EP0418896A2 - Schaltungsanordnung zum Schutz elektronischer Schaltungen vor Überspannung - Google Patents

Schaltungsanordnung zum Schutz elektronischer Schaltungen vor Überspannung Download PDF

Info

Publication number
EP0418896A2
EP0418896A2 EP90118135A EP90118135A EP0418896A2 EP 0418896 A2 EP0418896 A2 EP 0418896A2 EP 90118135 A EP90118135 A EP 90118135A EP 90118135 A EP90118135 A EP 90118135A EP 0418896 A2 EP0418896 A2 EP 0418896A2
Authority
EP
European Patent Office
Prior art keywords
voltage
diode
resistor
layer
buried layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90118135A
Other languages
English (en)
French (fr)
Other versions
EP0418896A3 (en
Inventor
Ulrich Ing. Lachmann
Armin Dipl.-Phys. Scherleitner
Heinz Dipl.-Phys. Zietemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0418896A2 publication Critical patent/EP0418896A2/de
Publication of EP0418896A3 publication Critical patent/EP0418896A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Definitions

  • the invention relates to a circuit arrangement for protecting electronic circuits against overvoltage according to the preamble of claim 1.
  • the disadvantage of the known arrangement is the discrete structure with an increased space and component requirement.
  • integration is problematic since, in the case of an integrated circuit, the connection of the first resistor connected to the supply voltage source in connection with the substrate forms a parasitic diode structure which leads to ground and which, owing to its breakdown voltage, limits the permissible input voltage range or the protective effect of the entire arrangement in one Breakthrough due to parasitic currents greatly reduced.
  • the object of the invention is therefore to modify the known arrangement so that a higher permissible input voltage range is achieved with an integrated design.
  • the advantage of the invention is that the input voltage range can be multiplied with little outlay on circuitry.
  • the known arrangement is formed by a first transistor Q1, which is connected to ground M on the emitter side, the base of which is connected to the emitter via a first resistor R1 and to the collector in the reverse direction via a first Zener diode Z1, and by a second resistor R2, via which an input voltage UE is applied to the collector of the first transistor Q1.
  • the second resistor R2 forms a pn junction with the substrate, that is to say a parasitic diode, which is shown in the reverse direction in FIG. 1 of the drawing as the first diode D1.
  • a resistor RB which is connected to this branch symbolizing occurring parasitic path resistance.
  • the buried layer layer BL2 thus extends, forming a trough, to the surface at the edge regions.
  • the two structures S1 and S2 and the buried layer layer BL2 are contacted via a strip-shaped metallization layer MS1 and MS2, the metallization layers MS1 and MS2 being applied to an insulating oxide layer and only to the respective structures S1, S2 and / or the cutouts F of the oxide layer provided in the buried layer layer BL2 are in contact.
  • the metallization layer MS1 connects the structure S1 with a connection to which the input voltage UE is applied
  • the metallization layer MS2 connects the structure S2 and the buried layer layer BL2 with a transistor Q2 connected downstream of the resistor R2 in an embodiment of the invention and operated as a diode in the forward direction.
  • the known arrangement according to FIG. 1 thus expands on the one hand by the transistor Q2 connected between the resistor R2 and the collector of the transistor Q1 and on the other hand by a second diode D2 in the reverse direction, which is connected in series with the resistor RB and the diode D1, and by a second Zener diode Z2 in the forward direction.
  • the limited input voltage is US voltage at at the collector of transistor Q1.
  • the transistor Q2 is also surrounded in the same way as the second resistor R2 with a p Bur-doped buried layer, and thus can also be loaded with a higher input voltage.
  • FIG. 3 of the drawing shows the course of the input current E of the arrangement according to FIG. 1 without load as a function of the input voltage UE.
  • the input current E is approximately zero for values less than the Zener voltage UZ1 of the first Zener diode Z1, for values between the Zener voltage UZ1 and an insulation voltage UI proportional to the input voltage UE as a function of R1 and RB, and also steeply increasing.
  • the input current E is approximately equal to zero and moreover rises proportionally to the input voltage UE depending on the sheet resistance RB.
  • connection of the protective circuit to which the input voltage UE is applied can be loaded up to a value which is equal to the Zener voltage UZ1 and the insulation voltage UI, because the epitaxial region containing the second resistor R2 is twofold is isolated from the substrate ST.
  • the permissible input voltage range thus increases by the insulation voltage UI.
  • the advantage can be seen that reverse polarity protection is achieved by the second Zener diode Z2 and the transistor Q2, and that negative overvoltage peaks are derived via the series connection of the first diode D1, the second diode D2, the second Zener diode Z2 and the resistor RB . This also prevents the transistor Q2, which is sensitive to voltage, from being destroyed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Eine in integrierter SBC-Technik mit n-dotierter Buried-Layer-Schicht ausgeführte Schaltungsanordnung mit einer spannungsbegrenzenden Anordnung, insbesondere einer Zenerdiode, und mit vorgeschaltetem Widerstand, bei der die den Widerstand bildende Struktur von einer p-dotierten Buried-Layer-Schicht wannenförmig eingeschlossen ist.

Description

  • Die Erfindung betrifft eine Schaltungsanordnung zum Schutz elek­tronischer Schaltungen vor Überspannung nach dem Oberbegriff des Patentanspruches 1.
  • Elektronische Schaltungen, insbesondere integrierte Schaltkreise, sind beispielsweise beim Betrieb an Automobilbordnetzen häufig der Gefahr einer Zerstörung durch an den Versorgungsleitungen anliegenden Überspannungen ausgesetzt. Den elektronischen Schal­tungen werden deshalb spannungsbegrenzende Anordnungen wie etwa Zenerdiodenvorgeschaltet. Eine verbesserte Anordnung mit Zener­diode (n) ist beispielsweise aus Robert C. Dobkin, IC Zener Eases Reference Design, National Semiconductor Application Note 173, Nov. 1976, FIG 8, bekannt. Die auf Masse bezogene Spannung einer Versorgungsspannungsquelle wird über einen ersten Wider­stand auf den Kollektor eines emitterseitig an Masse liegenden bipolaren Transistors geführt, dessen Basis zum einen über einen zweiten Widerstand mit dem Emitter und über eine Zenerdiode mit dem Kollektor verbunden ist. Die zu schützende Schaltung ist da­bei zwischen Masse und den Kollektor des Transistors geschaltet. Durch diese Anordnung wird die zur Versorgung der zu schützenden Schaltung vorgesehene Spannung auf einen Wert begrenzt, der in etwa gleich der über der Zenerdiode abfallenden Spannung ist.
  • Nachteil der bekannten Anordnung ist der diskrete Aufbau mit ei­nem erhöhten Platz- und Bauteilebedarf. Eine Integration ist je­doch problematisch, da bei einer integrierten Schaltung der mit der Versorungsspannungsquelle verbundene Anschluß des ersten Widerstandes in Verbindung mit dem Substrat eine auf Masse füh­rende parasitäre Diodenstruktur bildet, welche aufgrund ihrer Durchbruchspannung den zulässigen Eingangsspannungsbereich ein­schränkt bzw. die Schutzwirkung der gesamten Anordnung bei einem Durchbruch durch parasitäre Ströme stark herabsetzt.
  • Aufgabe der Erfindung ist es daher, die bekannte Anordnung so abzuwandeln, daß bei integrierter Ausführung ein höherer zuläs­siger Eingangsspannungsbereich erzielt wird.
  • Diese Aufgabe wird bei einer gattungsgemäßen Schaltungsanordnung durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst. Ausgestaltungen des Erfindungsgedankens sind in Unteransprüchen gekennzeichnet.
  • Vorteil der Erfindung ist es, daß mit geringem schaltungstech­nischem Aufwand eine Vervielfachung des Eingangsspannungsbereiches erreicht wird.
  • Die Erfindung wird nachfolgend anhand des in den FIG in der Zeich­nung dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:
    • FIG 1 das Schaltbild einer Ausführungsform einer erfindungsge­mäßen Schaltungsanordnung,
    • FIG 2 den strukturellen Aufbau einer Ausführungsform einer erfindungsgemäßen Schaltungsanordnung (ausschnittsweise) und
    • FIG 3 die Strom-Spannungs-Charakteristik einer Ausführungsform einer erfindungsgemäßen Schaltungsanordnung.
  • In dem Ausführungsbeispiel gemäß FIG 1 ist die bekannte Anord­nung durch einen emitterseitig auf Masse M liegenden ersten Tran­sistor Q1, dessen Basis über einen ersten Widerstand R1 mit dem Emitter und über eine erste Zenerdiode Z1 in Sperrichtung mit dem Kollektor verbunden ist, und durch einen zweiten Widerstand R2, über den der Kollektor des ersten Transistors Q1 mit einer Eingangsspannung UE beaufschlagt ist, gegeben. Bei einer inte­grierten Ausführungsform dieser Anordnung bildet der zweite Widerstand R2 mit dem Substrat einen pn-Übergang, also eine pa­rasitäre Diode, welche in FIG 1 der Zeichnung als erste Diode D1 in Sperrichtung dargestellt ist. In Reihe zu der ersten Diode D1 liegt ein Widerstand RB, der den in diesen Zweig auf­ tretenden parasitären Bahnwiderstand symbolisiert. Die Schutz­wirkung der bekannten Anordnung wird, wie bereits eingangs er­wähnt, aufgrund der Durchbruchspannung der ersten Diode D1 be­grenzt.
  • Erfindungsgemäß wird, wie in FIG 2 ausschnittsweise gezeigt, in die in SBC-Technologie (SBC = Standard Buried Collector, vgl. D. Widmann, H. Mader, H. Friedrich, Technologie hochintegrierter Schaltungen, Berlin 1988, S. 292) ausgeführte integrierte Schal­tungsanordnung mit p⁻-dotiertem Substrat ST, mit n⁺-dotierter Buried-Layer-Schicht BL1, mit n⁻-dotierter Kollektorzone C, so wie mit zwei in Verbindung mit der Kollektorzone C den ersten Widerstand R1 aus FIG 1 bildenden n⁺-dotierten Strukturen S1 und S2, eine weitere, p⁺-dotierte Buried-Layer-Schicht BL2 derart eingebracht, daß diese in der Umgebung der beiden Strukturen S1 und S2 die Kollektorzone C in zwei voneinander unabhängige Be­reiche aufteilt. Die Buried-Layer-Schicht BL2 reicht somit, eine Wanne bildend, an den Randbereichen bis an die Oberfläche. Die Kontaktierung der beiden Strukturen S1 und S2 sowie der Buried-­Layer-Schicht BL2 erfolgt über jeweils eine streifenförmige Me­tallisierungsschicht MS1 und MS2, wobei die Metallisierungsschich­ten MS1 und MS2 auf einer isolierenden Oxidschicht aufgebracht sind und nur an den jeweiligen Strukturen S1, S2 bzw. an der Buried-Layer-Schicht BL2 vorgesehenen Aussparungen F der Oxid­schicht in Kontakt stehen. Dabei verbindet die Metallisierungs­schicht MS1 die Struktur S1 mit einem mit der Eingangsspannung UE beaufschlagten Anschluß und die Metallisierungsschicht MS2 die Struktur S2 und die Buried-Layer-Schicht BL2 mit einem in Ausgestaltung der Erfindung dem Widerstand R2 nachgeschalteten, als Diode in Durchlaßrichtung betriebenen Transistor Q2.
  • Damit erweitert sich die bekannte Anordnung gemäß FIG 1 zum einen um den zwischen Widerstand R2 und dem Kollektor des Transistors Q1 geschalteten Transistor Q2 und zum anderen um eine in Reihe zum Widerstand RB und der Diode D1 liegende zweite Diode D2 in Sperrichtung sowie um eine zweite Zenerdiode Z2 in Durchlaßrich­tung. Die begrenzte Eingangsspannung liegt als Spannung US da­ bei am Kollektor des Transistors Q1 an.
  • Die Erfindung ausgestaltend ist auch der Transistor Q2 in glei­cher Weise wie der zweite Widerstand R2 mit einer p⁺-dotierten Buried-Layer-Schicht umgeben, und somit auch mit einer höheren Eingangsspannung belastbar.
  • In FIG 3 der Zeichnung ist der Verlauf des Eingangsstromes E der Anordnung gemäß FIG 1 ohne Last in Abhängigkeit von der Eingangs­spannung UE dargestellt. Bei positiver Eingangsspannung UE ist der Eingangsstrom E für Werte kleiner der Zenerspannung UZ1 der ersten Zenerdiode Z1 annähernd gleich Null, für Werte zwischen der Zenerspannung UZ1 und einer Isolationsspannung UI proportio­nal zur Eingangsspannung UE in Abhängigkeit R1 und RB und darüber hinaus steil ansteigend. Für negative Werte der Eingangsspannung UE kleiner als die Zenerspannung UZ2 der zweiten Zenerdiode Z2 ist der Eingangsstrom E annähernd gleich Null und steigt da­rüber hinaus abhängig vom Bahnwiderstand RB proportional zur Eingangsspannung UE an.
  • Daraus läßt sich zum einen der Vorteil ableiten, daß der mit der Eingangsspannung UE beaufschlagte Anschluß der Schutzschal­tung bis zu einem Wert belastet werden kann, der gleich der Zenerspannung UZ1 und der Isolationsspannung UI ist, weil das Epitaxiegebiet, das den zweiten Widerstand R2 enthält, zweifach vom Substrat ST isoliert ist. Der zulässige Eingangsspannungs­bereich erhöht sich somit um die Isolationsspannung UI. Zum an­deren ist der Vorteil erkennbar, daß eine Verpolsicherheit durch die zweite Zenerdiode Z2 und dem Transistor Q2 erreicht wird, und daß dabei negative Überspannungsspitzen über die Serienschal­tung der ersten Diode D1, der zweiten Diode D2, der zweiten Zenerdiode Z2 und dem Widerstand RB abgeleitet werden. Damit wird auch eine Zerstörung des gegenüber Spannung empfindlichen Transistors Q2 verhindert.

Claims (3)

1. Schaltungsanordnung zum Schutz einer elektronischen Schal­tung vor Überspannung mit einer spannungsbegrenzenden Anordnung (R1, Q1, Z1), insbesondere mit einer Zenerdiode (Z1), und einem vorgeschalteten Widerstand (R2),
dadurch gekennzeichnet, daß die Schal­tungsanordnung in integrierter Standard-Buried-Collector-Technik mit n-dotierter Buried-Layer-Schicht ausgeführt ist und daß die den Widerstand (R2) bildende Struktur (S1, S2, C) von einer p-dotierten Buried-Layer-Schicht (BL2) wannenförmig ein geschlossen ist.
2. Schaltungsanordnung nach Anspruch 1,
gekennzeichnet durch eine Diode (Q2) in Durchlaßrichtung zwischen Widerstand (R2) und spannungsbegren­zender Anordnung (R1, Q1, Z1) eine Diode (Q2) in Durchlaßrichtung.
3. Schaltungsanordnung nach Anspruch 2,
dadurch gekennzeichnet, daß die die Diode (Q2) bildende Struktur ebenfalls von einer p-dotierten Buried-­Layer-Schicht wannenförmig eingeschlossen ist.
EP19900118135 1989-09-22 1990-09-20 Circuit configuration for the protection of electronic circuits against a voltage surge Withdrawn EP0418896A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3931704 1989-09-22
DE3931704 1989-09-22

Publications (2)

Publication Number Publication Date
EP0418896A2 true EP0418896A2 (de) 1991-03-27
EP0418896A3 EP0418896A3 (en) 1991-11-06

Family

ID=6390008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900118135 Withdrawn EP0418896A3 (en) 1989-09-22 1990-09-20 Circuit configuration for the protection of electronic circuits against a voltage surge

Country Status (2)

Country Link
EP (1) EP0418896A3 (de)
JP (1) JPH03142960A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026705B2 (en) 2003-02-28 2006-04-11 Renesas Technology Corp. Semiconductor device with surge protection circuit capable of preventing current leakage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111058A (en) * 1980-12-27 1982-07-10 Mitsubishi Electric Corp Bipolar semiconductor integrated circuit device
JPS60103658A (ja) * 1983-11-10 1985-06-07 Nec Corp 半導体集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111058A (en) * 1980-12-27 1982-07-10 Mitsubishi Electric Corp Bipolar semiconductor integrated circuit device
JPS60103658A (ja) * 1983-11-10 1985-06-07 Nec Corp 半導体集積回路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 6, no. 200 (E-135)(1078) 09 Oktober 1982, & JP-A-57 111058 (MITSUBISHI DENKI) 10 Juli 1982, *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 255 (E-349)(1978) 12 Oktober 1985, & JP-A-60 103658 (NIPPON DENKI) 07 Juni 1985, *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026705B2 (en) 2003-02-28 2006-04-11 Renesas Technology Corp. Semiconductor device with surge protection circuit capable of preventing current leakage

Also Published As

Publication number Publication date
JPH03142960A (ja) 1991-06-18
EP0418896A3 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
DE68924014T2 (de) ESD-Schutzschaltkreis für bipolare Prozesse.
EP1019964B1 (de) Integrierte halbleiterschaltung mit schutzstruktur zum schutz vor elektrostatischer entladung
DE102017112963B4 (de) Schaltungen, Einrichtungen und Verfahren zum Schutz vor transienten Spannungen
DE60130146T2 (de) Esd-schutzeinrichtungen
DE68918766T2 (de) Halbleiterüberspannungsschutzschaltung.
DE2257846B2 (de) Integrierte Halbleiteranordnung zum Schutz gegen Überspannung
DE3879850T2 (de) Eingangsschutzvorrichtung fuer eine halbleitervorrichtung.
DE3243276A1 (de) Halbleitereinrichtung mit einer gate-elektroden-schutzschaltung
EP0538507B1 (de) Schutzschaltung für Anschlusskontakte von monolithisch integrierten Schaltungen
DE69219975T2 (de) Schutzvorrichtung gegen elektrostatische Entladungen mit reduziertem Leckstrom
EP0401410B1 (de) Schaltungsanordnung zum Schutz elektronischer Schaltungen vor Überspannung
DE69410929T2 (de) Überspannungsschutzschaltung
DE2654419C2 (de) Schaltungsanordnung zur Spannungsbegrenzung
DE2951421A1 (de) Integrierte halbleiterschaltung
AT395921B (de) Anordnung zum schutz eines halbleiterelements gegen schaeden durch elektrische beanspruchung
DE3422132C1 (de) Schutzschaltungsanordnung
DE2635218C2 (de) Anordnung zum Schutz eines Transistors
DE2610122A1 (de) Dreipolige halbleiteranordnung
DE3201933C2 (de) Halbleiter-Schutzschaltungsanordnung
EP1128442B1 (de) Laterale Thyristorstruktur zum Schutz vor elektrostatischer Entladung
DE68927452T2 (de) Eingangsschutzschaltung für MOS-Vorrichtung
DE68912778T2 (de) Mittel zum reduzieren von schäden an jfets durch elektrostatische entladungen.
EP0418896A2 (de) Schaltungsanordnung zum Schutz elektronischer Schaltungen vor Überspannung
DE3586535T2 (de) Gegen durchbruch geschuetzte transistoranordnung.
DE69004147T2 (de) Schutzeinrichtung gegen den Durchbruch bipolarer Transistoren in einem integrierten Treiber-Schaltkreis für ein Leistungsbauelement mit resonanter Ladung am Kollektor.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB

17Q First examination report despatched

Effective date: 19930920

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940201