EP0412474B1 - Kälteanlage sowie Verfahren zum Betreiben einer derartigen Anlage - Google Patents

Kälteanlage sowie Verfahren zum Betreiben einer derartigen Anlage Download PDF

Info

Publication number
EP0412474B1
EP0412474B1 EP90115029A EP90115029A EP0412474B1 EP 0412474 B1 EP0412474 B1 EP 0412474B1 EP 90115029 A EP90115029 A EP 90115029A EP 90115029 A EP90115029 A EP 90115029A EP 0412474 B1 EP0412474 B1 EP 0412474B1
Authority
EP
European Patent Office
Prior art keywords
cold
consumers
consumer
refrigeration
instantaneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90115029A
Other languages
English (en)
French (fr)
Other versions
EP0412474A3 (en
EP0412474A2 (de
Inventor
Gerd Dipl.-Ing. Böckmann
Peter Dipl.-Ing. Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0412474A2 publication Critical patent/EP0412474A2/de
Publication of EP0412474A3 publication Critical patent/EP0412474A3/de
Application granted granted Critical
Publication of EP0412474B1 publication Critical patent/EP0412474B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Definitions

  • the invention relates to a method for operating a refrigeration system in which a refrigerant compresses, liquefies, is supplied to various refrigeration consumers, is expanded and evaporated there and is then returned to compression, with the temperature in the room to be cooled being controlled by a manipulated variable for each refrigeration consumer is regulated, the instantaneous value of this manipulated variable serves as a measure of the refrigeration requirement of the respective refrigeration consumer and the performance of the refrigeration system is set as a function of a weighted average of the instantaneous refrigeration requirement values of the connected refrigeration consumers.
  • an apparatus for performing this method is the subject of the invention.
  • Such refrigeration systems are used wherever several devices have to be supplied with cold at different points and / or at different temperatures.
  • the refrigeration system supplies every refrigeration consumer with pressurized, liquefied refrigerant. This is released by the respective cooling consumers and evaporated in indirect heat exchange with cooling air, which is then introduced into the room to be cooled. The evaporated and low-pressure refrigerant is returned to the refrigeration system.
  • the cooling output currently output at the evaporator is controlled by an individual regulation of the temperature in the room to be cooled by each cooling consumer.
  • a method for such a regulation is, for example, the subject of a patent application filed simultaneously with the present application (published as EP-A-0412473).
  • the present invention is therefore based on the object of developing a method of the type mentioned at the outset which works particularly economically by keeping the energy consumed by the refrigeration system as low as possible.
  • This object is achieved in that the volume throughput of the refrigerant expanded and evaporated at the respective refrigeration consumer is used as a measure of the refrigeration requirement of the respective refrigeration consumer.
  • the control circuits of the individual refrigeration consumers control the throughput of refrigerant through the evaporator as a manipulated variable, depending on a control variable, generally the instantaneous temperature in the room to be cooled respective cooling consumer (interior temperature).
  • This manipulated variable is a very direct measure of the cooling consumer's current cooling requirements.
  • the control loops of the individual refrigeration consumers are now coupled with those of the composite refrigeration system and the instantaneous refrigeration demand values of the individual refrigeration consumers are forwarded to the composite control system.
  • the entirety of the refrigeration requirement values then represents a very realistic and also practically manageable control variable for controlling the performance of the refrigeration system.
  • the performance of the refrigeration system is preferably set essentially proportional to the arithmetic mean of the determined refrigeration demand values of all refrigeration consumers connected to the refrigeration system. When averaging, the values of the individual cooling consumers can be weighted if necessary.
  • An apparatus for carrying out the method according to the invention comprises means for compressing and liquefying refrigerant, a composite liquid line for guiding liquefied refrigerant to various refrigeration consumers, means for the expansion and evaporation of refrigerant assigned to the individual refrigeration consumers, a composite suction line via which the evaporated refrigerant returns to Compression is fed back, one microprocessor-controlled refrigeration consumer controller per refrigeration consumer, by means of which the temperature in the room to be cooled is regulated by controlling a manipulated variable and which is connected to a temperature measurement input and a control output and also to a data line via which the current value of this manipulated variable can be output, and a microprocessor-controlled compound controller, which is also connected to the data line and also has control outputs which to the Lead aggregates of the refrigeration system, the compound controller being designed so that the performance of the aggregates is set as a function of a weighted average of the instantaneous values of the manipulated variables of the connected refrigeration consumers, and is characterized in that the refrigeration consumer controllers
  • the refrigeration system has a plurality of compressors 2 connected in parallel, which draw in refrigerant from a composite suction line 1.
  • the number of compressors is generally 2 to 10, preferably 2 to 8.
  • the compressed refrigerant is led to a condenser 3, in which it is condensed in indirect heat exchange with air.
  • the condenser is generally outdoors. Its outer surfaces are supplied with outside air by condenser fans 4.
  • the largely liquefied refrigerant is introduced into a collector 5, from which only the liquid portion reaches the composite liquid line 6, which leads the liquid and pressurized refrigerant to the refrigeration consumers 7a, 7b, 7c.
  • the compressors 2 and condenser fans 4 represent the units of the refrigeration system.
  • the number of connected cooling consumers 7a, 7b, 7c is in principle unlimited; the maximum cooling capacity of the composite system must of course be designed accordingly.
  • Liquid refrigerant is supplied to each refrigeration consumer 7a, 7b, 7c separately via individual liquid lines 8a, 8b, 8c. There it is expanded in each case by an expansion valve 9, introduced into an evaporator 10 and evaporated there against cooling air conducted over the outer surfaces of the evaporator 10.
  • the cooling air duct within the cooling consumers 7a, 7b, 7c is not shown in FIG. 1 for the sake of simplicity.
  • Relaxed and evaporated refrigerant is introduced into the compound suction line 1 via the individual suction lines 11a, 11b, 11c and is thus returned to the refrigerant circuit.
  • the throughput of refrigerant through the evaporator 10 or the pressure difference when relaxing 9 is generally set.
  • the throughput of refrigerant is controlled. Basically, one valve per cooling consumer 7a, 7b, 7c is sufficient.
  • a solenoid valve 12 or 13 is provided for each liquid line 8a, 8b, 8c and for each suction line 11a, 11b, 11c.
  • the valves are set by an individual microprocessor-controlled refrigeration consumer controller 14a, 14b, 14c depending on the respective interior temperature (temperature sensor 15) (see above-mentioned patent application EP-A-0412473).
  • a likewise microprocessor-controlled compound controller 17 controls the compressors 2 and, in the present example, one of the two condenser fans 4.
  • the refrigeration consumer controllers 14a, 14b, 14c of the individual refrigeration consumers 7a, 7b, 7c are connected via a data line 16, here a common data and address bus connected to the compound controller 17.
  • the compound controller 17 has further inputs and outputs 18, 19.
  • Line 18 represents a safety chain which is interrupted in the event of failure of an assembly, for example one of the compressors 2. A warning can optionally be given to the operating personnel via line 19.
  • both the compound controller 17 and the refrigeration consumer controller 14a, 14b, 14c can be connected via further data lines to a central monitoring device, for example a computer, which performs additional tasks such as controlling lighting or heating.
  • step 1.1 After switching on or resetting (reset) the device (step 1.1), the configuration is first checked in step 1.2 (for example, type and structure of the combined system and the connected cooling consumers, etc.) and the corresponding default setting of the control device.
  • step 1.2 for example, type and structure of the combined system and the connected cooling consumers, etc.
  • step 1.2 internal processes of the microprocessor are started, for example the time measurement and the initialization of the input / output channels.
  • step 1.3 certain parameters are preset. This applies above all to the initially assumed cooling demand values, for which no current data are available yet.
  • the program then enters an endless loop from which only switching off or resetting the device results.
  • the device also communicates the request for output via the keyboard.
  • step 2.5 the data are called up by the refrigeration consumer controllers, especially the current values of the refrigeration demand.
  • other signals can be exchanged between the compound controller and the refrigeration consumer controller, for example warning messages in the event of faults, overloading or insufficient supply.
  • the data is buffered in the working memory of the network controller.
  • step 2.6 an average is calculated from the current cooling demand values of the individual cooling consumers, which may be weighted with parameters that depend on the size and importance of individual cooling consumers.
  • the performance of the composite system is now set according to this mean value, i.e. exactly according to the current requirements of the refrigeration consumers. This is done by outputting control signals to relays that switch the compressors or the motors of the condenser fans (2.7). Speed controls can also be provided to refine the setting of the power.
  • the control of the compressors is preferably carried out as part of a base load switchover, as described, for example, in DE-A-35 43 707.
  • step 2.8 before returning to the start of the loop, additional services are processed, for example the determination of the warning state (possibly issuing a warning to the operating personnel, for example in the event of a unit failure) or the monitoring of the start of frost on the condenser and the corresponding defrosting processes.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Kälteanlage, in welcher ein Kältemittel verdichtet, verflüssigt, verschiedenen Kälteverbrauchern zugeleitet, dort entspannt und verdampft wird und anschließend wieder zum Verdichten zurückgeführt wird, wobei bei jedem Kälteverbraucher die Temperatur in dem zu kühlenden Raum durch Steuerung einer Stellgröße geregelt wird, der momentane Wert dieser Stellgröße als Maß für den Kältebedarf des jeweiligen Kälteverbrauchers dient und wobei die Leistung der Kälteanlage in Abhängigkeit von einem gewichteten Mittelwert der momentanen Kältebedarfswerte der angeschlossenen Kälteverbraucher eingestellt wird. Außerdem ist eine Vorrichtung zur Durchführung dieses Verfahrens Gegenstand der Erfindung.
  • Derartige Kälteanlagen, auch als Verbundkälteanlagen bezeichnet, werden Uberall dort eingesetzt, wo mehrere Geräte an verschiedenen Stellen und/oder bei verschiedenen Temperaturen mit Kälte versorgt werden müssen. Beispielsweise sind in einem Supermarkt mehrere Kühl- und Tiefkühlmöbel sowie etwa zusätzlich ein Kühlraum als Kälteverbraucher an eine solche Anlage angeschlossen. Die Kälteanlage liefert jedem Kälteverbraucher unter Druck stehendes, verflüssigtes Kältemittel an. Dieses wird bei den jeweiligen Kälteverbrauchern entspannt und im indirekten Wärmeaustausch mit Kühlluft, welche anschließend in den zu kühlenden Raum eingeleitet wird, verdampft. Das verdampfte und unter niedrigem Druck stehende Kältemittel wird in den Kreislauf der Kälteanlage zurückgeführt. Im allgemeinen wird durch eine individuelle Regelung der Temperatur im zu kühlenden Raum jedes Kälteverbrauchers die momentan am Verdampfer abgegebene Kälteleistung gesteuert. Ein Verfahren für eine derartige Regelung ist beispielsweise Gegenstand einer gleichzeitig mit der vorliegenden Anmeldung eingereichten Patentanmeldung (veröffentlicht als EP-A-0412473).
  • Aus wirtschaftlichen Gründen ist es außerdem notwendig, die gesamte Kälteleistung der Verbundanlage durch eine Regelung zu begrenzen, um Energie einzusparen. Dabei wird die Leistung beim Verdichten und/oder beim Verflüssigen verringert, indem einzelne der parallel arbeitenden Verdichter oder Verflüssigerventilatoren abgeschaltet bzw. in ihrer Drehzahl reduziert werden. Als Regelgröße wird bei den bisher bekannten Verfahren der Saugdruck, d.h. der Druck des gasförmigen Kältemittels vor dem Verdichten, verwendet. Diese Größe ist zwar sehr einfach zu ermitteln, jedoch ist die bekannte Art der Regelung recht grob und unempfindlich. Die Kälteleistung der Anlage muß daher aus Sicherheitsgründen relativ hoch gewählt werden, um eine Unterversorgung der Kälteverbraucher und eine damit verbundenes Verderbnis von Frischware auszuschließen. Auch andere Regelungen, beispielsweise in Abhängigkeit eines von den an den einzelnen Kälteverbrauchern festgestellten Abweichungen von der Solltemperatur (US-4487028) oder vom Kältebedarf eines einzigen Verbrauchers (US-4084388), sind bekannt. Die mit dem vorbekannten Verfahren erreichbare Erhöhung der Wirtschaftlichkeit ist somit nicht zufriedenstellend.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu entwickeln, welches wirtschaftlich besonders günstig arbeitet, indem die von der Kälteanlage verbrauchte Energie möglichst gering gehalten wird.
  • Diese Aufgabe wird dadurch gelöst, daß der Volumendurchsatz des bei dem jeweiligen Kälteverbraucher entspannten und verdampften Kältemittels als Maß für den Kältebedarf des jeweiligen Kälteverbrauchers verwendet wird.
  • Die Regelkreisläufe der einzelnen Kälteverbraucher steuern als Stellgröße den Durchsatz an Kältemittel durch den Verdampfer, und zwar in Abhängigkeit von einer Regelgröße, im allgemeinen der momentanen Temperatur im zu kühlenden Raum des jeweiligen Kälteverbrauchers (Innenraumtemperatur). Diese Stellgröße ist ein sehr direktes Maß für den momentanen Kältebedarf des Kälteverbrauchers. Erfindungsgemäß werden nun die Regelkreisläufe der einzelnen Kälteverbraucher mit demjenigen der Verbundkälteanlage gekoppelt und die momentanen Kältebedarfswerte der einzelnen Kälteverbraucher an die Verbundregelung weitergeleitet. Die Gesamtheit der Kältebedarfswerte stellt dann eine sehr realistische und auch praktisch handzuhabende Regelgröße für die Steuerung der Leistung der Kälteanlage dar.
  • Vorzugsweise wird die Leistung der Kälteanlage im wesentlichen proportional zum arithmetischen Mittel der ermittelten Kältebedarfswerte aller der Kälteanlage angeschlossenen Kälteverbraucher eingestellt. Bei der Mittelung können die Werte der einzelnen Kälteverbraucher bei Bedarf mit Gewichten versehen werden.
  • Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens umfaßt Mittel zur Verdichtung und zur Verflüssigung von Kältemittel, eine Verbundflüssigkeitsleitung zur Führung von verflüssigtem Kältemittel zu verschiedenen Kälteverbrauchern, den einzelnen Kälteverbrauchern zugeordneten Mittel zur Entspannung und Verdampfung von Kältemittel, eine Verbundsaugleitung, über die das verdampfte Kältemittel wieder zum Verdichten zurückgeführt wird, je einen mikroprozessorgesteuerten Kälteverbraucherregler pro Kälteverbraucher, durch den die Temperatur in dem zu kühlenden Raum durch Steuerung einer Stellgröße geregelt wird und der jeweils mit einem Temperaturmeßeingang und einem Steuerausgang und außerdem mit einer Datenleitung verbunden ist, über die der momentane Wert dieser Stellgröße ausgegeben werden kann, und einen mikroprozessorgesteuerten Verbundregler, der ebenfalls mit der Datenleitung verbunden ist und außerdem Steuerausgänge aufweist, welche zu den Aggregaten der Kälteanlage führen, wobei der Verbundregler so ausgebildet ist, daß die Leistung der Aggregate in Abhängigkeit von einem gewichteten Mittelwert der momentanen Werte der Stellgrößen der angeschlossenen Kälteverbraucher eingestellt wird, und ist dadurch gekennzeichnet, daß die Kälteverbraucherregler den Volumendurchsatz des bei dem jeweiligen Kälteverbraucher entspannten und verdampften Kältemittels einstellen.
  • Die Erfindung und weitere Einzelheiten der Erfindung werden im folgenden anhand einer Zeichnung und eines Flußdiagrammes näher erläutert. Hierbei zeigen
  • Figur 1
    ein Ausführungsbeispiel einer erfindungsgemäßen Kälteanlage mit drei Kälteverbrauchern und den zugehörigen Regeleinrichtungen in schematischer Darstellung und
    Figur 2
    ein Flußdiagramm, welches ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens beschreibt.
  • Die Kälteanlage weist mehrere parallel geschaltete Verdichter 2 auf, welche Kältemittel aus einer Verbundsaugleitung 1 ansaugen. Die Anzahl von Verdichtern beträgt im allgemeinen 2 bis 10, vorzugsweise 2 bis 8 . Das verdichtete Kältemittel wird zu einem Verflüssiger 3 geführt, in welchem es in indirektem Wärmeaustausch mit Luft kondensiert wird. Der Verflüssiger steht im allgemeinen im Freien. Seine Außenflächen werden von Verflüssigerventilatoren 4 mit Außenluft beaufschlagt. Das zum größten Teil verflüssigte Kältemittel wird in einem Sammler 5 eingeleitet, von dem aus nur der flüssige Anteil in die Verbundflüssigkeitsleitung 6 gelangt, welche das flüssige und unter Druck stehende Kältemittel zu den Kälteverbrauchern 7a, 7b, 7c führt. Die Verdichtes 2 und Verflüssigerventilatoren 4 stellen die Aggregate der Kälteanlage dar.
  • Die Anzahl der angeschlossenen Kälteverbraucher 7a, 7b, 7c ist im Prinzip unbegrenzt; die maximale Kälteleistung der Verbundanlage muß selbstverständlich entsprechend ausgelegt sein.
  • Flüssiges Kältemittel wird über individuelle Flüssigkeitsleitungen 8a, 8b, 8c jedem Kälteverbraucher 7a, 7b, 7c getrennt zugeführt. Dort wird es jeweils einem Expansionsventil 9 entspannt, in einen Verdampfer 10 eingeleitet und dort gegen über die Außenflächen des Verdampfers 10 geleitete Kühlluft verdampft. Die Kühlluftführung innerhalb der Kälteverbraucher 7a, 7b, 7c ist in Figur 1 der Einfachheit halber nicht dargestellt. Entspanntes und verdampftes Kältemittel wird über die einzelnen Saugleitungen lla, llb, llc wird in die Verbundsaugleitung 1 eingeführt und damit in den Kältemittelkreislauf zurückgeleitet.
  • Für die individuelle Steuerung der Kälteleistung bei jedem Kälteverbraucher 7a, 7b, 7c wird im allgemeinen der Durchsatz an Kältemittel durch den Verdampfer 10 oder der Druckunterschied beim Entspannen 9 eingestellt. Im Beispiel der Figur 1 wird der Durchsatz an Kältemittel gesteuert. Grundsätzlich reicht dazu jeweils ein Ventil pro Kälteverbraucher 7a, 7b, 7c aus. Im Beispiel der Figur 1 ist sowohl für jede Flüssigkeitsleitung 8a, 8b, 8c als auch für jede Saugleitung lla, llb, llc jeweils ein Magnetventil 12 bzw. 13 vorgesehen. Die Ventile werden durch je einen individuellen mikroprozessorgesteuerten Kälteverbraucherregler 14a, 14b, 14c in Abhängigkeit von der jeweiligen Innenraumtemperatur (Temperaturfühler 15) eingestellt (siehe oben erwähnte Patentanmeldung EP-A-0412473).
  • Ein ebenfalls mikroprozessorgesteuerter Verbundregler 17 steuert die Verdichter 2 und im vorliegenden Beispiel einen der beiden Verflüssigerventilatoren 4. Erfindungsgemäß sind die Kälteverbraucherregler 14a, 14b, 14c der einzelnen Kälteverbraucher 7a, 7b, 7c über eine Datenleitung 16, hier ein gemeinsamer Daten- und Adreßbus, mit dem Verbundregler 17 verbunden.
  • Der Verbundregler 17 weist bei dem Ausführungsbeispiel weitere Ein- und Ausgänge 18, 19 auf. Leitung 18 stellt eine Sicherheitskette dar, die bei Ausfall eines Aggregates, beispielsweise einer der Verdichter 2, unterbrochen wird. Über Leitung 19 kann gegebenenfalls eine Warnung an das Bedienungspersonal abgegeben werden. Darüber hinaus können sowohl der Verbundregler 17, als auch die Kälteverbraucherregler 14a, 14b, 14c über weitere Datenleitungen mit einem zentralen Uberwachungsgerät, beispielsweise einem Rechner, der zusätzliche Aufgaben wie etwa die Steuerung von Beleuchtung oder Heizung erfüllt, verbunden sein.
  • Ein Beispiel für die praktische Funktionsweise eines Programmes, welches den Verbundregler 17 steuert, ist aus dem Flußdiagramm in Figur 2 ersichtlich. Nach dem Einschalten bzw. Zurücksetzen (Reset) des Gerätes (Schritt 1.1) erfolgt zunächst in Schritt 1.2 die Überprüfung der Konfiguration (zum Beispiel Art und Aufbau der Verbundanlage und der angeschlossenen Kälteverbraucher usw.) und die entsprechende Voreinstellung des Regelgerätes. Außerdem werden dabei interne Vorgänge des Mikroprozessors gestartet, beispielsweise die Zeitmessung und die Initialisierung der Ein-/Ausgabekanäle.
  • Im folgenden Schritt 1.3 wird eine Voreinstellung bestimmter Parameter durchgeführt. Dies betrifft vor allem die zunächst angenommenen Kältebedarfswerte, für die ja noch keine aktuellen Daten vorliegen. Anschließend tritt das Programm in eine Endlosschleife ein, aus der lediglich ein Ausschalten oder Zurücksetzen des Gerätes herausführt.
  • Als erster Schritt 2.1 der Schleife werden die aktuellen Regelparameter aus dem EEPROM gelesen. Dabei handelt es sich beispielsweise um die Einstell- und Sollwerte der Kälteanlage oder auch um speziellere Parameter, wie zum Beispiel die Verzögerungszeit zwischen der Anforderung von zusätzlicher Kälteleistung und der Ausgabe von entsprechenden Schaltsignalen an Verdichter bzw. Verflüssigerventilatoren. Im folgenden Schritt 2.2 werden die Tastatur und die digitalen Eingänge abgefragt. Falls über die Tastatur eine Veränderung von Parametern angefordert wird, wird diese in 2.3 vorgenommen. Schritt 2.4 ermöglicht, falls gewünscht, eine Ausgabe von speziell ausgewählten Daten, wie z.B.
    • Anzahl der Verdichter und Verflüssigerventilatoren
    • alle Arten von Verzögerungszeiten
    • Anzahl der angeschlossenen Kälteverbraucher
    • bisherige Laufzeit der einzelnen Verdichter
    • Anzahl der laufenden Verdichter und Ventilatoren
    • von einen Kälteverbraucher übermitteltes Warnsignal
  • Der Ausgabewunsch wir dem Gerät ebenfalls über die Tastatur mitgeteilt.
  • Anschließend (2.5) werden die Daten von den Kälteverbraucherreglern abgerufen, vor allem die aktuellen Werte des Kältebedarfs. Zusätzlich können weitere Signale zwischen Verbundregler und Kälteverbraucherreglern ausgetauscht werden, beispielsweise Warnmeldungen bei Störungen, Uberlastung oder Unterversorgung. Die Daten werden im Arbeitsspeicher des Verbundreglers zwischengespeichert. In Schritt 2.6 wird aus den aktuellen Kältebedarfswerten der einzelnen Kälteverbraucher ein Mittelwert errechnet, der unter Umständen mit Parametern gewichtet wird, die von Größe und Bedeutung einzelner Kälteverbraucher abhängen.
  • Die Leistung der Verbundanlage wird nun gemäß diesem Mittelwert eingestellt, also exakt nach den momentanen Anforderungen der Kälteverbraucher. Dies geschieht mit Hilfe der Ausgabe von Steuersignalen an Relais, welche die Verdichter bzw. die Motoren der Verflüssigerventilatoren schalten (2.7). Zur Verfeinerung der Einstellung der Leistung können auch Drehzahlregelungen vorgesehen sein. Die Steuerung der Verdichter erfolgt vorzugsweise im Rahmen einer Grundlastumschaltung, wie sie etwa in der DE-A-35 43 707 beschrieben ist.
  • Im letzten Schritt 2.8 vor der Rückkehr zum Schleifenbeginn werden zusätzliche Dienste abgearbeitet, beispielsweise die Ermittlung des Warnzustandes (gegebenenfalls Ausgabe einer Warnung an das Bedienungspersonal, zum Beispiel bei Ausfall eines Aggregates) oder die Uberwachung des Reifansatzes am Verflüssiger und der entsprechenden Abtauvorgänge.

Claims (4)

  1. Verfahren zum Betreiben einer Kälteanlage, in welcher ein Kältemittel verdichtet (2), verflüssigt (3), verschiedenen Kälteverbrauchern (7a, 7b, 7c) zugeleitet, dort entspannt (9) und verdampft (10a, 10b, 10c) wird und anschließend wieder zum Verdichten (2) zurückgeführt wird (11a, 11b, 11c; 1), wobei bei jedem Kälteverbraucher (7a, 7b, 7c) die Temperatur in dem zu kühlenden Raum durch Steuerung einer Stellgröße geregelt wird, der momentane Wert dieser Stellgröße als Maß für den Kältebedarf des jeweiligen Kälteverbrauchers (7a, 7b, 7c) dient und wobei die Leistung der Kälteanlage in Abhängigkeit von einem gewichteten Mittelwert der momentanen Kältebedarfswerte der angeschlossenen Kälteverbraucher (7a, 7b, 7c) eingestellt wird, dadurch gekennzeichnet, daß der Volumendurchsatz des bei dem jeweiligen Kälteverbraucher (7a, 7b, 7c) entspannten und verdampften Kältemittels als Maß für den Kältebedarf des jeweiligen Kälteverbrauchers (7a, 7b, 7c) verwendet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Mittelwert der momentanen Kältebedarfswerte mit Parametern gewichtet wird, die von Größe und Bedeutung einzelner Kälteverbraucher abhängen.
  3. Kälteanlage zur Durchführung des Verfahrens nach Anspruch 1 oder 2 mit Mitteln zur Verdichtung (2) und zur Verflüssigung (3) von Kältemittel, mit einer Verbundflüssigkeitsleitung (6) zur Führung von verflüssigtem Kältemittel zu verschiedenen Kälteverbrauchern (7a, 7b, 7c), mit den einzelnen Kälteverbrauchern zugeordneten Mitteln zur Entspannung (9) und Verdampfung (10a, 10b, 10c) von Kältemittel, mit einer Verbundsaugleitung (1), über die das verdampfte Kältemittel wieder zum Verdichten (2) zurückgeführt wird, mit je einem mikroprozessorgesteuerten Kälteverbraucherregler (14a, 14b, 14c) pro Kälteverbraucher (7a, 7b, 7c), durch den die Temperatur in dem zu kühlenden Raum durch Steuerung einer Stellgröße geregelt wird und der jeweils mit einem Temperaturmeßeingang (20) und einem Steuerausgang (21) und außerdem mit einer Datenleitung (16) verbunden ist, über die der momentane Wert dieser Stellgröße ausgegeben werden kann, und mit einem mikroprozessorgesteuerten Verbundregler (17), der ebenfalls mit der Datenleitung (16) verbunden ist und außerdem Steuerausgänge (22, 23) aufweist, welche zu den Aggregaten (Verdichter 2, Verflüssigerventilatoren 4) der Kälteanlage führen, wobei der Verbundregler (17) so ausgebildet ist, daß die Leistung der Aggregate (2, 4) in Abhängigkeit von einem gewichteten Mittelwert der momentanen Werte der Stellgrößen der angeschlossenen Kälteverbraucher (7a, 7b, 7c) eingestellt wird, dadurch gekennzeichnet, daß die Kälteverbraucherregler (14a, 14b, 14c) den Volumendurchsatz des bei dem jeweiligen Kälteverbraucher (7a, 7b, 7c) entspannten und verdampften Kältemittels einstellen.
  4. Kälteanlage nach Anspruch 3, dadurch gekennzeichnet, daß der Verbundregler (17) so ausgebildet ist, daß der Mittelwert der momentanen Werte der Stellgrößen mit Parametern gewichtet wird, die von Größe und Bedeutung einzelner Kälteverbraucher abhängen.
EP90115029A 1989-08-08 1990-08-04 Kälteanlage sowie Verfahren zum Betreiben einer derartigen Anlage Expired - Lifetime EP0412474B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3926191 1989-08-08
DE3926191A DE3926191A1 (de) 1989-08-08 1989-08-08 Verfahren zum betreiben einer kaelteanlage

Publications (3)

Publication Number Publication Date
EP0412474A2 EP0412474A2 (de) 1991-02-13
EP0412474A3 EP0412474A3 (en) 1991-07-03
EP0412474B1 true EP0412474B1 (de) 1994-01-19

Family

ID=6386729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90115029A Expired - Lifetime EP0412474B1 (de) 1989-08-08 1990-08-04 Kälteanlage sowie Verfahren zum Betreiben einer derartigen Anlage

Country Status (2)

Country Link
EP (1) EP0412474B1 (de)
DE (2) DE3926191A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369597A (en) * 1992-12-21 1994-11-29 Bujak, Jr.; Walter E. System for controlling heating or cooling capacity in heating or air conditioning systems
FR2783309B1 (fr) * 1998-09-16 2000-10-13 Mc International Procede de regulation du taux de compression d'un fluide frigorigene par augmentation de la pression d'evaporation et installation frigorifique
DE10011110B4 (de) * 2000-03-09 2004-08-26 Danfoss A/S Verfahren zum Entdecken von Fehlern in einer Kühlanlage
US7127901B2 (en) 2001-07-20 2006-10-31 Brooks Automation, Inc. Helium management control system
DE60232588D1 (de) * 2002-09-13 2009-07-23 Whirlpool Co Verfahren zum Steuern eines Kühlschrankes mit mehreren Kühlfächern und ein solches Verfahren verwendender Kühlschrank
US7231773B2 (en) * 2004-04-12 2007-06-19 York International Corporation Startup control system and method for a multiple compressor chiller system
US7207183B2 (en) 2004-04-12 2007-04-24 York International Corp. System and method for capacity control in a multiple compressor chiller system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274336A (en) * 1936-04-18 1942-02-24 Westinghouse Electric & Mfg Co Control system for refrigerating apparatus
US3948060A (en) * 1972-05-24 1976-04-06 Andre Jean Gaspard Air conditioning system particularly for producing refrigerated air
US4084388A (en) * 1976-11-08 1978-04-18 Honeywell Inc. Refrigeration control system for optimum demand operation
JPS56119474A (en) * 1980-02-25 1981-09-19 Nippon Denso Co Device for responding to refrigerang amount for refrigerant circulating apparatus
US4384462A (en) * 1980-11-20 1983-05-24 Friedrich Air Conditioning & Refrigeration Co. Multiple compressor refrigeration system and controller thereof
US4487028A (en) * 1983-09-22 1984-12-11 The Trane Company Control for a variable capacity temperature conditioning system

Also Published As

Publication number Publication date
DE3926191A1 (de) 1991-02-14
EP0412474A3 (en) 1991-07-03
EP0412474A2 (de) 1991-02-13
DE59004297D1 (de) 1994-03-03

Similar Documents

Publication Publication Date Title
EP0410330B1 (de) Verfahren und Vorrichtung zum Betrieb einer Kälteanlage
DE69630849T2 (de) Steuerung für eine gewerbekühlanlage
DE69727164T2 (de) Verteiltes System für eine Klimaanlage
DE602004001659T2 (de) Klimaanlage
DE19828061C1 (de) Verfahren zur Regelung der Temperatur eines Kühlmöbels und Temperaturregelvorrichtung für ein Kühlmöbel
DE4213011A1 (de) Steuerung einer spareinrichtung mit variabler leistung
DE10057219A1 (de) Klimaanlage für mehrere Räume
EP0419857A2 (de) Verfahren zur Überwachung einer Kälteanlage
EP0412474B1 (de) Kälteanlage sowie Verfahren zum Betreiben einer derartigen Anlage
DE112013001841T5 (de) Wärmequellensystem, Steuervorrichtung dafür, und Steuerverfahren dafür
DE3340736C2 (de)
DE2536398C3 (de) Enteisungssteueranordnung für eine Kühlanlage mit mehreren Verdampfern
DE112017007372B4 (de) Kältekreislaufsystem und verfahren zum anpassen des datenübertragungsverkehrs
EP0325163A1 (de) Verfahren zum Betreiben einer Kälteanlage und Kälteanlage zur Durchführung des Verfahrens
EP3374712B1 (de) Vorrichtung und verfahren zur multifunktionsvernetzung
DE112018007982T5 (de) Klimatisierungssystem
DE102019119751B3 (de) Verfahren zum Betreiben eines Kältekreislaufs eines Kraftfahrzeugs und Kältekreislauf
DE19620105A1 (de) Verfahren zum Betrieb einer Kälteanlage
EP2841857B1 (de) Einkreis-kältegerät
EP1419351B1 (de) Kältegerät und betriebsverfahren für ein kältegerät
EP2335128B1 (de) Kühl- und/oder gefriergerät sowie verfahren zur regelung eines solchen kühl- und/oder gefriergerätes
DE19854060B4 (de) Verfahren zur Bestimmung einer Kältemittelunterfüllung in einer Klimaanlage eines Kraftfahrzeugs
DE10011110B4 (de) Verfahren zum Entdecken von Fehlern in einer Kühlanlage
EP1549517B1 (de) Verfahren zur regelung einer klimaanlage
EP1955880B1 (de) Kältemittelkreislauf für eine Fahrzeugklimaanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19910713

17Q First examination report despatched

Effective date: 19920114

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940119

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940118

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59004297

Country of ref document: DE

Date of ref document: 19940303

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90115029.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980727

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980806

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980814

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980818

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980824

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

EUG Se: european patent has lapsed

Ref document number: 90115029.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050804