
Publication of EP0420768A1 publication Critical patent/EP0420768A1/en
Application granted granted Critical
Publication of EP0420768B1 publication Critical patent/EP0420768B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/28Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid in association with a gaseous fuel source, e.g. acetylene generator, or a container for liquefied gas

Definitions

  • the present invention relates to means for supplying gaseous fuel to an apparatus using the combustion of this gas stored in the liquid phase.
  • the purpose of the regulator / evaporator which generally consists of a porous mass, the permeability of which determines the gas flow, is intended not only to guarantee the gaseous state of the fuel arriving at the burner, but also to limit the flow to a value such that combustion generates, in the heat distribution member, an average temperature between two limit values, one lower corresponding to the operating threshold of the device and the other higher above which this operation would be dangerous.
  • Thermal phenomena are generally relatively slow to establish and stabilize, mainly due to the thermal inertia of the constituent elements of the heat distribution member, each of which has a high specific heat as well as due to the importance of heat losses by convection and conduction.
  • the present invention aims to remedy this drawback by allowing a rapid rise in temperature of the heat distribution member without, however, resulting in an increase in the normal operating temperature.
  • the flow regulator / evaporator constituted by at least one porous mass disposed between the tank in which the fuel is stored in the liquid phase and the burner with which is associated ignition device which is intended to produce the fuel mixture in the gas phase / combustion air supplying a flame and a heat distribution member maintained by the flame at a temperature between two limit values, one of operating threshold and the other safety, a closing / opening valve, being arranged upstream of the burner on the one hand
  • the flow regulator / evaporator consists of two porous masses whose permeabilities are such that the sum of the pressure losses that '' they generate is equal to the pressure drop corresponding to the desired flow rate for normal operation of the device and which are separated from each other by a recondensation chamber whose volume corresponds to the quantity of fuel necessary for the heat distribution
  • the recondensation chamber is provided with means making it possible to adjust its volume as a function of the calorie requirements of the heat distribution member in order to reach its normal operating temperature.
  • all the elements making up the flow regulator / evaporator are inserted into the wall of the fuel tank.
  • the apparatus of FIG. 1 is of the type comprising a tank 2 in which the gaseous fuel is stored in the liquid phase, a burner 3 intended to receive the fuel in the gaseous phase coming from the tank 2 and to mix it with combustion air to supply a flame 4 or any other form of combustion of this gas near which a heat distribution member 5 is arranged.
  • a flow regulator / evaporator 6 whose presence is intended not only to guarantee the passage into the gas phase of the fuel coming from the tank 2, before it reaches the burner 3 , but also to limit the gas flow which feeds the flame 4 to a value between two limit values, one lower of which corresponds to the operating threshold of the device and the other of which constitutes a safety limit value beyond which this operation would be dangerous.
  • a valve 11 is provided between the flow regulator / evaporator 6 and the burner 3, making it possible to extinguish the flame 4 by cutting off the flow of fuel in the gaseous phase.
  • the flow regulator / evaporator 6 of the supply means consists of two porous masses 6a, 6b arranged one after the other with care, between them, a chamber 7 called the recondensation chamber.
  • the two porous masses 6a and 6b are chosen with their own porosity such that the sum of the pressure losses they generate is equal to the pressure drop which corresponds to the gas flow rate itself corresponding to an average temperature of the heat distributing member 5 comprised between the two aforementioned limit values.
  • the separation into two independent porous masses 6a, 6b of the flow regulator / evaporator therefore has no effect on the normal operation of the device.
  • this separation necessarily has the effect that the porous mass 6b located downstream from the other has a permeability greater than the sum of the permeabilities of the two masses 6a, 6b, that which the flow regulator / evaporator should have if was not split in two.
  • the quantity of fuel stored in the recondensation chamber 7 must not exceed the quantity necessary for raising the temperature to the heat distribution member up to a value below the safety limit temperature.
  • the volume of the recondensation chamber 7 is therefore determined by this necessary quantity of fuel, but it is advantageously adjustable.
  • the time necessary for the flow, through the second porous mass 6b, of the quantity of fuel stored in the recondensation chamber 7 and which is a function of the permeability of the porous mass 6b, determines the time necessary for the heat distribution member 5, so that it reaches its normal operating temperature.
  • FIG. 2 shows two curves, one 8, illustrating the operation of gaseous fuel supply means of a conventional type and the other 9, illustrating the operation of the gaseous fuel means according to the invention.
  • the times are plotted on the abscissa and the temperatures on the ordinate.
  • the two curves 8 and 9 correspond to flow rates of normal operation G0 making it possible to maintain, during this normal operation, the heat distribution member 5 at an average temperature T0 situated between the minimum temperature TMini of the device operating threshold and the maximum temperature TMaxi above which the operation of this device would be dangerous.
  • Curve 8 which illustrates the operation of supply means corresponding to a constant flow rate, not preceded by a transient regime of accelerated flow rate, shows that it takes a time t2 for the heat distribution member to reach a temperature T1, while curve 9, corresponding to an operation whose normal steady state is preceded by an accelerated speed regime, shows that it takes a time t1 to reach this same temperature T1.
  • the comparative examination of curves 8 and 9 further shows that the time t1 is substantially half the time t2.
  • the recondensation chamber 7 In steady state, that is to say after the transient state, the recondensation chamber 7 is filled with fuel in the gaseous state and at an intermediate pressure between the vapor pressure of the gas at the temperature of the device and atmospheric pressure, the porous mass 6a, of the flow regulator / evaporator 6, arranged upstream ensuring a flow exclusively in the gas phase of the fuel.
  • This intermediate pressure depends on the respective values of the permeabilities of two porous masses 6a and 6b of the flow regulator / evaporator 6.
  • the recondensation chamber When stopped, that is to say, when the gas flow is zero at the outlet of the porous mass 6b located downstream, the recondensation chamber is the seat of a condensation of the fuel caused by the search for the balance between, on the one hand, the pressure prevailing upstream of the porous mass 6a of the flow regulator / evaporator 6, located upstream, that is to say between the pressure prevailing in the tank 2 and which corresponds to the vapor pressure of the fuel present in the liquid phase, and on the other hand, that which prevails downstream of the porous mass 6a, that is to say in the recondensation chamber 7.
  • This phenomenon of searching for balance is relatively long because the mass transfer, through the porous mass 6a of the regulator 6, is effected by capillarity phenomena within a meso-porous medium. During this time, the heat distribution member 5 cools.
  • this chamber 7 As soon as the first drop of condensate appears inside the recondensation chamber 7, the pressure inside this chamber becomes equal to the vapor pressure of the fuel. Over time, this chamber 7 is completely filled with liquid condensate.
  • the flow corresponding to the transient regime will be twice that corresponding to the normal operating regime.
  • the duration of the transient regime depends on the one hand, on the volume of the recondensation chamber and on the other hand, on the permeability of the porous mass 6b located downstream.
  • the transient regime persists with a flow rate accelerated by the high value of the pressure in this recondensation chamber 7.
  • the rate of evaporation can be limited in time by the weakness of the liquid-vapor interface inside the recondensation chamber 7, reducing the pressure to a value lower than the vapor pressure of the fuel, but this does not change this effect in any way. acceleration of the flow during the transient regime.
  • each porous mass 6a, 6b of the regulator 6 is constituted by a mesoporous membrane.
  • the slowness of the phenomenon of recondensation by mass transfer within the porous medium constituting the upstream mass 6a of the flow regulator / evaporator 6 makes it possible to avoid such a risk.
  • the heat distributing member 5 will have reached room temperature before the first drops of liquid fuel have formed in the recondensation chamber 7, since, when the gas flow is interrupted, the pressure in this chamber 7 was at a value lower than the vapor pressure prevailing in the main tank 2.
  • the mass transfer phenomenon in the porous medium of the upstream porous mass 6a of the regulator 6 must first ensure the return of the pressure of the vapor pressure recondensation chamber before recondensation actually begins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Wick-Type Burners And Burners With Porous Materials (AREA)

Abstract

An apparatus which is heated by a gasified liquid fuel has between the liquid fuel reservoir and a burner, a flow regulator/evaporator consisting of two porous masses separated by a recondensation chamber, the valve for cutting off the combustion being provided between the burner and the downstream mass. Liquid fuel can accumulate in the recondensation chamber so that, for startup of the system, there is an increased flow of fuel through the downstream porous mass to the burner to allow rapid heat up of the heat-distributing member. After the initial heating period the flow to the burner is determined by the porosity characteristics of both masses in series.

Description

La présente invention concerne des moyens d'alimentation en combustible gazeux d'un appareil utilisant la combustion de ce gaz stocké en phase liquide.The present invention relates to means for supplying gaseous fuel to an apparatus using the combustion of this gas stored in the liquid phase.

On peut citer, notamment, comme appareil utilisant la combustion du gaz des fers à friser, des fers à souder, des fers à repasser, des sèches-cheveux, des machines à café. Dans ces appareils, il est prévu un reservoir contenant le gaz combustible, le plus souvent en phase liquide, un régulateur de débit/évaporateur garantissant un débit constant de combustible en phase gazeuse, un dispositif d'allumage et un organe de répartition de chaleur permettant une utilisation optimale de l'énergie thermique provenant de la combustion du mélange gaz, oxygène de l'air. La présence du régulateur/évaporateur qui est généralement constitué par une masse poreuse dont la perméabilité détermine le débit de gaz a pour but non seulement de garantir l'état gazeux du combustible arrivant au brûleur, mais aussi de limiter le débit à une valeur telle que la combustion engendre, dans l'organe de répartition de chaleur, une température moyenne comprise entre deux valeurs limites, l'une inférieure correspondant au seuil de fonctionnement de l'appareil et l'autre supérieure au-delà de laquelle ce fonctionnement serait dangereux.There may be mentioned, in particular, as an apparatus using the combustion of gas from curling irons, soldering irons, irons, hair dryers, coffee machines. In these devices, there is provided a reservoir containing the combustible gas, most often in the liquid phase, a flow regulator / evaporator guaranteeing a constant flow of fuel in the gaseous phase, an ignition device and a heat distribution member allowing optimal use of thermal energy from the combustion of the gas and oxygen mixture in the air. The purpose of the regulator / evaporator, which generally consists of a porous mass, the permeability of which determines the gas flow, is intended not only to guarantee the gaseous state of the fuel arriving at the burner, but also to limit the flow to a value such that combustion generates, in the heat distribution member, an average temperature between two limit values, one lower corresponding to the operating threshold of the device and the other higher above which this operation would be dangerous.

Les phénomènes thermiques sont généralement relativement lents à s'établir et à se stabiliser, principalement en raison de l'inertie thermique des éléments constitutifs de l'organe de répartition de chaleur dont chacun présente une chaleur spécifique importante ainsi qu'en raison de l'importance des pertes thermiques par convection et conduction.Thermal phenomena are generally relatively slow to establish and stabilize, mainly due to the thermal inertia of the constituent elements of the heat distribution member, each of which has a high specific heat as well as due to the importance of heat losses by convection and conduction.

Il en résulte qu'un temps non négligeable est nécessaire pour que l'organe de répartition de chaleur atteigne la température minimale de fonctionnement.As a result, a non-negligible time is necessary for the heat distribution member to reach the minimum operating temperature.

Ce temps pourrait être réduit par augmentation du débit de gaz, mais cela entraînerait aussi une élévation de la température moyenne de l'organe de répartition de chaleur d'où il pourrait résulter une température de fonctionnement supérieure à la température limite de sécurité.This time could be reduced by increasing the gas flow rate, but this would also cause the average temperature of the heat distribution member to rise, which could result in an operating temperature above the safety limit temperature.

La présente invention vise à remédier à cet inconvénient en permettant une montée en température rapide de l'organe de répartition de chaleur sans qu'il en résulte, pour autant, une augmentation de la température de fonctionnement normal. A cet effet, dans les moyens qu'elle concerne et qui sont du type comportant un régulateur de débit/évaporateur constitué par au moins une masse poreuse disposée entre le reservoir dans lequel le combustible est stocké en phase liquide et le brûleur auquel est associé un dispositif d'allumage et qui est destiné à réaliser le mélange combustible en phase gazeuse/air de combustion alimentant une flamme et un organe de répartition de chaleur maintenu par la flamme à une température comprise entre deux valeurs limites, l'une de seuil de fonction­nement et l'autre de sécurité, un clapet de fermeture/ouverture, étant disposé en amont du brûleur d'une part, le régulateur de débit/évaporateur est constitué de deux masses poreuses dont les perméabilités sont telles que la somme des pertes de charges qu'elles engendrent est égale à la perte de charge correspondant au débit désiré pour le fonctionnement normal de l'appareil et qui sont séparées l'une de l'autre par une chambre de recondensation dont le volume correspond à la quantité de combustible nécessaire à l'organe de répartition de chaleur pour qu'il atteigne sa température normale de fonctionnement, tandis que la porosité de la seconde masse poreuse est fixée en fonction du débit de combustible correspondant à la durée souhaitée pour cette montée en température et d'autre part, le clapet est disposé entre le régulateur de débit/évaporateur et le brûleur.The present invention aims to remedy this drawback by allowing a rapid rise in temperature of the heat distribution member without, however, resulting in an increase in the normal operating temperature. To this end, in the means which it concerns and which are of the type comprising a flow regulator / evaporator constituted by at least one porous mass disposed between the tank in which the fuel is stored in the liquid phase and the burner with which is associated ignition device which is intended to produce the fuel mixture in the gas phase / combustion air supplying a flame and a heat distribution member maintained by the flame at a temperature between two limit values, one of operating threshold and the other safety, a closing / opening valve, being arranged upstream of the burner on the one hand, the flow regulator / evaporator consists of two porous masses whose permeabilities are such that the sum of the pressure losses that '' they generate is equal to the pressure drop corresponding to the desired flow rate for normal operation of the device and which are separated from each other by a recondensation chamber whose volume corresponds to the quantity of fuel necessary for the heat distribution member so that it reaches its normal operating temperature, while the porosity of the second porous mass is fixed as a function of the fuel flow rate corresponding to the desired duration for this temperature rise and on the other hand, the valve is arranged between the flow regulator / evaporator and the burner.

Suivant une forme d'exécution avantageuse de l'invention, la chambre de recondensation est pourvue de moyens permettant de régler son volume en fonction des besoins en calories de l'organe de répartition de chaleur pour atteindre sa température normale de fonctionnement.According to an advantageous embodiment of the invention, the recondensation chamber is provided with means making it possible to adjust its volume as a function of the calorie requirements of the heat distribution member in order to reach its normal operating temperature.

Suivant une autre caractéristique intéressante de l'invention, tous les éléments composant le régulateur de débit/évaporateur sont inserrés dans la paroi du réservoir de combustible.According to another advantageous characteristic of the invention, all the elements making up the flow regulator / evaporator are inserted into the wall of the fuel tank.

De toute façon, l'invention sera bien comprise à l'aide de la description qui suit, en référence au dessin schématique annexé repré­sentant, à titre d'exemple non limitatif, une forme d'exécution de ces moyens d'alimentation en gaz combustible et illustrant le fonctionnement de ces moyens :

  • Figure 1 est une vue de côté en élévation montrant, de façon très schématique un appareil utilisant la combustion du gaz et équipé de moyens d'alimentation en gaz selon l'invention;
  • Figure 2 montre la courbe de fonctionnement de l'appareil de Figure 1 comparativement à la courbe de fonctionnement d'un appareil similaire non équipé des moyens d'alimentation selon l'invention.
In any case, the invention will be clearly understood with the aid of the description which follows, with reference to the appended schematic drawing representing, by way of nonlimiting example, an embodiment of these means for supplying combustible gas. and illustrating the operation of these means:
  • Figure 1 is a side elevational view showing, very schematically an apparatus using the combustion of gas and equipped with gas supply means according to the invention;
  • Figure 2 shows the operating curve of the device Figure 1 compared to the operating curve of a similar device not equipped with the supply means according to the invention.

L'appareil de Figure 1 est du type comportant un réservoir 2 dans lequel le combustible gazeux est stocké en phase liquide, un brûleur 3 destiné à recevoir le combustible en phase gazeuse provenant du réservoir 2 et à le mélanger à de l'air de combustion pour alimenter une flamme 4 ou tout autre forme de combustion de ce gaz à proximité de laquelle est disposé un organe de répartition de chaleur 5.The apparatus of FIG. 1 is of the type comprising a tank 2 in which the gaseous fuel is stored in the liquid phase, a burner 3 intended to receive the fuel in the gaseous phase coming from the tank 2 and to mix it with combustion air to supply a flame 4 or any other form of combustion of this gas near which a heat distribution member 5 is arranged.

Entre le réservoir 2 et le brûleur 3, est disposé un régulateur de débit/évaporateur 6 dont la présence a pour but non seulement de garantir le passage en phase gazeuse du combustible provenant du réservoir 2, avant qu'il n'atteigne le brûleur 3, mais aussi de limiter le débit de gaz qui alimente la flamme 4 à une valeur comprise entre deux valeurs limites dont l'une inférieure correspond au seuil de fonctionnement de l'appareil et dont l'autre supérieure constitue une valeur limite de sécurité au-delà de laquelle ce fonctionnement serait dangereux. Enfin, il est prévu, entre le régulateur de débit/évaporateur 6 et le brûleur 3 un clapet 11, permettant d'éteindre la flamme 4 par coupure du débit de combustible en phase gazeuse.Between the tank 2 and the burner 3, there is disposed a flow regulator / evaporator 6 whose presence is intended not only to guarantee the passage into the gas phase of the fuel coming from the tank 2, before it reaches the burner 3 , but also to limit the gas flow which feeds the flame 4 to a value between two limit values, one lower of which corresponds to the operating threshold of the device and the other of which constitutes a safety limit value beyond which this operation would be dangerous. Finally, a valve 11 is provided between the flow regulator / evaporator 6 and the burner 3, making it possible to extinguish the flame 4 by cutting off the flow of fuel in the gaseous phase.

Comme le montre la figure 1, le régulateur de débit/évaporateur 6 des moyens d'alimentation selon l'invention est constitué de deux masses poreuses 6a,6b disposées à la suite l'une de l'autre avec ménagement, entre-elles, d'une chambre 7 dite chambre de recondensation.As shown in FIG. 1, the flow regulator / evaporator 6 of the supply means according to the invention consists of two porous masses 6a, 6b arranged one after the other with care, between them, a chamber 7 called the recondensation chamber.

Pour que la température de l'organe répartiteur de chaleur 5 ne dépasse jamais la valeur maximale de sécurité, les deux masses poreuses 6a et 6b sont choisies avec une porosité propre telle que la somme des pertes de charge qu'elles engendrent soit égale à la perte de charge qui correspond au débit de gaz correspondant lui-même à une température moyenne de l'organe répartiteur de chaleur 5 comprise entre les deux valeurs limites précitées. La séparation en deux masses poreuses indépendantes 6a,6b du régulateur de débit/évaporateur n'a donc pas d'effet sur le fonctionnement normal de l'appareil. Par contre, cette séparation a obligatoirement pour effet que la masse poreuse 6b située en aval de l'autre présente une perméabilité supérieure à la somme des perméabilités des deux masses 6a,6b, celle que devrait posséder le régulateur de débit/évaporateur s'il n'était pas séparé en deux. Il en résulte donc que le débit, à travers cette seconde masse poreuse 6b, du combustible stocké dans la chambre de recondensation 7, est beaucoup plus important que le débit moyen traversant les deux masses 6a,6b, durant le fonctionnement normal de l'appareil. La présence de cette chambre de recondensation 7 disposée entre les deux masses poreuses 6a,6b a donc bien pour effet de créer, lors de la mise en marche de l'appareil, un régime transitoire pendant lequel le débit de gaz sera très supérieur au débit du régime de fonctionnement normal. Ce régime transitoire à grand débit permet donc une montée en température de l'organe de répartition de chaleur 5 beaucoup plus rapide que si la chambre de recondensation 7 n'existait pas.So that the temperature of the heat-distributing member 5 never exceeds the maximum safety value, the two porous masses 6a and 6b are chosen with their own porosity such that the sum of the pressure losses they generate is equal to the pressure drop which corresponds to the gas flow rate itself corresponding to an average temperature of the heat distributing member 5 comprised between the two aforementioned limit values. The separation into two independent porous masses 6a, 6b of the flow regulator / evaporator therefore has no effect on the normal operation of the device. On the other hand, this separation necessarily has the effect that the porous mass 6b located downstream from the other has a permeability greater than the sum of the permeabilities of the two masses 6a, 6b, that which the flow regulator / evaporator should have if was not split in two. It therefore follows that the flow rate, through this second porous mass 6b, of the fuel stored in the recondensation chamber 7, is much greater than the average flow through the two masses 6a, 6b, during normal operation of the device. The presence of this recondensation chamber 7 disposed between the two porous masses 6a, 6b therefore has the effect of creating, when the appliance is started, a transient regime during which the gas flow rate will be much greater than the flow rate of the normal operating regime. This transient high flow regime therefore allows a rise in temperature of the heat distribution member 5 much faster than if the recondensation chamber 7 did not exist.

Naturellement, pour que la température maximale de sécurité de l'organe de répartition de chaleur 5 ne soit jamais dépassée, il faut que la quantité de combustible stockée dans la chambre de recondensation 7 ne dépasse pas la quantité nécessaire à l'élévation en température de l'organe de répartition de chaleur jusqu'a une valeur inférieure à la température limite de sécurité. Le volume de la chambre de recondensation 7 est donc déterminé par cette quantité necessaire de combustible mais il est avantageusement réglable.Naturally, so that the maximum safety temperature of the heat distribution member 5 is never exceeded, the quantity of fuel stored in the recondensation chamber 7 must not exceed the quantity necessary for raising the temperature to the heat distribution member up to a value below the safety limit temperature. The volume of the recondensation chamber 7 is therefore determined by this necessary quantity of fuel, but it is advantageously adjustable.

Par ailleurs, le temps nécessaire à l'écoulement, à travers la seconde masse poreuse 6b, de la quantité de combustible stockée dans la chambre de recondensation 7 et qui est fonction de la perméabilité de la masse poreuse 6b, détermine le temps nécessaire à l'organe de répartition de chaleur 5, pour qu'il atteigne sa température normale de fonctionnement.Furthermore, the time necessary for the flow, through the second porous mass 6b, of the quantity of fuel stored in the recondensation chamber 7 and which is a function of the permeability of the porous mass 6b, determines the time necessary for the heat distribution member 5, so that it reaches its normal operating temperature.

La figure 2 montre deux courbes, l'une 8, illustrant le fonction­nement de moyens d'alimentation en combustible gazeux d'un type classique et l'autre 9, illustrant le fonctionnement des moyens en combustible gazeux selon l'invention.FIG. 2 shows two curves, one 8, illustrating the operation of gaseous fuel supply means of a conventional type and the other 9, illustrating the operation of the gaseous fuel means according to the invention.

Sur cette figure 2, les temps sont portés en abcisses et les températures en ordonnées. Les deux courbes 8 et 9 correspondent à des débits de fonctionnement normal G0 permettant de maintenir, durant ce fonctionnement normal, l'organe de répartition de chaleur 5 à une tempé­rature moyenne T0 situé entre la température minimale TMini de seuil de fonctionnement de l'appareil et la température maximale TMaxi au-delà de laquelle le fonctionnement de cet appareil serait dangereux.In this figure 2, the times are plotted on the abscissa and the temperatures on the ordinate. The two curves 8 and 9 correspond to flow rates of normal operation G0 making it possible to maintain, during this normal operation, the heat distribution member 5 at an average temperature T0 situated between the minimum temperature TMini of the device operating threshold and the maximum temperature TMaxi above which the operation of this device would be dangerous.

La courbe 8, qui illustre le fonctionnement de moyens d'alimen­tation correspondant à un débit constant, non précédé d'un régime tran­sitoire de débit accéléré, montre qu'il faut un temps t2 pour que l'organe de répartition de chaleur atteigne une température T1, tandis que la courbe 9, correspondant à un fonctionnement dont le régime permanent normal est précédé d'un régime à débit accéléré, montre qu'il faut un temps t1 pour atteindre cette même température T1. L'examen comparatif des courbes 8 et 9 montre en outre, que le temps t1 est sensiblement la moitié du temps t2.Curve 8, which illustrates the operation of supply means corresponding to a constant flow rate, not preceded by a transient regime of accelerated flow rate, shows that it takes a time t2 for the heat distribution member to reach a temperature T1, while curve 9, corresponding to an operation whose normal steady state is preceded by an accelerated speed regime, shows that it takes a time t1 to reach this same temperature T1. The comparative examination of curves 8 and 9 further shows that the time t1 is substantially half the time t2.

En régime permanent, c'est-à-dire après le régime transitoire, la chambre de recondensation 7 est remplie de combustible à l'état gazeux et à une pression intermédiaire entre la tension de vapeur du gaz à la température de l'appareil et la pression atmosphérique, la masse poreuse 6a, du régulateur de débit/évaporateur 6, disposée en amont assurant un débit exclusivement en phase gazeuse du combustible. Cette pression intermédiaire dépend des valeurs respectives des perméabilités de deux masses poreuses 6a et 6b du régulateur de débit/évaporateur 6.In steady state, that is to say after the transient state, the recondensation chamber 7 is filled with fuel in the gaseous state and at an intermediate pressure between the vapor pressure of the gas at the temperature of the device and atmospheric pressure, the porous mass 6a, of the flow regulator / evaporator 6, arranged upstream ensuring a flow exclusively in the gas phase of the fuel. This intermediate pressure depends on the respective values of the permeabilities of two porous masses 6a and 6b of the flow regulator / evaporator 6.

A l'arrêt, c'est-à-dire, lorsque le débit de gaz est nul à la sortie de la masse poreuse 6b située en aval, la chambre de recondensation est le siège d'une condensation du combustible provoquée par la recherche de l'équilibre entre, d'une part, la pression qui règne en amont de la masse poreuse 6a du régulateur de débit/évaporateur 6, située en amont, c'est-à-dire entre la pression qui règne dans le réservoir 2 et qui correspond à la tension de vapeur du combustible présent en phase liquide, et d'autre part, celle qui règne en aval de la masse poreuse 6a, c'est-à-dire dans la chambre de recondensation 7. Ce phénomène de recherche d'équilibre est relativement long car le transfert de masse, à travers la masse poreuse 6a du régulateur 6, s'effectue par des phénomènes de capillarité au sein d'un milieu méso-poreux. Pendant ce temps, l'organe de répartition de chaleur 5 se refroidit.When stopped, that is to say, when the gas flow is zero at the outlet of the porous mass 6b located downstream, the recondensation chamber is the seat of a condensation of the fuel caused by the search for the balance between, on the one hand, the pressure prevailing upstream of the porous mass 6a of the flow regulator / evaporator 6, located upstream, that is to say between the pressure prevailing in the tank 2 and which corresponds to the vapor pressure of the fuel present in the liquid phase, and on the other hand, that which prevails downstream of the porous mass 6a, that is to say in the recondensation chamber 7. This phenomenon of searching for balance is relatively long because the mass transfer, through the porous mass 6a of the regulator 6, is effected by capillarity phenomena within a meso-porous medium. During this time, the heat distribution member 5 cools.

Dès que la première goutte de condensat apparaît à l'intérieur de la chambre de recondensation 7, la pression à l'intérieur de cette chambre devient égale à la tension de vapeur du combustible. Avec le temps, cette chambre 7 se remplit entièrement de condensat liquide.As soon as the first drop of condensate appears inside the recondensation chamber 7, the pressure inside this chamber becomes equal to the vapor pressure of the fuel. Over time, this chamber 7 is completely filled with liquid condensate.

Lors de la remise en marche de l'appareil, le débit instantané G2 à travers l'élément aval 6b du régulateur de débit/évaporateur 6 est évidemment nettement supérieur au débit normal de fonctionnement G0, car la pression dans la chambre de recondensation 7 est maintenant égale à la tension de vapeur du combustible.When the device is restarted, the instantaneous flow G2 through the downstream element 6b of the flow regulator / evaporator 6 is obviously much higher than the normal operating flow G0, because the pressure in the recondensation chamber 7 is now equal to the vapor pressure of the fuel.

Si, par exemple, les perméabilités des masses poreuses 6a et 6b du régulateur 6 sont égales et par conséquent si ces perméabilités sont égales au double de la perméabilité correspondant au débit de fonctionnement normal, le débit correspondant au régime transitoire sera le double de celui correspondant au régime de fonctionnement normal.If, for example, the permeabilities of the porous masses 6a and 6b of the regulator 6 are equal and therefore if these permeabilities are equal at twice the permeability corresponding to the normal operating flow, the flow corresponding to the transient regime will be twice that corresponding to the normal operating regime.

Naturellement, la durée du régime transitoire est fonction d'une part, du volume de la chambre de recondensation et d'autre part, de la perméabilité de la masse poreuse 6b située en aval. Théoriquement, tant qu'une seule goutte de condensat existe dans cette chambre de reconden­sation 7, le régime transitoire persiste avec un débit accéléré par la valeur élevée de la pression dans cette chambre de recondensation 7. En pratique, le taux d'évaporation peut être limité dans le temps par la faiblesse de l'interface liquide-vapeur à l'intérieur de la chambre de recondensation 7, diminuant la pression à une valeur inférieure à la tension de vapeur du combustible, mais ceci ne change en rien cet effet d'accélération du débit durant le régime transitoire.Naturally, the duration of the transient regime depends on the one hand, on the volume of the recondensation chamber and on the other hand, on the permeability of the porous mass 6b located downstream. Theoretically, as long as a single drop of condensate exists in this recondensation chamber 7, the transient regime persists with a flow rate accelerated by the high value of the pressure in this recondensation chamber 7. In practice, the rate of evaporation can be limited in time by the weakness of the liquid-vapor interface inside the recondensation chamber 7, reducing the pressure to a value lower than the vapor pressure of the fuel, but this does not change this effect in any way. acceleration of the flow during the transient regime.

L'augmentation du débit de combustible durant la période tran­sitoire a donc évidemment pour effet d'accélérer l'échauffement de l'organe de répartition de chaleur de manière à ce que cet organe atteigne plus rapidement sa température normale de fonctionnement sans, pour autant, que cette température puisse excéder la température limite de sécurité de fonctionnement de l'appareil, puisque le régime transitoire à débit accéléré de combustible s'arrête lorsque toute trace de combustible en phase liquide a disparu dans la chambre de recondensation 7.The increase in the fuel flow during the transitional period therefore obviously has the effect of accelerating the heating of the heat distribution member so that this member reaches its normal operating temperature more quickly without, however, that this temperature may exceed the limit operating safety temperature of the device, since the transient regime at accelerated flow of fuel stops when all traces of fuel in the liquid phase have disappeared in the recondensation chamber 7.

Suivant une forme d'exécution simple de l'invention, chaque masse poreuse 6a,6b du régulateur 6 est constitué par une membrane mésoporeuse.According to a simple embodiment of the invention, each porous mass 6a, 6b of the regulator 6 is constituted by a mesoporous membrane.

Il faut noter aussi une particularité intéressante du fonction­nement des moyens d'alimentation en gaz combustible selon l'invention. En effet, pour des raisons de sécurité faciles à comprendre, il est nécessaire que, lorsque l'organe de répartition de chaleur 5 a atteint sa température optimale de fonctionnement et que l'on coupe l'arrivée du gaz, l'inertie thermique de cet organe de répartition de chaleur 7 ne permet pas son retour instantané à la température ambiante. Si dans un temps relativement court par rapport à ce temps de refroidissement complet de l'organe répartiteur de chaleur 7, les moyens d'alimentation en combustible sont de nouveau allumés, il est indispensable que le régime transitoire à débit de gaz accéléré ne puisse pas intervenir ou, s'il intervient, il faut absolument qu'il ne puisse fonctionner que durant un temps très court afin d'éviter qu'un apport de chaleur à l'organe de répartition de chaleur 5 encore chaud, ne provoque un dépassement de la température limite de sécurité. La lenteur du phénomène de recondensation par transfert de masse au sein du milieu poreux constituant la masse amont 6a du régulateur de débit/évaporateur 6 permet d'éviter un tel risque. En effet, l'organe répartiteur de chaleur 5 aura atteint la température ambiante avant que ne se soient formées les premières gouttes de combustible liquide dans la chambre de recondensation 7, puisque, lors de l'interruption du débit de gaz, la pression dans cette chambre 7 était à une valeur inférieure à la tension de vapeur qui règne dans le réservoir principal 2. Le phénomène de transfert de masse dans le milieu poreux de la masse poreuse amont 6a du régulateur 6 devra d'abord assurer le retour de la pression de la chambre de recondensation à la tension de vapeur avant que ne démarre réellement la recondensation.It should also be noted an interesting feature of the operation of the fuel gas supply means according to the invention. Indeed, for safety reasons that are easy to understand, it is necessary that, when the heat distribution member 5 has reached its optimum operating temperature and that the gas supply is cut off, the thermal inertia of this heat distribution member 7 does not allow its instantaneous return to room temperature. If in a relatively short time compared to this complete cooling time of the heat distributing member 7, the fuel supply means are switched on again, it is essential that the transient regime with accelerated gas flow cannot intervene or, if it does intervene, it must absolutely only operate for a very short time in order to prevent a supply of heat to the heat distribution member 5 which is still hot, causing an overshoot of the safety limit temperature. The slowness of the phenomenon of recondensation by mass transfer within the porous medium constituting the upstream mass 6a of the flow regulator / evaporator 6 makes it possible to avoid such a risk. In fact, the heat distributing member 5 will have reached room temperature before the first drops of liquid fuel have formed in the recondensation chamber 7, since, when the gas flow is interrupted, the pressure in this chamber 7 was at a value lower than the vapor pressure prevailing in the main tank 2. The mass transfer phenomenon in the porous medium of the upstream porous mass 6a of the regulator 6 must first ensure the return of the pressure of the vapor pressure recondensation chamber before recondensation actually begins.

Claims (4)

1. - Moyens d'alimentation en combustible gazeux d'un appareil utilisant la combustion de ce gaz stocké en phase liquide, du type com­portant un régulateur de débit/évaporateur (6) constitué par au moins une masse poreuse disposé entre le réservoir (2) dans lequel le combustible est stocké en phase liquide et le brûleur (3) auquel est associé un dispositif d'allumage et qui est destiné à réaliser le mélange combustible en phase gazeuse/air de combustion alimentant un générateur de chaleur sous forme de flamme (4) ou autre mode de combustion, et un organe de répartition de chaleur (5) maintenu par ce générateur (4) à une température comprise entre deux valeurs limites, l'une de seuil de fonctionnement et l'autre de sécurité, un clapet (11) de fermeture/ouverture étant disposé en amont du brûleur (3), caractérisé en ce que d'une part, le régulateur de débit/évaporateur (6) est constitué de deux masses poreuses (6a,6b) dont les perméabilités sont telles que la somme des pertes de charge qu'elles engendrent est égale à la perte de charge correspondant au débit désiré pour le fonctionnement normal de l'appareil et qui sont séparées l'une de l'autre par une chambre de recondensation (7) dont le volume correspond à la quantité de combustible nécessaire à la montée en température de l'organe répartiteur de chaleur (5) jusqu'à sa température normale de fonctionnement, tandis que la porosité de la seconde masse (6b) ou masse aval est fixée en fonction du débit de combustible correspondant à la durée souhaitée pour cette montée en température et, d'autre part, le clapet (11) est disposé entre le régulateur de débit/évaporateur (6) et le brûleur (3). 1. - Means for supplying gaseous fuel to an apparatus using the combustion of this gas stored in the liquid phase, of the type comprising a flow regulator / evaporator (6) constituted by at least one porous mass disposed between the tank (2 ) in which the fuel is stored in the liquid phase and the burner (3) with which an ignition device is associated and which is intended to produce the fuel mixture in the gas phase / combustion air supplying a heat generator in the form of a flame ( 4) or other combustion mode, and a heat distribution member (5) maintained by this generator (4) at a temperature between two limit values, one operating threshold and the other safety, a valve (11) closing / opening being arranged upstream of the burner (3), characterized in that on the one hand, the flow regulator / evaporator (6) consists of two porous masses (6a, 6b) whose permeabilities are such as e the sum of the pressure losses which they generate is equal to the pressure loss corresponding to the desired flow rate for the normal operation of the device and which are separated from each other by a recondensation chamber (7) of which the volume corresponds to the quantity of fuel necessary for the temperature rise of the heat distributing member (5) to its normal operating temperature, while the porosity of the second mass (6b) or downstream mass is fixed in function of the fuel flow corresponding to the duration desired for this temperature rise and, on the other hand, the valve (11) is arranged between the flow regulator / evaporator (6) and the burner (3). 2. - Moyens selon la revendication 1, caractérisés en ce que chaque masse poreuse (6a,6b) du régulateur de débit/évaporateur (6) est constitué par une membrane mésoporeuse. 2. - Means according to claim 1, characterized in that each porous mass (6a, 6b) of the flow regulator / evaporator (6) consists of a mesoporous membrane. 3. - Moyens selon la revendication 1 ou 2, caractérisés en ce que la chambre de recondensation (7) est pourvue de moyens de réglage de son volume. 3. - Means according to claim 1 or 2, characterized in that the recondensation chamber (7) is provided with means for adjusting its volume. 4. - Moyens selon l'une quelconque des revendications précédentes, caractérisés en ce que l'ensemble des éléments (6a,6b et 7) composant le régulateur de débit/évaporateur (6) sont inserrés dans la paroi du réservoir de combustible (2). 4. - Means according to any one of the preceding claims, characterized in that all of the elements (6a, 6b and 7) composing the flow regulator / evaporator (6) are inserted in the wall of the fuel tank (2 ).
EP90420390A 1989-09-21 1990-08-29 Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition Expired - Lifetime EP0420768B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90420390T ATE73219T1 (en) 1989-09-21 1990-08-29 MEANS FOR SUPPLYING GASEOUS FUEL IN AN APPARATUS USING COMBUSTION OF SUCH GAS STORED IN LIQUID STATE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8913224 1989-09-21
FR8913224A FR2652148B1 (en) 1989-09-21 1989-09-21 MEANS FOR SUPPLYING GAS FUEL TO AN APPARATUS USING THE COMBUSTION OF THIS GAS STORED IN LIQUID PHASE.

Publications (2)

Publication Number Publication Date
EP0420768A1 true EP0420768A1 (en) 1991-04-03
EP0420768B1 EP0420768B1 (en) 1992-03-04

Family

ID=9386250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90420390A Expired - Lifetime EP0420768B1 (en) 1989-09-21 1990-08-29 Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition

Country Status (6)

Country Link
US (1) US5044936A (en)
EP (1) EP0420768B1 (en)
AT (1) ATE73219T1 (en)
DE (1) DE69000029D1 (en)
ES (1) ES2030314T3 (en)
FR (1) FR2652148B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848459B1 (en) * 1996-12-13 2006-10-11 FUBA Automotive GmbH & Co. KG PCB-line connector
TW540438U (en) * 2002-11-14 2003-07-01 Aries Ind Corp Power-driven tool with audio functions
CN107327842A (en) * 2017-08-11 2017-11-07 郭汉荣 A kind of intelligent fuel vaporization safe combustion system and fuel gasification combustion method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE826059C (en) * 1948-10-02 1951-12-27 Peter Quack Cooking and heating device
FR1209966A (en) * 1957-06-04 1960-03-04 Liquid fuel burner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2313638A1 (en) * 1975-06-05 1976-12-31 Genoud & Cie Ets REGULATOR FOR GAS LIGHTER
FR2489934B1 (en) * 1980-09-05 1985-06-07 Feudor Sa DISPOSABLE GAS LIGHTER
JPS6137370A (en) * 1984-07-30 1986-02-22 Nakajima Doukoushiyo:Kk Hot iron using liquefied gas
JPH0335969Y2 (en) * 1988-04-27 1991-07-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE826059C (en) * 1948-10-02 1951-12-27 Peter Quack Cooking and heating device
FR1209966A (en) * 1957-06-04 1960-03-04 Liquid fuel burner

Also Published As

Publication number Publication date
US5044936A (en) 1991-09-03
EP0420768B1 (en) 1992-03-04
DE69000029D1 (en) 1992-04-09
FR2652148B1 (en) 1991-10-31
FR2652148A1 (en) 1991-03-22
ES2030314T3 (en) 1992-10-16
ATE73219T1 (en) 1992-03-15

Similar Documents

Publication Publication Date Title
EP0420768B1 (en) Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition
CH693464A5 (en) A combustion pulses.
EP3060787B1 (en) Autogenous pressurisation device for a propellant reservoir
EP0692684A1 (en) Hot air stream generating device
FR2582785A1 (en) Self-contained installation for cooling a gaseous fluid such as air
FR2639093A1 (en) HEATING APPARATUS WITH CATALYTIC BURNER
EP1842013B1 (en) Installation for cryogenic cooling for superconductor device
CH195271A (en) Command and control installation for the hearth of a steam generator.
CH394457A (en) Carbon dioxide detector safety device for gaseous hydrocarbon catalysis devices
FR2691233A1 (en) Domestic and industrial steam generator with immediate response - has intermediate chamber connected to storage tank during demand periods only, and to boiler only when idling.
BE419009A (en)
BE419662A (en)
FR2890532A1 (en) PROFESSIONAL OVEN WITH DIRECT STEAM KITCHEN AND METHOD FOR CONDUCTING THE OVEN.
BE373263A (en)
BE890972A (en) SYSTEM FOR THE USE OF BLAST FURNACE GAS
BE492966A (en)
BE393135A (en)
BE465579A (en)
BE473284A (en)
FR2504648A1 (en) SAFETY DEVICE FOR GAS HEATING APPARATUS AND APPLICATION THEREOF
BE475610A (en)
BE332564A (en)
BE408170A (en)
BE575310A (en)
FR2816394A1 (en) DOMESTIC RADIATION AND CONVECTION HEATING APPARATUS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910412

17Q First examination report despatched

Effective date: 19910725

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920304

Ref country code: GB

Effective date: 19920304

Ref country code: DK

Effective date: 19920304

Ref country code: AT

Effective date: 19920304

REF Corresponds to:

Ref document number: 73219

Country of ref document: AT

Date of ref document: 19920315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69000029

Country of ref document: DE

Date of ref document: 19920409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920713

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920720

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920721

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920723

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19920810

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920831

Year of fee payment: 3

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2030314

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19930830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930831

Ref country code: CH

Effective date: 19930831

Ref country code: BE

Effective date: 19930831

BERE Be: lapsed

Owner name: S.A. FEUDOR

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050829