EP0414073B1 - Procédé de préparation de poudres de polyuréthane - Google Patents

Procédé de préparation de poudres de polyuréthane Download PDF

Info

Publication number
EP0414073B1
EP0414073B1 EP90115435A EP90115435A EP0414073B1 EP 0414073 B1 EP0414073 B1 EP 0414073B1 EP 90115435 A EP90115435 A EP 90115435A EP 90115435 A EP90115435 A EP 90115435A EP 0414073 B1 EP0414073 B1 EP 0414073B1
Authority
EP
European Patent Office
Prior art keywords
carrier phase
process according
polyurethane
isocyanate
optionally branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90115435A
Other languages
German (de)
English (en)
Other versions
EP0414073A3 (en
EP0414073A2 (fr
Inventor
Tillmann Dr. Hassel
Hanns Peter Dr. Müller
Hugo Dr. Vernaleken
Helmut Dr. Kipphardt
Rolf Dr. Dhein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT90115435T priority Critical patent/ATE99341T1/de
Publication of EP0414073A2 publication Critical patent/EP0414073A2/fr
Publication of EP0414073A3 publication Critical patent/EP0414073A3/de
Application granted granted Critical
Publication of EP0414073B1 publication Critical patent/EP0414073B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0871Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic

Definitions

  • the invention relates to a process for the direct production of polyurethane powders from the components in the organic carrier phase.
  • Polyurethane powder and its technical use are known.
  • the powders are usually produced in a complex manner by grinding appropriate granules.
  • the direct synthesis of the powders from the components in the organic carrier phase by the methods of suspension polymerization is much more efficient, the best results being obtained when aliphatic and / or alicyclic hydrocarbons are used as the carrier phase.
  • auxiliaries are essential for carrying out this direct synthesis.
  • the auxiliaries have the task of bringing the reaction components into finely divided emulsions and of keeping the polyurethane which forms in emulsion or suspension until the end of the reaction.
  • DE-A-2 816 170 proposes special polyoxyalkylene polydimethylsiloxane graft or block copolymers as surface-active auxiliaries for the direct synthesis of polyurethane powders in a carrier phase from aliphatic hydrocarbons.
  • Polydimethylsiloxane-containing polymers are generally not favorable for PU applications, since they easily lead to surface defects in the moldings and difficulties in painting, so that care must be taken to remove these auxiliaries from the powder as quantitatively as possible.
  • block or graft copolymers of polylactones and long-chain alkyl esters of (meth) acrylic acid and corresponding products are used as surface-active auxiliaries for the direct production of polyurethane powders by the methods of suspension polymerization in an aliphatic hydrocarbon carrier phase
  • Polyoxyalkylene glycols and long-chain alkyl esters of (meth) acrylic acid are described.
  • These auxiliaries have the disadvantage that they are OH-functional and are therefore incorporated into the polyurethane produced, which can lead to changes in the mechanical properties of the products and also make it impossible to reuse the auxiliaries.
  • auxiliaries cannot be incorporated, but are poorly desorbed from the surface of the powders formed, so that complex washing operations are required to recover the auxiliaries.
  • the object of the present invention was to provide an improved process for the direct production of polyurethane powders, which leads to finely divided polyurethane dispersions and in which the emulsifiers used can be easily removed after the formation of the powders.
  • component B2 are mono (meth) acrylic esters of - optionally branched - aliphatic C2 to C10 diols, preferably C2 and C4 diols and as isocyanate component B 1 - optionally branched - aliphatic C6 to C30 monoisocyanates, preferably C10 to C20 monoisocyanates , particularly preferably C18 monoisocyanates used.
  • polymers to be used according to the invention are known from DE-A-2 456 737, they have not previously been used as auxiliaries for the direct synthesis of polyurethane powders in a hydrocarbon carrier phase.
  • the polymers to be used according to the invention consist exclusively of polymerized urethanes a long-chain alkyl isocyanate B1) and a hydroxyalkyl (meth) acrylic ester B2), in particular of the general formula given.
  • Suitable hydroxyalkyl esters B2) for the preparation of these urethanes are, for example, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 6-hydroxyhexyl acrylate, and preferably the corresponding methacrylic acid esters.
  • the alcohol component of these exemplified hydroxyalkyl esters is derived from - optionally branched - aliphatic C2 to C10 diols.
  • Esters such as 2-hydroxyethyl methacrylate and 4-hydroxybutyl methacrylate are preferably used, the alcohol component of which is derived from C2 and C4-diols.
  • Suitable monoisocyanates B1) for the preparation of these urethanes are derived from - optionally branched - aliphatic monoamines whose carbon chain comprises 6 to 30, preferably 10 to 20, particularly preferably 18, carbon atoms.
  • isocyanates examples include 2-ethyl-hexyl isocyanate, decyl isocyanate, dodecyl isocyanate, tetradecyl isocyanate, hexadecyl isocyanate, stearyl isocyanate, eicosyl isocyanate and tetraeicosyl isocyanate.
  • Isocyanates such as decyl isocyanate, palmityl isocyanate, myristyl isocyanate and stearyl isocyanate are preferred. These isocyanates can also be used as mixtures.
  • Preferred compounds B are obtainable from: Mono (meth) acrylic esters B2) of - optionally branched - aliphatic C2 to C10 diols, preferably C2 and C4 diols and - optionally branched - aliphatic C6 to C30 monoisocyanates, preferably C10 to C20 monoisocyanates, particularly preferably C18 monoisocyanates as Connection B1).
  • the polymers allow the direct production of polyurethane powders from polyisocyanates, macropolyols, macropolyamines, chain extenders and, if appropriate, chain regulators and other auxiliaries and additives in the aliphatic and / or alicyclic hydrocarbon carrier phase, if they are added to the system.
  • the invention relates to a process for the direct production of polyurethane powders from polyisocyanates, macropolyols, chain extenders, optionally chain regulators and further auxiliaries and additives in aliphatic and / or alicyclic hydrocarbon carrier phase, characterized in that the synthesis is carried out in the presence from 0.05 to 10%, preferably 0.5 to 5%, particularly preferably 1 to 3% of the polymers, based on the total weight of the polyurethane to be produced.
  • diisocyanates examples include tolylene diisocyanate, naphthylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, cyclohexane-1,4-diisocyanate and perhydrodiphenylmethane diisocyanate. These isocyanates can also be used as mixtures.
  • Suitable macropolyols are understood to mean the substances customarily used and known in polyurethane chemistry. These are compounds with an average of at least 1.8 isocyanate-reactive hydrogen atoms with a molecular weight of generally from 400 to 10,000. This is taken to mean compounds having hydroxyl groups, in particular two to eight compounds having hydroxyl groups, especially those having a molecular weight of 450 to 6,000, preferably 600 to 4,500, for example at least two, generally 2 to 8, but preferably 2 to 4, hydroxyl groups-containing polyesters, polyethers, polythioethers , Polylactones, polycarbonates, polyester carbonates, polyether carbonates, polyacetals and polyester amides. According to the invention, it is particularly advantageous for Manufacture of polyurethanes to use macropolyols with an OH functionality of two. As a result, linear products are obtained.
  • macropolyamines in particular macrodiamines
  • macromolecular compounds can be prepared, for example, from polyether polyols according to DAS 1 215 373 by direct reaction with ammonia.
  • the macropolyols can also be converted into isocyanate prepolymers using diisocyanates, preferably aromatic diisocyanates, and hydrolyzing these prepolymers to the amino-terminated compounds.
  • macropolyols are particularly preferred.
  • Suitable chain extenders are the short-chain alcohols, amines and amino alcohols usually used in PU chemistry, which are generally difunctional with respect to isocyanates.
  • examples of such compounds are alcohols such as ethylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, hydroquinone-bis -2-hydroxyethyl ether, 1,4-cyclohexanediol, diethylene glycol, 4,4'-dihydroxydicyclohexylmethane; Amines such as ethylenediamine, N, N'-dimethylethylenediamine, 1,6-diaminohexane, isophoronediamine, 4,4'-diamino-dicyclohexylmethane, N, N ', N''- trimethyl-diethylenetriamine, piperazine and aminoethylpiperazine.
  • Examples of amino alcohols are ethanolamine and N-2
  • chain regulators can also be used, if appropriate, in a manner known to the person skilled in the art.
  • monofunctional isocyanates, alcohols and / or amines such as butyl isocyanate, phenyl isocyanate, ethanol, isopropanol, decanol or dibutylamine, hexylamine, morpholine.
  • auxiliaries and additives are understood, on the one hand, to mean the catalysts of polyurethane chemistry known to the person skilled in the art, such as, for example, tin-II-octoate, dibutyltin dilaurate, titanium tetrabutylate, iron-II-acetylacetonate, diazabicyclooctane and N, N-tetramethylethylenediamine.
  • Other additives are, for example, fillers and reinforcing materials such as glass fibers, C fibers, TiO2, diatomaceous earth, aromatic polyamides, LC polyesters also in ground form, quartz powder and polyureas, and dyes such as inorganic or organic pigments.
  • Such additives are insoluble in the hydrocarbon phase and are advantageously incorporated into the macropolyols used before the direct polyurethane powder synthesis is carried out.
  • Hydrocarbons are preferred as the carrier phase for the processes according to the invention, the boiling points or boiling ranges preferably corresponding to the desired reaction temperature. Accordingly, hydrocarbons with boiling points between 40 ° C and 200 ° C can be used, normally a boiling range between 60 ° C and 150 ° C is preferred because of the simplicity Separation and rapid drying of the PU powder are particularly favorable boiling ranges of the carrier phase between 80 ° C and 120 ° C.
  • the hydrocarbons can be used as pure substances, but also as mixtures, the most economical way to use aromatic-free gasoline fractions from the specified boiling ranges.
  • the powders are obtained in the form of sedimenting suspensions from which the products are separated, for example by filtration.
  • the solids content of these suspensions can vary, for example between 10 and 60%. In the interest of a good space-time yield, higher solids contents are favorable, but powder synthesis is easier to carry out at solids contents of up to 50%. Solids contents of 20 to 50% and particularly 30 to 40% are therefore preferred.
  • the synthesis according to the invention is preferably carried out at temperatures between 40 ° C. and a maximum of 140 ° C., a temperature interval between 50 ° C. and 100 ° C. is preferred, reaction temperatures between 60 ° C. and 80 ° C. are optimal.
  • polyurethanes in substance is possible in principle by various processes. Either all components are mixed and reacted ("one shot” process) or a pre-adduct of macropolyol and polyisocyanate is first prepared, which in a second reaction step with the chain extender (prepolymer method). It is known that polyurethane plastics produced in this way differ in their application properties with the same gross composition depending on the synthesis method. According to the invention, both methods - or variants thereof - are suitable for the direct production of polyurethane powders in a hydrocarbon carrier phase. For example, macropolyol and chain extender can be emulsified in the carrier phase and then the desired amount of polyisocyanate can be added.
  • polyisocyanate with emulsifier in the carrier phase and to add the macropolyol mixed with the chain extender.
  • a variant of this "one shot" process which is particularly preferred according to the invention is that polyisocyanate and surface-active auxiliary are introduced in the carrier phase, the system is heated to boiling and the macropolyol and chain extender - if appropriate mixed - are added dropwise to the boiling mixture. This enables simple temperature control. The desired reaction temperature can be set by appropriate selection of the carrier phase.
  • the prepolymer process can also be carried out by initially introducing the chain extender together with the auxiliaries according to the invention in the carrier phase and then adding the NCO prepolymer.
  • auxiliary from Example 1 3.3 g of the auxiliary from Example 1 are introduced into 118.5 g of ligroin with a boiling range around 90 ° C.
  • 20 g of solid 4,4'-diisocyanato-diphenylmethane and ⁇ 0.1 g of dibutyltin dilaurate 20 g of solid 4,4'-diisocyanato-diphenylmethane and ⁇ 0.1 g of dibutyltin dilaurate.
  • the temperature first drops slightly and then briefly rises to 90 ° C.
  • the mixture is stirred at 65 ° C. until the carrier phase is free of NCO (2 hours), the solid is separated off and air-dried.
  • the information on the sieve analysis means the mass fraction of powder that did not fall through the corresponding standard sieve according to DIN 4188 after shaking for one hour on a shaking machine.
  • the carrier phase of Example 3 obtained by simple suctioning without washing is used as the carrier phase for the repetition of Example 3 after filling up to the initial weight; with the difference that no new auxiliary is added.
  • Example 3 is repeated, with the difference that 2.2 g of an N-vinyl-pyrrolidone-hexadecene copolymer with an average molecular weight of 7,300 (Antaron® V 216 from GAF) is used as the auxiliary.
  • the carrier phase is separated from the powder by sharp suction. The powder is not washed.
  • the mother liquor obtained in this way is used again as the carrier phase after filling up to the initial weight and the experiment is repeated without the addition of new auxiliary. No powder was formed, but the polyurethane precipitated out as a lump.
  • This example shows that the N-vinylpyrrolidone-hexadecene copolymer desorbs poorly from the PU matrix.
  • Example 8 The approach of Example 8 is repeated, with the difference that 3.96 g of the auxiliary from Example 5 are used instead of the auxiliary used there. Lumps formed as soon as the polyol mixture was added dropwise, but the batch remained stirrable. The stirring was continued as in Example 8. After cooling, the product was isolated by suction. It was not a powder, but consisted of irregularly shaped lumps with cross sections up to 2 cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Medicinal Preparation (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (8)

  1. Procédé pour la préparation directe de poudres de polyuréthanne sous forme finement divisée par la mise en réaction de polyisocyanates et de composés réactifs vis-à-vis de groupes isocyanate dans une phase de support en utilisant des composés tensioactifs, caractérisé en ce que, comme composé tensioactif, on utilise au moins un polymère d'un uréthanne de formule
    Figure imgb0004
    dans laquelle
    R¹   représente H, CH₃,
    X   représente un radical alkylidène aliphatique éventuellement ramifié contenant de 2 à 10 atomes de carbone,
    R²   représente un radical alkyle aliphatique éventuellement ramifié contenant de 6 à 30 atomes de carbone
    constitué par un alkylisocyanate B1) à longue chaîne et par un ester hydroxyalkylique d'acide (méth)acrylique B2).
  2. Procédé selon la revendication 1, caractérisé en ce que, comme composant B1) on utilise un isocyanate contenant 18 atomes de carbone dans la chaîne carbonée, et comme composant B2) un ester mono(méth)acrylique d'un diol en C₂-C₄.
  3. Procédé selon les revendications 1 et 2, caractérisé en ce que, comme phase de support, on utilise un hydrocarbure, et en ce qu'on effectue la synthèse en présence de 0,05 à 10 % du composé tensioactif rapportés au poids total du polyuréthanne à préparer.
  4. Procédé selon les revendications 1 à 3, caractérisé en ce que la phase de support est constituée par des hydrocarbures ou des mélanges d'hydrocarbures aliphatiques et/ou alicycliques éventuellement ramifiés ayant des points d'ébullition de 40° C à 200° C.
  5. Procédé selon les revendications 1 à 4, caractérisé en ce qu'on effectue la réaction à des températures entre 40° C et 140° C.
  6. Procédé selon les revendications 1 à 5, caractérisé en ce que la fraction de la somme des composants de polyuréthanne dans le poids total, y compris la phase de support se situe entre 10 et 60 %.
  7. Procédé selon les revendications 1 à 6, caractérisé en ce que la constitution de la poudre de polyuréthanne a lieu d'après le procédé "one shot".
  8. Procédé selon les revendications 1 à 6, caractérisé en ce que la constitution de la poudre de polyuréthanne a lieu d'après le procédé de prépolymérisation.
EP90115435A 1989-08-25 1990-08-11 Procédé de préparation de poudres de polyuréthane Expired - Lifetime EP0414073B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90115435T ATE99341T1 (de) 1989-08-25 1990-08-11 Verfahren zur herstellung von polyurethanpulvern.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3928149 1989-08-25
DE3928149A DE3928149A1 (de) 1989-08-25 1989-08-25 Verfahren zur herstellung von polyurethanpulvern

Publications (3)

Publication Number Publication Date
EP0414073A2 EP0414073A2 (fr) 1991-02-27
EP0414073A3 EP0414073A3 (en) 1991-07-03
EP0414073B1 true EP0414073B1 (fr) 1993-12-29

Family

ID=6387881

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90115435A Expired - Lifetime EP0414073B1 (fr) 1989-08-25 1990-08-11 Procédé de préparation de poudres de polyuréthane

Country Status (8)

Country Link
US (1) US5061756A (fr)
EP (1) EP0414073B1 (fr)
JP (1) JPH0397736A (fr)
AT (1) ATE99341T1 (fr)
CA (1) CA2023632A1 (fr)
DD (1) DD298117A5 (fr)
DE (2) DE3928149A1 (fr)
ES (1) ES2047218T3 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539802A1 (fr) * 1991-10-28 1993-05-05 Bayer Ag Poudre de polyuréthane, éventuellement expansible, s'écoulant librement, thermoplastique façonnable et ainsi ultérieurement durcissable
DE69838582T2 (de) * 1998-08-27 2008-04-30 Council Of Scientific And Industrial Research Verbessertes Verfahren zur Herstellung von spherischen Polyurethanpartikeln
US6115874A (en) * 1998-12-16 2000-09-12 Camilleri; Paul Roughener for grips and handles
JP5433952B2 (ja) * 2008-02-01 2014-03-05 オート化学工業株式会社 硬化性組成物
CN107223144B (zh) 2015-02-13 2021-02-02 3M创新有限公司 包含含有异氰酸酯衍生的烯键式不饱和单体的低聚物的无氟纤维处理组合物以及处理方法
BR112017017056B1 (pt) 2015-02-13 2022-03-22 3M Innovative Properties Company Método para tratar um substrato fibroso, composição isenta de flúor e substrato fibroso
CN109563339B (zh) 2016-08-12 2022-03-01 3M创新有限公司 无氟纤维处理组合物、经处理基底以及处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032516A (en) * 1973-05-09 1977-06-28 Usm Corporation Method of making polyurethane powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787525A (en) * 1972-08-07 1974-01-22 Usm Corp Manufacture of polyurethane powders using polyvinyl pyrrolidone having side chains from copolymerization with alkylated olefins
US3894994A (en) * 1973-09-20 1975-07-15 Usm Corp Continuous method of making polyurethane powder
CA1045285A (fr) * 1973-12-03 1978-12-26 Union Carbide Corporation Polymere de polyurethanne en particules
US4000218A (en) * 1973-12-03 1976-12-28 Union Carbide Corporation Process for preparing particulate polyurethane polymers and the polymers derived therefrom
US3933759A (en) * 1974-12-20 1976-01-20 E. I. Du Pont De Nemours & Company Heat-activatable, storage-stable polyurethane powders
US4107256A (en) * 1977-04-18 1978-08-15 The Firestone Tire & Rubber Company Suspension polymerization of polyurethanes and spin-molding the powder product thereof
DE3524234A1 (de) * 1985-07-06 1987-01-08 Bayer Ag Neue pfropfpolymerisate und deren abmischungen mit polyamiden

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032516A (en) * 1973-05-09 1977-06-28 Usm Corporation Method of making polyurethane powder

Also Published As

Publication number Publication date
EP0414073A3 (en) 1991-07-03
ES2047218T3 (es) 1994-02-16
CA2023632A1 (fr) 1991-02-26
DE3928149A1 (de) 1991-02-28
DD298117A5 (de) 1992-02-06
US5061756A (en) 1991-10-29
EP0414073A2 (fr) 1991-02-27
JPH0397736A (ja) 1991-04-23
ATE99341T1 (de) 1994-01-15
DE59004015D1 (de) 1994-02-10

Similar Documents

Publication Publication Date Title
EP0546399B1 (fr) Polyisocyanates qui contiennent les groupes ethers et uréthanes, procédé pour leur préparation et leur utilisation
DE3718935C2 (de) Lagerbeständige Polyolgemische, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethan-Formkörpern
EP0318999B1 (fr) Composés d'addition utilisables comme dispersants et stabilisants de dispersion, leur procédé de préparation, leur utilisation et matières solides revêtues de ceux-ci
DE1795449A1 (de) Verfahren zur Herstellung von neuen Polyisocyanatverbindungen und von Formkoerpern
EP0061627B1 (fr) Polyétherpolyamines contenant un polymérisat, procédé de préparation de ces polyamines et leur utilisation comme composants réactifs pour la préparation de polyuréthanes
DE2425270A1 (de) Verbesserte vinylurethanharze
DE3416371A1 (de) In wasser dispergierbares, modifiziertes polyurethan
EP0084141A1 (fr) Polyéther-polyamine aromatique contenant des polymères, procédé de préparation de cette polyamine et son utilisation dans la préparation de polyuréthanes
EP0497131B1 (fr) Prépolymères d'isocyanate contenant des groupes d'ether- et d'ester, son procédé pour leur préparation et leur utilisation
EP0414073B1 (fr) Procédé de préparation de poudres de polyuréthane
EP1132414B1 (fr) Procédé de préparation de liants durcissables par radiation et rêvetements les contenant
EP0093911B1 (fr) Procédé de préparation de dispersions aqueuses de polyuréthanes comportant des groupes carboxylates et/ou sulfonates chimiquement liés
EP0414085B1 (fr) Copolymères tensioactifs et leur utilisation dans la préparation de poudres de polyuréthane
DE69838582T2 (de) Verbessertes Verfahren zur Herstellung von spherischen Polyurethanpartikeln
EP0443144A2 (fr) Utilisation d'isocyanates contenant des groupes d'uréthane comme agent de dessication et un procédé pour la préparation d'un revêtement
EP0452775B1 (fr) Elastomères thermoplastiques de polyuréthane-polyurée ayant une résistance élevée à la chaleur
DE3347247A1 (de) Verfahren zur in situ-herstellung von harnstoffgruppen-enthaltenden diisocyanaten in polyolen, dem verfahren entsprechende dispersionen oder loesungen sowie ihre verwendung
EP0624615A2 (fr) Polyactide fonctionnalisé
EP0013923A1 (fr) Suspensions d'isocyanates à groupes urée dans des prépolymères d'isocyanates, procédé pour leur préparation et leur utilisation dans la préparation de matières plastiques de polyuréthane à haut poids moléculaire
DE3437632A1 (de) Verfahren zur herstellung hoehermolekularer aminoverbindungen mit vermindertem monomeramingehalt, sowie deren verwendung
EP1048678B1 (fr) Polymères réactifs et polymères réactifs avec les isocyanates obtenus de ceux-ci
DE3921861A1 (de) Verfahren zur herstellung von hochelastischen kunststoffen
DD229413A1 (de) Verfahren zur herstellung von lagerstabilen, gelteilchenfreien polyurethanloesungen
DE1270810B (de) Verfahren zur Herstellung von physiologisch unbedenklichen Urethanisocyanaten
DEF0010985MA (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900816

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19921111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 99341

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59004015

Country of ref document: DE

Date of ref document: 19940210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2047218

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940406

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940714

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940802

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940810

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940812

Year of fee payment: 5

Ref country code: AT

Payment date: 19940812

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940824

Year of fee payment: 5

Ref country code: BE

Payment date: 19940824

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940831

Year of fee payment: 5

Ref country code: NL

Payment date: 19940831

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90115435.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950811

Ref country code: AT

Effective date: 19950811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950812

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19950812

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

Ref country code: BE

Effective date: 19950831

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19950831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

EUG Se: european patent has lapsed

Ref document number: 90115435.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050811