EP0420768A1 - Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition - Google Patents
Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition Download PDFInfo
- Publication number
- EP0420768A1 EP0420768A1 EP90420390A EP90420390A EP0420768A1 EP 0420768 A1 EP0420768 A1 EP 0420768A1 EP 90420390 A EP90420390 A EP 90420390A EP 90420390 A EP90420390 A EP 90420390A EP 0420768 A1 EP0420768 A1 EP 0420768A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- evaporator
- flow
- burner
- flow regulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 39
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 14
- 239000007788 liquid Substances 0.000 title abstract description 6
- 230000035699 permeability Effects 0.000 claims description 11
- 239000007791 liquid phase Substances 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 239000012071 phase Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002828 fuel tank Substances 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 21
- 230000001052 transient effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 239000007792 gaseous phase Substances 0.000 description 3
- 235000000396 iron Nutrition 0.000 description 3
- 238000000926 separation method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/28—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid in association with a gaseous fuel source, e.g. acetylene generator, or a container for liquefied gas
Definitions
- the present invention relates to means for supplying gaseous fuel to an apparatus using the combustion of this gas stored in the liquid phase.
- the purpose of the regulator / evaporator which generally consists of a porous mass, the permeability of which determines the gas flow, is intended not only to guarantee the gaseous state of the fuel arriving at the burner, but also to limit the flow to a value such that combustion generates, in the heat distribution member, an average temperature between two limit values, one lower corresponding to the operating threshold of the device and the other higher above which this operation would be dangerous.
- Thermal phenomena are generally relatively slow to establish and stabilize, mainly due to the thermal inertia of the constituent elements of the heat distribution member, each of which has a high specific heat as well as due to the importance of heat losses by convection and conduction.
- the present invention aims to remedy this drawback by allowing a rapid rise in temperature of the heat distribution member without, however, resulting in an increase in the normal operating temperature.
- the flow regulator / evaporator constituted by at least one porous mass disposed between the tank in which the fuel is stored in the liquid phase and the burner with which is associated ignition device which is intended to produce the fuel mixture in the gas phase / combustion air supplying a flame and a heat distribution member maintained by the flame at a temperature between two limit values, one of operating threshold and the other safety, a closing / opening valve, being arranged upstream of the burner on the one hand
- the flow regulator / evaporator consists of two porous masses whose permeabilities are such that the sum of the pressure losses that '' they generate is equal to the pressure drop corresponding to the desired flow rate for normal operation of the device and which are separated from each other by a recondensation chamber whose volume corresponds to the quantity of fuel necessary for the heat distribution
- the recondensation chamber is provided with means making it possible to adjust its volume as a function of the calorie requirements of the heat distribution member in order to reach its normal operating temperature.
- all the elements making up the flow regulator / evaporator are inserted into the wall of the fuel tank.
- the apparatus of FIG. 1 is of the type comprising a tank 2 in which the gaseous fuel is stored in the liquid phase, a burner 3 intended to receive the fuel in the gaseous phase coming from the tank 2 and to mix it with combustion air to supply a flame 4 or any other form of combustion of this gas near which a heat distribution member 5 is arranged.
- a flow regulator / evaporator 6 whose presence is intended not only to guarantee the passage into the gas phase of the fuel coming from the tank 2, before it reaches the burner 3 , but also to limit the gas flow which feeds the flame 4 to a value between two limit values, one lower of which corresponds to the operating threshold of the device and the other of which constitutes a safety limit value beyond which this operation would be dangerous.
- a valve 11 is provided between the flow regulator / evaporator 6 and the burner 3, making it possible to extinguish the flame 4 by cutting off the flow of fuel in the gaseous phase.
- the flow regulator / evaporator 6 of the supply means consists of two porous masses 6a, 6b arranged one after the other with care, between them, a chamber 7 called the recondensation chamber.
- the two porous masses 6a and 6b are chosen with their own porosity such that the sum of the pressure losses they generate is equal to the pressure drop which corresponds to the gas flow rate itself corresponding to an average temperature of the heat distributing member 5 comprised between the two aforementioned limit values.
- the separation into two independent porous masses 6a, 6b of the flow regulator / evaporator therefore has no effect on the normal operation of the device.
- this separation necessarily has the effect that the porous mass 6b located downstream from the other has a permeability greater than the sum of the permeabilities of the two masses 6a, 6b, that which the flow regulator / evaporator should have if was not split in two.
- the quantity of fuel stored in the recondensation chamber 7 must not exceed the quantity necessary for raising the temperature to the heat distribution member up to a value below the safety limit temperature.
- the volume of the recondensation chamber 7 is therefore determined by this necessary quantity of fuel, but it is advantageously adjustable.
- the time necessary for the flow, through the second porous mass 6b, of the quantity of fuel stored in the recondensation chamber 7 and which is a function of the permeability of the porous mass 6b, determines the time necessary for the heat distribution member 5, so that it reaches its normal operating temperature.
- FIG. 2 shows two curves, one 8, illustrating the operation of gaseous fuel supply means of a conventional type and the other 9, illustrating the operation of the gaseous fuel means according to the invention.
- the times are plotted on the abscissa and the temperatures on the ordinate.
- the two curves 8 and 9 correspond to flow rates of normal operation G0 making it possible to maintain, during this normal operation, the heat distribution member 5 at an average temperature T0 situated between the minimum temperature TMini of the device operating threshold and the maximum temperature TMaxi above which the operation of this device would be dangerous.
- Curve 8 which illustrates the operation of supply means corresponding to a constant flow rate, not preceded by a transient regime of accelerated flow rate, shows that it takes a time t2 for the heat distribution member to reach a temperature T1, while curve 9, corresponding to an operation whose normal steady state is preceded by an accelerated speed regime, shows that it takes a time t1 to reach this same temperature T1.
- the comparative examination of curves 8 and 9 further shows that the time t1 is substantially half the time t2.
- the recondensation chamber 7 In steady state, that is to say after the transient state, the recondensation chamber 7 is filled with fuel in the gaseous state and at an intermediate pressure between the vapor pressure of the gas at the temperature of the device and atmospheric pressure, the porous mass 6a, of the flow regulator / evaporator 6, arranged upstream ensuring a flow exclusively in the gas phase of the fuel.
- This intermediate pressure depends on the respective values of the permeabilities of two porous masses 6a and 6b of the flow regulator / evaporator 6.
- the recondensation chamber When stopped, that is to say, when the gas flow is zero at the outlet of the porous mass 6b located downstream, the recondensation chamber is the seat of a condensation of the fuel caused by the search for the balance between, on the one hand, the pressure prevailing upstream of the porous mass 6a of the flow regulator / evaporator 6, located upstream, that is to say between the pressure prevailing in the tank 2 and which corresponds to the vapor pressure of the fuel present in the liquid phase, and on the other hand, that which prevails downstream of the porous mass 6a, that is to say in the recondensation chamber 7.
- This phenomenon of searching for balance is relatively long because the mass transfer, through the porous mass 6a of the regulator 6, is effected by capillarity phenomena within a meso-porous medium. During this time, the heat distribution member 5 cools.
- this chamber 7 As soon as the first drop of condensate appears inside the recondensation chamber 7, the pressure inside this chamber becomes equal to the vapor pressure of the fuel. Over time, this chamber 7 is completely filled with liquid condensate.
- the flow corresponding to the transient regime will be twice that corresponding to the normal operating regime.
- the duration of the transient regime depends on the one hand, on the volume of the recondensation chamber and on the other hand, on the permeability of the porous mass 6b located downstream.
- the transient regime persists with a flow rate accelerated by the high value of the pressure in this recondensation chamber 7.
- the rate of evaporation can be limited in time by the weakness of the liquid-vapor interface inside the recondensation chamber 7, reducing the pressure to a value lower than the vapor pressure of the fuel, but this does not change this effect in any way. acceleration of the flow during the transient regime.
- each porous mass 6a, 6b of the regulator 6 is constituted by a mesoporous membrane.
- the slowness of the phenomenon of recondensation by mass transfer within the porous medium constituting the upstream mass 6a of the flow regulator / evaporator 6 makes it possible to avoid such a risk.
- the heat distributing member 5 will have reached room temperature before the first drops of liquid fuel have formed in the recondensation chamber 7, since, when the gas flow is interrupted, the pressure in this chamber 7 was at a value lower than the vapor pressure prevailing in the main tank 2.
- the mass transfer phenomenon in the porous medium of the upstream porous mass 6a of the regulator 6 must first ensure the return of the pressure of the vapor pressure recondensation chamber before recondensation actually begins.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Feeding And Controlling Fuel (AREA)
- Wick-Type Burners And Burners With Porous Materials (AREA)
Abstract
Description
La présente invention concerne des moyens d'alimentation en combustible gazeux d'un appareil utilisant la combustion de ce gaz stocké en phase liquide.The present invention relates to means for supplying gaseous fuel to an apparatus using the combustion of this gas stored in the liquid phase.
On peut citer, notamment, comme appareil utilisant la combustion du gaz des fers à friser, des fers à souder, des fers à repasser, des sèches-cheveux, des machines à café. Dans ces appareils, il est prévu un reservoir contenant le gaz combustible, le plus souvent en phase liquide, un régulateur de débit/évaporateur garantissant un débit constant de combustible en phase gazeuse, un dispositif d'allumage et un organe de répartition de chaleur permettant une utilisation optimale de l'énergie thermique provenant de la combustion du mélange gaz, oxygène de l'air. La présence du régulateur/évaporateur qui est généralement constitué par une masse poreuse dont la perméabilité détermine le débit de gaz a pour but non seulement de garantir l'état gazeux du combustible arrivant au brûleur, mais aussi de limiter le débit à une valeur telle que la combustion engendre, dans l'organe de répartition de chaleur, une température moyenne comprise entre deux valeurs limites, l'une inférieure correspondant au seuil de fonctionnement de l'appareil et l'autre supérieure au-delà de laquelle ce fonctionnement serait dangereux.There may be mentioned, in particular, as an apparatus using the combustion of gas from curling irons, soldering irons, irons, hair dryers, coffee machines. In these devices, there is provided a reservoir containing the combustible gas, most often in the liquid phase, a flow regulator / evaporator guaranteeing a constant flow of fuel in the gaseous phase, an ignition device and a heat distribution member allowing optimal use of thermal energy from the combustion of the gas and oxygen mixture in the air. The purpose of the regulator / evaporator, which generally consists of a porous mass, the permeability of which determines the gas flow, is intended not only to guarantee the gaseous state of the fuel arriving at the burner, but also to limit the flow to a value such that combustion generates, in the heat distribution member, an average temperature between two limit values, one lower corresponding to the operating threshold of the device and the other higher above which this operation would be dangerous.
Les phénomènes thermiques sont généralement relativement lents à s'établir et à se stabiliser, principalement en raison de l'inertie thermique des éléments constitutifs de l'organe de répartition de chaleur dont chacun présente une chaleur spécifique importante ainsi qu'en raison de l'importance des pertes thermiques par convection et conduction.Thermal phenomena are generally relatively slow to establish and stabilize, mainly due to the thermal inertia of the constituent elements of the heat distribution member, each of which has a high specific heat as well as due to the importance of heat losses by convection and conduction.
Il en résulte qu'un temps non négligeable est nécessaire pour que l'organe de répartition de chaleur atteigne la température minimale de fonctionnement.As a result, a non-negligible time is necessary for the heat distribution member to reach the minimum operating temperature.
Ce temps pourrait être réduit par augmentation du débit de gaz, mais cela entraînerait aussi une élévation de la température moyenne de l'organe de répartition de chaleur d'où il pourrait résulter une température de fonctionnement supérieure à la température limite de sécurité.This time could be reduced by increasing the gas flow rate, but this would also cause the average temperature of the heat distribution member to rise, which could result in an operating temperature above the safety limit temperature.
La présente invention vise à remédier à cet inconvénient en permettant une montée en température rapide de l'organe de répartition de chaleur sans qu'il en résulte, pour autant, une augmentation de la température de fonctionnement normal. A cet effet, dans les moyens qu'elle concerne et qui sont du type comportant un régulateur de débit/évaporateur constitué par au moins une masse poreuse disposée entre le reservoir dans lequel le combustible est stocké en phase liquide et le brûleur auquel est associé un dispositif d'allumage et qui est destiné à réaliser le mélange combustible en phase gazeuse/air de combustion alimentant une flamme et un organe de répartition de chaleur maintenu par la flamme à une température comprise entre deux valeurs limites, l'une de seuil de fonctionnement et l'autre de sécurité, un clapet de fermeture/ouverture, étant disposé en amont du brûleur d'une part, le régulateur de débit/évaporateur est constitué de deux masses poreuses dont les perméabilités sont telles que la somme des pertes de charges qu'elles engendrent est égale à la perte de charge correspondant au débit désiré pour le fonctionnement normal de l'appareil et qui sont séparées l'une de l'autre par une chambre de recondensation dont le volume correspond à la quantité de combustible nécessaire à l'organe de répartition de chaleur pour qu'il atteigne sa température normale de fonctionnement, tandis que la porosité de la seconde masse poreuse est fixée en fonction du débit de combustible correspondant à la durée souhaitée pour cette montée en température et d'autre part, le clapet est disposé entre le régulateur de débit/évaporateur et le brûleur.The present invention aims to remedy this drawback by allowing a rapid rise in temperature of the heat distribution member without, however, resulting in an increase in the normal operating temperature. To this end, in the means which it concerns and which are of the type comprising a flow regulator / evaporator constituted by at least one porous mass disposed between the tank in which the fuel is stored in the liquid phase and the burner with which is associated ignition device which is intended to produce the fuel mixture in the gas phase / combustion air supplying a flame and a heat distribution member maintained by the flame at a temperature between two limit values, one of operating threshold and the other safety, a closing / opening valve, being arranged upstream of the burner on the one hand, the flow regulator / evaporator consists of two porous masses whose permeabilities are such that the sum of the pressure losses that '' they generate is equal to the pressure drop corresponding to the desired flow rate for normal operation of the device and which are separated from each other by a recondensation chamber whose volume corresponds to the quantity of fuel necessary for the heat distribution member so that it reaches its normal operating temperature, while the porosity of the second porous mass is fixed as a function of the fuel flow rate corresponding to the desired duration for this temperature rise and on the other hand, the valve is arranged between the flow regulator / evaporator and the burner.
Suivant une forme d'exécution avantageuse de l'invention, la chambre de recondensation est pourvue de moyens permettant de régler son volume en fonction des besoins en calories de l'organe de répartition de chaleur pour atteindre sa température normale de fonctionnement.According to an advantageous embodiment of the invention, the recondensation chamber is provided with means making it possible to adjust its volume as a function of the calorie requirements of the heat distribution member in order to reach its normal operating temperature.
Suivant une autre caractéristique intéressante de l'invention, tous les éléments composant le régulateur de débit/évaporateur sont inserrés dans la paroi du réservoir de combustible.According to another advantageous characteristic of the invention, all the elements making up the flow regulator / evaporator are inserted into the wall of the fuel tank.
De toute façon, l'invention sera bien comprise à l'aide de la description qui suit, en référence au dessin schématique annexé représentant, à titre d'exemple non limitatif, une forme d'exécution de ces moyens d'alimentation en gaz combustible et illustrant le fonctionnement de ces moyens :
- Figure 1 est une vue de côté en élévation montrant, de façon très schématique un appareil utilisant la combustion du gaz et équipé de moyens d'alimentation en gaz selon l'invention;
- Figure 2 montre la courbe de fonctionnement de l'appareil de Figure 1 comparativement à la courbe de fonctionnement d'un appareil similaire non équipé des moyens d'alimentation selon l'invention.
- Figure 1 is a side elevational view showing, very schematically an apparatus using the combustion of gas and equipped with gas supply means according to the invention;
- Figure 2 shows the operating curve of the device Figure 1 compared to the operating curve of a similar device not equipped with the supply means according to the invention.
L'appareil de Figure 1 est du type comportant un réservoir 2 dans lequel le combustible gazeux est stocké en phase liquide, un brûleur 3 destiné à recevoir le combustible en phase gazeuse provenant du réservoir 2 et à le mélanger à de l'air de combustion pour alimenter une flamme 4 ou tout autre forme de combustion de ce gaz à proximité de laquelle est disposé un organe de répartition de chaleur 5.The apparatus of FIG. 1 is of the type comprising a
Entre le réservoir 2 et le brûleur 3, est disposé un régulateur de débit/évaporateur 6 dont la présence a pour but non seulement de garantir le passage en phase gazeuse du combustible provenant du réservoir 2, avant qu'il n'atteigne le brûleur 3, mais aussi de limiter le débit de gaz qui alimente la flamme 4 à une valeur comprise entre deux valeurs limites dont l'une inférieure correspond au seuil de fonctionnement de l'appareil et dont l'autre supérieure constitue une valeur limite de sécurité au-delà de laquelle ce fonctionnement serait dangereux. Enfin, il est prévu, entre le régulateur de débit/évaporateur 6 et le brûleur 3 un clapet 11, permettant d'éteindre la flamme 4 par coupure du débit de combustible en phase gazeuse.Between the
Comme le montre la figure 1, le régulateur de débit/évaporateur 6 des moyens d'alimentation selon l'invention est constitué de deux masses poreuses 6a,6b disposées à la suite l'une de l'autre avec ménagement, entre-elles, d'une chambre 7 dite chambre de recondensation.As shown in FIG. 1, the flow regulator /
Pour que la température de l'organe répartiteur de chaleur 5 ne dépasse jamais la valeur maximale de sécurité, les deux masses poreuses 6a et 6b sont choisies avec une porosité propre telle que la somme des pertes de charge qu'elles engendrent soit égale à la perte de charge qui correspond au débit de gaz correspondant lui-même à une température moyenne de l'organe répartiteur de chaleur 5 comprise entre les deux valeurs limites précitées. La séparation en deux masses poreuses indépendantes 6a,6b du régulateur de débit/évaporateur n'a donc pas d'effet sur le fonctionnement normal de l'appareil. Par contre, cette séparation a obligatoirement pour effet que la masse poreuse 6b située en aval de l'autre présente une perméabilité supérieure à la somme des perméabilités des deux masses 6a,6b, celle que devrait posséder le régulateur de débit/évaporateur s'il n'était pas séparé en deux. Il en résulte donc que le débit, à travers cette seconde masse poreuse 6b, du combustible stocké dans la chambre de recondensation 7, est beaucoup plus important que le débit moyen traversant les deux masses 6a,6b, durant le fonctionnement normal de l'appareil. La présence de cette chambre de recondensation 7 disposée entre les deux masses poreuses 6a,6b a donc bien pour effet de créer, lors de la mise en marche de l'appareil, un régime transitoire pendant lequel le débit de gaz sera très supérieur au débit du régime de fonctionnement normal. Ce régime transitoire à grand débit permet donc une montée en température de l'organe de répartition de chaleur 5 beaucoup plus rapide que si la chambre de recondensation 7 n'existait pas.So that the temperature of the heat-distributing member 5 never exceeds the maximum safety value, the two porous masses 6a and 6b are chosen with their own porosity such that the sum of the pressure losses they generate is equal to the pressure drop which corresponds to the gas flow rate itself corresponding to an average temperature of the heat distributing member 5 comprised between the two aforementioned limit values. The separation into two independent porous masses 6a, 6b of the flow regulator / evaporator therefore has no effect on the normal operation of the device. On the other hand, this separation necessarily has the effect that the porous mass 6b located downstream from the other has a permeability greater than the sum of the permeabilities of the two masses 6a, 6b, that which the flow regulator / evaporator should have if was not split in two. It therefore follows that the flow rate, through this second porous mass 6b, of the fuel stored in the recondensation chamber 7, is much greater than the average flow through the two masses 6a, 6b, during normal operation of the device. The presence of this recondensation chamber 7 disposed between the two porous masses 6a, 6b therefore has the effect of creating, when the appliance is started, a transient regime during which the gas flow rate will be much greater than the flow rate of the normal operating regime. This transient high flow regime therefore allows a rise in temperature of the heat distribution member 5 much faster than if the recondensation chamber 7 did not exist.
Naturellement, pour que la température maximale de sécurité de l'organe de répartition de chaleur 5 ne soit jamais dépassée, il faut que la quantité de combustible stockée dans la chambre de recondensation 7 ne dépasse pas la quantité nécessaire à l'élévation en température de l'organe de répartition de chaleur jusqu'a une valeur inférieure à la température limite de sécurité. Le volume de la chambre de recondensation 7 est donc déterminé par cette quantité necessaire de combustible mais il est avantageusement réglable.Naturally, so that the maximum safety temperature of the heat distribution member 5 is never exceeded, the quantity of fuel stored in the recondensation chamber 7 must not exceed the quantity necessary for raising the temperature to the heat distribution member up to a value below the safety limit temperature. The volume of the recondensation chamber 7 is therefore determined by this necessary quantity of fuel, but it is advantageously adjustable.
Par ailleurs, le temps nécessaire à l'écoulement, à travers la seconde masse poreuse 6b, de la quantité de combustible stockée dans la chambre de recondensation 7 et qui est fonction de la perméabilité de la masse poreuse 6b, détermine le temps nécessaire à l'organe de répartition de chaleur 5, pour qu'il atteigne sa température normale de fonctionnement.Furthermore, the time necessary for the flow, through the second porous mass 6b, of the quantity of fuel stored in the recondensation chamber 7 and which is a function of the permeability of the porous mass 6b, determines the time necessary for the heat distribution member 5, so that it reaches its normal operating temperature.
La figure 2 montre deux courbes, l'une 8, illustrant le fonctionnement de moyens d'alimentation en combustible gazeux d'un type classique et l'autre 9, illustrant le fonctionnement des moyens en combustible gazeux selon l'invention.FIG. 2 shows two curves, one 8, illustrating the operation of gaseous fuel supply means of a conventional type and the other 9, illustrating the operation of the gaseous fuel means according to the invention.
Sur cette figure 2, les temps sont portés en abcisses et les températures en ordonnées. Les deux courbes 8 et 9 correspondent à des débits de fonctionnement normal G0 permettant de maintenir, durant ce fonctionnement normal, l'organe de répartition de chaleur 5 à une température moyenne T0 situé entre la température minimale TMini de seuil de fonctionnement de l'appareil et la température maximale TMaxi au-delà de laquelle le fonctionnement de cet appareil serait dangereux.In this figure 2, the times are plotted on the abscissa and the temperatures on the ordinate. The two
La courbe 8, qui illustre le fonctionnement de moyens d'alimentation correspondant à un débit constant, non précédé d'un régime transitoire de débit accéléré, montre qu'il faut un temps t2 pour que l'organe de répartition de chaleur atteigne une température T1, tandis que la courbe 9, correspondant à un fonctionnement dont le régime permanent normal est précédé d'un régime à débit accéléré, montre qu'il faut un temps t1 pour atteindre cette même température T1. L'examen comparatif des courbes 8 et 9 montre en outre, que le temps t1 est sensiblement la moitié du temps t2.
En régime permanent, c'est-à-dire après le régime transitoire, la chambre de recondensation 7 est remplie de combustible à l'état gazeux et à une pression intermédiaire entre la tension de vapeur du gaz à la température de l'appareil et la pression atmosphérique, la masse poreuse 6a, du régulateur de débit/évaporateur 6, disposée en amont assurant un débit exclusivement en phase gazeuse du combustible. Cette pression intermédiaire dépend des valeurs respectives des perméabilités de deux masses poreuses 6a et 6b du régulateur de débit/évaporateur 6.In steady state, that is to say after the transient state, the recondensation chamber 7 is filled with fuel in the gaseous state and at an intermediate pressure between the vapor pressure of the gas at the temperature of the device and atmospheric pressure, the porous mass 6a, of the flow regulator /
A l'arrêt, c'est-à-dire, lorsque le débit de gaz est nul à la sortie de la masse poreuse 6b située en aval, la chambre de recondensation est le siège d'une condensation du combustible provoquée par la recherche de l'équilibre entre, d'une part, la pression qui règne en amont de la masse poreuse 6a du régulateur de débit/évaporateur 6, située en amont, c'est-à-dire entre la pression qui règne dans le réservoir 2 et qui correspond à la tension de vapeur du combustible présent en phase liquide, et d'autre part, celle qui règne en aval de la masse poreuse 6a, c'est-à-dire dans la chambre de recondensation 7. Ce phénomène de recherche d'équilibre est relativement long car le transfert de masse, à travers la masse poreuse 6a du régulateur 6, s'effectue par des phénomènes de capillarité au sein d'un milieu méso-poreux. Pendant ce temps, l'organe de répartition de chaleur 5 se refroidit.When stopped, that is to say, when the gas flow is zero at the outlet of the porous mass 6b located downstream, the recondensation chamber is the seat of a condensation of the fuel caused by the search for the balance between, on the one hand, the pressure prevailing upstream of the porous mass 6a of the flow regulator /
Dès que la première goutte de condensat apparaît à l'intérieur de la chambre de recondensation 7, la pression à l'intérieur de cette chambre devient égale à la tension de vapeur du combustible. Avec le temps, cette chambre 7 se remplit entièrement de condensat liquide.As soon as the first drop of condensate appears inside the recondensation chamber 7, the pressure inside this chamber becomes equal to the vapor pressure of the fuel. Over time, this chamber 7 is completely filled with liquid condensate.
Lors de la remise en marche de l'appareil, le débit instantané G2 à travers l'élément aval 6b du régulateur de débit/évaporateur 6 est évidemment nettement supérieur au débit normal de fonctionnement G0, car la pression dans la chambre de recondensation 7 est maintenant égale à la tension de vapeur du combustible.When the device is restarted, the instantaneous flow G2 through the downstream element 6b of the flow regulator /
Si, par exemple, les perméabilités des masses poreuses 6a et 6b du régulateur 6 sont égales et par conséquent si ces perméabilités sont égales au double de la perméabilité correspondant au débit de fonctionnement normal, le débit correspondant au régime transitoire sera le double de celui correspondant au régime de fonctionnement normal.If, for example, the permeabilities of the porous masses 6a and 6b of the
Naturellement, la durée du régime transitoire est fonction d'une part, du volume de la chambre de recondensation et d'autre part, de la perméabilité de la masse poreuse 6b située en aval. Théoriquement, tant qu'une seule goutte de condensat existe dans cette chambre de recondensation 7, le régime transitoire persiste avec un débit accéléré par la valeur élevée de la pression dans cette chambre de recondensation 7. En pratique, le taux d'évaporation peut être limité dans le temps par la faiblesse de l'interface liquide-vapeur à l'intérieur de la chambre de recondensation 7, diminuant la pression à une valeur inférieure à la tension de vapeur du combustible, mais ceci ne change en rien cet effet d'accélération du débit durant le régime transitoire.Naturally, the duration of the transient regime depends on the one hand, on the volume of the recondensation chamber and on the other hand, on the permeability of the porous mass 6b located downstream. Theoretically, as long as a single drop of condensate exists in this recondensation chamber 7, the transient regime persists with a flow rate accelerated by the high value of the pressure in this recondensation chamber 7. In practice, the rate of evaporation can be limited in time by the weakness of the liquid-vapor interface inside the recondensation chamber 7, reducing the pressure to a value lower than the vapor pressure of the fuel, but this does not change this effect in any way. acceleration of the flow during the transient regime.
L'augmentation du débit de combustible durant la période transitoire a donc évidemment pour effet d'accélérer l'échauffement de l'organe de répartition de chaleur de manière à ce que cet organe atteigne plus rapidement sa température normale de fonctionnement sans, pour autant, que cette température puisse excéder la température limite de sécurité de fonctionnement de l'appareil, puisque le régime transitoire à débit accéléré de combustible s'arrête lorsque toute trace de combustible en phase liquide a disparu dans la chambre de recondensation 7.The increase in the fuel flow during the transitional period therefore obviously has the effect of accelerating the heating of the heat distribution member so that this member reaches its normal operating temperature more quickly without, however, that this temperature may exceed the limit operating safety temperature of the device, since the transient regime at accelerated flow of fuel stops when all traces of fuel in the liquid phase have disappeared in the recondensation chamber 7.
Suivant une forme d'exécution simple de l'invention, chaque masse poreuse 6a,6b du régulateur 6 est constitué par une membrane mésoporeuse.According to a simple embodiment of the invention, each porous mass 6a, 6b of the
Il faut noter aussi une particularité intéressante du fonctionnement des moyens d'alimentation en gaz combustible selon l'invention. En effet, pour des raisons de sécurité faciles à comprendre, il est nécessaire que, lorsque l'organe de répartition de chaleur 5 a atteint sa température optimale de fonctionnement et que l'on coupe l'arrivée du gaz, l'inertie thermique de cet organe de répartition de chaleur 7 ne permet pas son retour instantané à la température ambiante. Si dans un temps relativement court par rapport à ce temps de refroidissement complet de l'organe répartiteur de chaleur 7, les moyens d'alimentation en combustible sont de nouveau allumés, il est indispensable que le régime transitoire à débit de gaz accéléré ne puisse pas intervenir ou, s'il intervient, il faut absolument qu'il ne puisse fonctionner que durant un temps très court afin d'éviter qu'un apport de chaleur à l'organe de répartition de chaleur 5 encore chaud, ne provoque un dépassement de la température limite de sécurité. La lenteur du phénomène de recondensation par transfert de masse au sein du milieu poreux constituant la masse amont 6a du régulateur de débit/évaporateur 6 permet d'éviter un tel risque. En effet, l'organe répartiteur de chaleur 5 aura atteint la température ambiante avant que ne se soient formées les premières gouttes de combustible liquide dans la chambre de recondensation 7, puisque, lors de l'interruption du débit de gaz, la pression dans cette chambre 7 était à une valeur inférieure à la tension de vapeur qui règne dans le réservoir principal 2. Le phénomène de transfert de masse dans le milieu poreux de la masse poreuse amont 6a du régulateur 6 devra d'abord assurer le retour de la pression de la chambre de recondensation à la tension de vapeur avant que ne démarre réellement la recondensation.It should also be noted an interesting feature of the operation of the fuel gas supply means according to the invention. Indeed, for safety reasons that are easy to understand, it is necessary that, when the heat distribution member 5 has reached its optimum operating temperature and that the gas supply is cut off, the thermal inertia of this heat distribution member 7 does not allow its instantaneous return to room temperature. If in a relatively short time compared to this complete cooling time of the heat distributing member 7, the fuel supply means are switched on again, it is essential that the transient regime with accelerated gas flow cannot intervene or, if it does intervene, it must absolutely only operate for a very short time in order to prevent a supply of heat to the heat distribution member 5 which is still hot, causing an overshoot of the safety limit temperature. The slowness of the phenomenon of recondensation by mass transfer within the porous medium constituting the upstream mass 6a of the flow regulator /
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT90420390T ATE73219T1 (en) | 1989-09-21 | 1990-08-29 | MEANS FOR SUPPLYING GASEOUS FUEL IN AN APPARATUS USING COMBUSTION OF SUCH GAS STORED IN LIQUID STATE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8913224 | 1989-09-21 | ||
FR8913224A FR2652148B1 (en) | 1989-09-21 | 1989-09-21 | MEANS FOR SUPPLYING GAS FUEL TO AN APPARATUS USING THE COMBUSTION OF THIS GAS STORED IN LIQUID PHASE. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0420768A1 true EP0420768A1 (en) | 1991-04-03 |
EP0420768B1 EP0420768B1 (en) | 1992-03-04 |
Family
ID=9386250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90420390A Expired - Lifetime EP0420768B1 (en) | 1989-09-21 | 1990-08-29 | Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition |
Country Status (6)
Country | Link |
---|---|
US (1) | US5044936A (en) |
EP (1) | EP0420768B1 (en) |
AT (1) | ATE73219T1 (en) |
DE (1) | DE69000029D1 (en) |
ES (1) | ES2030314T3 (en) |
FR (1) | FR2652148B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0848459B1 (en) * | 1996-12-13 | 2006-10-11 | FUBA Automotive GmbH & Co. KG | PCB-line connector |
TW540438U (en) * | 2002-11-14 | 2003-07-01 | Aries Ind Corp | Power-driven tool with audio functions |
CN107327842A (en) * | 2017-08-11 | 2017-11-07 | 郭汉荣 | A kind of intelligent fuel vaporization safe combustion system and fuel gasification combustion method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE826059C (en) * | 1948-10-02 | 1951-12-27 | Peter Quack | Cooking and heating device |
FR1209966A (en) * | 1957-06-04 | 1960-03-04 | Liquid fuel burner |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2313638A1 (en) * | 1975-06-05 | 1976-12-31 | Genoud & Cie Ets | REGULATOR FOR GAS LIGHTER |
FR2489934B1 (en) * | 1980-09-05 | 1985-06-07 | Feudor Sa | DISPOSABLE GAS LIGHTER |
JPS6137370A (en) * | 1984-07-30 | 1986-02-22 | Nakajima Doukoushiyo:Kk | Hot iron using liquefied gas |
JPH0335969Y2 (en) * | 1988-04-27 | 1991-07-30 |
-
1989
- 1989-09-21 FR FR8913224A patent/FR2652148B1/en not_active Expired - Lifetime
-
1990
- 1990-08-29 DE DE9090420390T patent/DE69000029D1/en not_active Expired - Fee Related
- 1990-08-29 AT AT90420390T patent/ATE73219T1/en not_active IP Right Cessation
- 1990-08-29 ES ES199090420390T patent/ES2030314T3/en not_active Expired - Lifetime
- 1990-08-29 EP EP90420390A patent/EP0420768B1/en not_active Expired - Lifetime
- 1990-09-06 US US07/578,732 patent/US5044936A/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE826059C (en) * | 1948-10-02 | 1951-12-27 | Peter Quack | Cooking and heating device |
FR1209966A (en) * | 1957-06-04 | 1960-03-04 | Liquid fuel burner |
Also Published As
Publication number | Publication date |
---|---|
US5044936A (en) | 1991-09-03 |
EP0420768B1 (en) | 1992-03-04 |
DE69000029D1 (en) | 1992-04-09 |
FR2652148B1 (en) | 1991-10-31 |
FR2652148A1 (en) | 1991-03-22 |
ES2030314T3 (en) | 1992-10-16 |
ATE73219T1 (en) | 1992-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0420768B1 (en) | Means for supplying gaseous fuel by an apparatus using the combustion of such a gas stored in a liquid condition | |
CH693464A5 (en) | A combustion pulses. | |
EP3060787B1 (en) | Autogenous pressurisation device for a propellant reservoir | |
EP0692684A1 (en) | Hot air stream generating device | |
FR2582785A1 (en) | Self-contained installation for cooling a gaseous fluid such as air | |
FR2639093A1 (en) | HEATING APPARATUS WITH CATALYTIC BURNER | |
EP1842013B1 (en) | Installation for cryogenic cooling for superconductor device | |
CH195271A (en) | Command and control installation for the hearth of a steam generator. | |
CH394457A (en) | Carbon dioxide detector safety device for gaseous hydrocarbon catalysis devices | |
FR2691233A1 (en) | Domestic and industrial steam generator with immediate response - has intermediate chamber connected to storage tank during demand periods only, and to boiler only when idling. | |
BE419009A (en) | ||
BE419662A (en) | ||
FR2890532A1 (en) | PROFESSIONAL OVEN WITH DIRECT STEAM KITCHEN AND METHOD FOR CONDUCTING THE OVEN. | |
BE373263A (en) | ||
BE890972A (en) | SYSTEM FOR THE USE OF BLAST FURNACE GAS | |
BE492966A (en) | ||
BE393135A (en) | ||
BE465579A (en) | ||
BE473284A (en) | ||
FR2504648A1 (en) | SAFETY DEVICE FOR GAS HEATING APPARATUS AND APPLICATION THEREOF | |
BE475610A (en) | ||
BE332564A (en) | ||
BE408170A (en) | ||
BE575310A (en) | ||
FR2816394A1 (en) | DOMESTIC RADIATION AND CONVECTION HEATING APPARATUS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19910412 |
|
17Q | First examination report despatched |
Effective date: 19910725 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19920304 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19920304 Ref country code: GB Effective date: 19920304 Ref country code: DK Effective date: 19920304 Ref country code: AT Effective date: 19920304 |
|
REF | Corresponds to: |
Ref document number: 73219 Country of ref document: AT Date of ref document: 19920315 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69000029 Country of ref document: DE Date of ref document: 19920409 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920713 Year of fee payment: 3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920720 Year of fee payment: 3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19920721 Year of fee payment: 3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19920723 Year of fee payment: 3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19920810 Year of fee payment: 3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19920831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19920831 Year of fee payment: 3 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2030314 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 19930830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19930831 Ref country code: CH Effective date: 19930831 Ref country code: BE Effective date: 19930831 |
|
BERE | Be: lapsed |
Owner name: S.A. FEUDOR Effective date: 19930831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940429 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940503 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19991102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050829 |