EP0413103B1 - Barrière du type condensateur - Google Patents

Barrière du type condensateur Download PDF

Info

Publication number
EP0413103B1
EP0413103B1 EP19900111272 EP90111272A EP0413103B1 EP 0413103 B1 EP0413103 B1 EP 0413103B1 EP 19900111272 EP19900111272 EP 19900111272 EP 90111272 A EP90111272 A EP 90111272A EP 0413103 B1 EP0413103 B1 EP 0413103B1
Authority
EP
European Patent Office
Prior art keywords
condenser
type barrier
condenser type
cone
frustum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP19900111272
Other languages
German (de)
English (en)
Other versions
EP0413103A1 (fr
Inventor
Lars Holmström
Lennart Strandberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AB
Original Assignee
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20376327&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0413103(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asea Brown Boveri AB filed Critical Asea Brown Boveri AB
Publication of EP0413103A1 publication Critical patent/EP0413103A1/fr
Application granted granted Critical
Publication of EP0413103B1 publication Critical patent/EP0413103B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/28Capacitor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/04Leading of conductors or axles through casings, e.g. for tap-changing arrangements

Definitions

  • the invention relates to a condenser type barrier for field control of the connection of a transformer bushing to the conductor of a transformer winding according to the precharacterising part of claim 1.
  • a similar condenser type barrier is known from the ASEA-Journal 1963, volume 36, page 23.
  • the condenser type barrier (in the following referred to as "condenser barrier") is especially designed for transformers which are connected to high voltage converters.
  • a flashover will occur between the electrodes.
  • the flashover tendency may be minimized by inserting between the electrodes an insulator body which functions as a barrier.
  • Transformer bushings may comprise an upper insulator and a lower insulator of electric porcelain. At the joint between these two insulators there is a flange which is connected to the transformer casing. In the centre of the bushing there is a tube on which is wound a condenser body to obtain a favourable electrical field distribution. The current can be conducted through the tube or a flexible conductor passing through the tube.
  • Power transformers which are used in converter plants entail special problems from the point of view of insulation, which somehow have to be overcome in order to ensure a satisfactory function.
  • HVDC high voltage direct current
  • Each bridge in the series connection is supplied with an alternating voltage from a separate transformer.
  • the insulation on bushings and windings on the transformers which are connected to the bridges will also be subjected to an increasingly higher direct voltage potential with a superimposed alternating voltage.
  • the insulation of these must therefore be dimensioned so that they are capable of withstanding the increasingly higher field strengths to which they are then subjected.
  • the electric direct voltage field has a distribution different from that of the alternating voltage field.
  • the distribution of the direct voltage is mainly determined by the resistivity of the various insulating mediums. It is true that transformer oil, cellulose material and electric porcelain are good insulators, but a certain amount of electric current is conducted in these materials. The relation between the resistivity of cellulose material and transformer oil is about 100. This means that the cellulose in series with oil is subjected to a considerably higher field strength than the oil, which in turn, therefore, imposes demands for a sufficient amount of solid insulating material to prevent the field strength from exceeding the dielectric strength of the material. The distribution of the field strength as well as the field strength directions will thus be different from the case with alternating voltage.
  • the current transport also entails a redistribution of charges in the insulating mediums used.
  • the-condenser body in a muff for direct connection of oil cables to transformers described, inter alia, in SE-B-214 015 and in ASEA Journal 1963, volume 36, numbers 1-2, page 23.
  • That part of the muff which extends into the transformer is substantially formed as the lower part of a conventional transformer bushing, i. e. with a lower insulator of electric porcelain.
  • the condenser body of the muff is here designed so as to give capacitive voltage control both inwards along the cable end coming from outside and outwards along the porcelain insulator.
  • the invention aims at providing a condenser type barrier for transformer bushings of the above-mentioned kind, which withstands higher voltages, particularly high direct voltages, than the previously known condenser type barriers.
  • the invention suggests a condenser type barrier according to the introductory part of claim 1, which is characterized by the features of the characterizing part of claim 1.
  • the condenser barrier according to the invention is particularly useful for transformers used in HVDC converter plants.
  • the task of the condenser barrier is to overcome the flashovers which have proved to arise at the transition between transformer bushings and the conductor of the transformer.
  • the condenser barrier is designed so as to function as a barrier with both capacitive and resistive control of the electrical field and is dimensioned so that the condenser barrier withstands the voltages and field strengths occurring in this region.
  • transformer bushing is provided with a lower insulator which is conically tapering viewed from the flange.
  • the condenser barrier is built up as a condenser body, i.e. it consists of an insulating material and condenser layers of foil type concentrically laid into the insulating material.
  • Characteristic of the condenser barrier according to the invention is substantially the geometrical shape of the condenser barrier to make it function as a barrier to both direct voltage and alternating voltage fields.
  • the condenser barrier is formed as a solid of revolution and has, in its ordinary embodiment, a straight circular cylindrical outer shape. However, it may be formed with a "waist” or a “belly”, which influences the distribution of the direct voltage fields.
  • the condenser barrier is formed as an inwardly directed, first straight frustum of a cone which is largely adapted to surround the lower insulator, i.e. it has its largest base area at the end of the condenser barrier. Since both the condenser barrier and the lower insulator are in an oil-filled space, the gap between the lower insulator and the first straight frustum of a cone will be oil-filled. The conicity of this first cone, however, deviates somewhat from the conicity of the lower insulator. The reason for this somewhat different conicity will be explained below. Concentrically in the condenser barrier, continuing from the smallest base area of the first straight frustum of a cone, the condenser barrier is formed as a cylindrically open space.
  • the barrier is also formed as an inwardly directed, second straight frustum of a cone with a smallest base area which faces the concentric, cylindrical open space.
  • This second cone is adapted to surround the shield on the conducting tube around the conductor extending from the transformer.
  • the condenser barrier will surround the shield with a certain oil-filled gap in between. The conicity of this second cone also deviates somewhat from the conicity of the shield.
  • the condenser barrier is made from an insulating agent with alternately laid condenser layers to obtain the desired capacitive control of the electric alternating field.
  • the innermost condenser layer which is concentric with the electric conductor, has an axial length approximately corresponding to the axial length of the inner concentric, cylindrical space. Outside of this there are applied short layers, concentrically arranged in a radial direction and mutually displaced in the axial direction towards the ends of the condenser barrier. These layers are laid so that, concurrently with the increasing radius of the condenser barrier, viewed from the first innermost layer, they are laid in an axial direction so that their outer edges face the straight frustums of cones of the condenser barrier.
  • the direct voltage field is controlled by several factors.
  • that medium which has the lowest resistivity is field controlling.
  • an oil gap is formed, as already mentioned. Since the oil has the lowest resistivity, most of the current is conducted in the oil gap which thus controls the field parallel to the surrounding surfaces. To obtain an even distribution of the field along these surfaces, it is therefore important that the width of the oil gap increases with decreasing radius. Otherwise, the field would be concentrated towards that part where the radius is smallest, i.e. where the axial sectional area is smallest.
  • the conicity of the truncated cones of the condenser barrier is therefore suitably chosen such that the axial sectional area of the oil gap becomes approximately the same along the entire length of the straight frustums of cones.
  • Another field-controlling part is the radial distribution of the field in the condenser barrier around the innermost layer to which high voltage is applied.
  • the layers function as equipotential surfaces in the direct voltage case, which prevents a concentration of the field near the bottom of the lower insulator. It is of importance that the layers of the condenser barrier are directed straight opposite to the layer of the bushing, so that the equipotential surfaces, with the aid of a correctly formed oil gap, are guided over in the desired manner between the bushing and the condenser barrier.
  • the condenser barrier 1 is shown in a section along the longitudinal axis of the barrier. Because of the inwardly-directed straight frustums of cones 2 and 3, the sectional view exhibits a parallel trapezoidal shape.
  • the inner part 4 of the condenser barrier between the straight frustums of cones is cylindrically formed. To give the condenser barrier a certain mechanical stiffness, the inner cylindrical part has been wound onto a cylindrical tube 5. With another insulating material of self-supporting structure, this tube would not be needed.
  • the internal conical shape of the condenser barrier may otherwise be obtained in several different ways, for example by winding, turn by turn, an obliquely cut insulating material with a growing width.
  • the inner condenser layer 6 has approximately the same axial extension as the previously mentioned concentric, cylindrical space. According as the insulting material is wound, there are laid between certain of the turns those condenser layers 7 which are needed to influence the capacitive voltage distribution. These layers have a shorter axial length than the innermost layer and are laid such that their outer edges, concurrently with the wound increasing radius of the condenser barrier, will be facing both of the straight frustoconical surfaces.
  • a lower insulator is also shown at 8.
  • the fastening flange of the bushing is shown at 9.
  • the condenser barrier with its lower insulator is placed in an oil-filled intermediate flange 10 which is connected to the transformer casing 11.
  • the conductor 12 of the transformer winding is to be connected to the electric conductor of the bushing in a known manner.
  • the conductor of the transformer winding is surrounded by a tube 13 of conductive material. On this tube are wound several layers of insulating material which forms a shield 14 and which tapers toward the end of the tube in the form of a straight frustum of a cone 15.
  • the tube 13 is electrically connected to both the conductor of the transformer winding and the inner condenser layer.
  • One of the outer condenser layers is grounded.
  • the oil gap 18,19 between the straight frustums of cones of the condenser barrier and the lower insulator 8 and the shield 14, respectively, has largely the same axial cross section along the whole cones. Therefore, the difference in radius is greatest between the smallest bases.
  • the lower insulator facing the fastening flange is purely cylindrically formed, as shown at 16. In these cases it may be suitable for the condenser barrier to terminate in a cylindrical part 17 to cover this part of the lower insulator. A corresponding cylindrical extension may also occur in certain cases over the shield 14.
  • the axial length/height of the inwardly-directed straight frustums of cones of the condenser barrier is adapted to the axial length of the cones of the lower insulator and the shield, respectively, and may therefore be of varying lengths, as is also clear from the figure.
  • the condenser barrier may be formed with a "waist” or a “belly” to obtain special advantages from the point of view of field distribution technique.
  • the condenser barrier is fixed around the lower insulator 8 and the conductor 12 of the transformer winding with tube 13 and shield 14 in a suitable way (not shown) against the fastening flange of the bushing 9 or against the intermediate flange 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulators (AREA)
  • Housings And Mounting Of Transformers (AREA)

Claims (6)

  1. Barrière du type condensateur (1) pour la maîtrise du champ de la connexion d'une traversée isolée de transformateur au conducteur (12) d'un enroulement de transformateur, de préférence un enroulement de transformateur de convertisseur, la barrière du type condensateur (1) étant réalisée sous la forme d'un solide de révolution et d'un corps de condensateur consistant en un matériau isolant avec des couches de condensateur (7) du type pellicule métallique disposées de façon concentrique à l'intérieur, caractérisée en ce que le solide de révolution a une forme extérieure qui est de préférence cylindrique circulaire, en ce que la barrière du type condensateur (1) est disposée dans une chambre remplie d'huile qui est définie par une paroi intermédiaire (10) qui, en plus, contient un tube conducteur (13) en un matériau conducteur entourant le conducteur (12) de l'enroulement de transformateur, ce tube étant entouré par plusieurs couches de matériau isolant qui forment un blindage (14) qui, en direction de l'extrémité du tube se trouvant à l'intérieur de la paroi intermédiaire (10), va en diminuant avec la forme d'un tronc de cône droit (15), la paroi intermédiaire (10) contenant également l'isolateur inférieur (8) de la traversée isolée de transformateur, cet isolateur inférieur (8) allant en diminuant, à partir de sa bride de fixation (9), avec la forme d'un tronc de cône droit ayant dans une large mesure la même conicité que le blindage (14) du conducteur (12) de l'enroulement de transformateur qui est connecté au conducteur électrique de la traversée isolée, en ce que la barrière du type condensateur (1) comporte, à partir d'une extrémité, un premier tronc de cône droit (2), dirigé vers l'intérieur, avec sa plus grande surface de base à une extrémité de la barrière du type condensateur, en ce que la barrière du type condensateur comporte, à son autre extrémité, un second tronc de cône droit (3), dirigé vers l'intérieur, avec sa plus grande surface de base à l'autre extrémité de la barrière du type condensateur, en ce que l'espace entre les petites bases des cônes tronqués (2, 3) forme un trou disposé de façon concentrique sous la forme d'un cylindre circulaire droit (4) intérieur et ouvert, avec une aire de section égale aux petites bases des cônes tronqués (2,3), en ce que la conicité du premier tronc de cône droit (2) dirigé vers l'intérieur, est adaptée de façon que l'aire de section de l'espace (18) qui est formé entre l'isolateur inférieur (8) et le premier tronc de cône droit (2) dirigé vers l'intérieur, soit constante sur la totalité de la longueur du premier tronc de cône (2), et en ce que la conicité du second tronc de cône droit (3) dirigé vers l'intérieur, est adaptée de façon que l'aire de section de l'espace (19) qui est formé entre le blindage (14) et le second tronc de cône (3), soit constante sur la totalité de la longueur du second tronc de cône (3).
  2. Barrière du type condensateur (1) selon la revendication 1, caractérisée en ce que la barrière du type condensateur (1) comporte une couche de condensateur la plus intérieure (6) ayant une longueur axiale qui correspond à la longueur axiale du cylindre circulaire droit (4) intérieur et ouvert, et en ce que des couches de condensateur (7) sont disposées de façon concentrique le long des cônes tronqués (2, 3), ces couches étant plus courtes dans la direction axiale de la barrière du type condensateur (1) que la couche de condensateur la plus intérieure (6), et étant disposées dans la direction axiale de la barrière du type condensateur (1) d'une manière telle que leurs bords extérieurs soient disposés face aux troncs de cônes droits (2, 3) de la barrière du type condensateur (1).
  3. Barrière du type condensateur (1) selon la revendication 1 ou 2, caractérisée en ce que la couche de condensateur la plus intérieure (6) est connectée électriquement au conducteur (12) de l'enroulement de transformateur et en ce que la couche de condensateur extérieure est connectée au potentiel de la terre.
  4. Barrière du type condensateur (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que la barrière du type condensateur (1) comporte un prolongement tubulaire (17) sur le premier tronc de cône dirigé vers l'intérieur (2).
  5. Barrière du type condensateur (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que la forme extérieure du solide de révolution comporte un rétrécissement.
  6. Barrière du type condensateur (1) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la forme extérieure du solide de révolution comporte un ventre.
EP19900111272 1989-06-19 1990-06-15 Barrière du type condensateur Revoked EP0413103B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8902218 1989-06-19
SE8902218A SE463951B (sv) 1989-06-19 1989-06-19 Styrkropp foer faeltstyrning av en transformatorgenomfoerings anslutning till en transformatorlindnings uppledare hos stroemriktartransformatorer

Publications (2)

Publication Number Publication Date
EP0413103A1 EP0413103A1 (fr) 1991-02-20
EP0413103B1 true EP0413103B1 (fr) 1994-09-07

Family

ID=20376327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900111272 Revoked EP0413103B1 (fr) 1989-06-19 1990-06-15 Barrière du type condensateur

Country Status (7)

Country Link
EP (1) EP0413103B1 (fr)
JP (1) JPH0350706A (fr)
BR (1) BR9002894A (fr)
CA (1) CA2019182C (fr)
DE (1) DE69012258T2 (fr)
DK (1) DK0413103T3 (fr)
SE (1) SE463951B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952031B2 (en) 2005-05-02 2011-05-31 Siemens Aktiengesellschaft Barrier system for the line bushing of an electrical installation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214941A (ja) * 2002-04-19 2009-09-24 Ishida Co Ltd 食品包装用袋の製造方法
DE102006008922B4 (de) * 2006-02-21 2009-01-02 Siemens Ag Elektrische Abschirmanordnung
DE102006013927B4 (de) * 2006-03-21 2008-11-20 Siemens Ag Verbindungselement für eine elektrische Abschirmungsanordnung
DE102011008462A1 (de) * 2011-01-07 2012-07-12 Siemens Aktiengesellschaft Schirmring für eine HGÜ-Transformatorspule oder eine HGÜ-Drosselspule
DE102011008454A1 (de) * 2011-01-07 2012-07-26 Siemens Aktiengesellschaft Isolationsanordnung für eine HGÜ-Komponente mit wandartigen Feststoffbarrieren
EP4243229A1 (fr) * 2022-03-10 2023-09-13 Siemens Energy Global GmbH & Co. KG Dispositif haute tension

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499837B1 (fr) * 1968-12-11 1974-03-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952031B2 (en) 2005-05-02 2011-05-31 Siemens Aktiengesellschaft Barrier system for the line bushing of an electrical installation

Also Published As

Publication number Publication date
SE463951B (sv) 1991-02-11
CA2019182A1 (fr) 1990-12-19
SE8902218L (sv) 1990-12-20
CA2019182C (fr) 1994-05-03
JPH0350706A (ja) 1991-03-05
EP0413103A1 (fr) 1991-02-20
DE69012258D1 (de) 1994-10-13
DK0413103T3 (da) 1995-01-16
SE8902218D0 (sv) 1989-06-19
BR9002894A (pt) 1991-08-20
DE69012258T2 (de) 1995-04-13

Similar Documents

Publication Publication Date Title
KR101902443B1 (ko) Hvdc 컴포넌트용 도관의 분리 포인트의 전기 차폐 장치
US3610947A (en) Encapsulated gas-insulated high-voltage line
US4847450A (en) Stress graded electrical bushing and method of making same
US7046492B2 (en) Power transformer/inductor
US5406030A (en) High voltage, high-current power cable termination with single condenser grading stack
KR20010032572A (ko) 변환기
EP0429843B1 (fr) Douille de traversée pour les tensions continues hautes
EP0413103B1 (fr) Barrière du type condensateur
US4418240A (en) Electrical stress control electrode in combination with a junction end of a shielded insulated electrical conductor
US4370514A (en) High-voltage bushing with double-layered potential control inserts
US5198622A (en) Condenser body for the field control of the connection of a transformer bushing
US5227584A (en) Barrier of condenser type for field control in transformer bushing terminals
US4227035A (en) Modular condenser bushing
KR20010049160A (ko) 전력 트랜스포머/인덕터
US4379999A (en) Electrostatic shield for a transformer
US4540967A (en) Molded transformer with grounded electrically conductive layer
US3539703A (en) High voltage termination apparatus for high voltage cables and pipetype transmission lines
JP2000164435A (ja) 静止形電磁誘導機器
JPH05291060A (ja) 変圧器巻線
SU1767555A1 (ru) Измерительный высоковольтный трансформатор тока
JPH05190354A (ja) 静止誘導電気機器
JPS5926582Y2 (ja) 油入電気機器
JPS5918584Y2 (ja) ブツシング
Doepken UHV AC and DC gas-insulated bushings
WO1999017312A2 (fr) Transformateur/bobine de reactance et procede d'adaptation d'un cable ht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB IT NL

17P Request for examination filed

Effective date: 19910731

17Q First examination report despatched

Effective date: 19921204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB IT NL

REF Corresponds to:

Ref document number: 69012258

Country of ref document: DE

Date of ref document: 19941013

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950605

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950607

Year of fee payment: 6

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950609

Year of fee payment: 6

Ref country code: DK

Payment date: 19950609

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950628

Year of fee payment: 6

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 19950601

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 960301

27W Patent revoked

Effective date: 19960301

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP