EP0412400A1 - Kollisionsschutzeinrichtung für Fördergeräte - Google Patents
Kollisionsschutzeinrichtung für Fördergeräte Download PDFInfo
- Publication number
- EP0412400A1 EP0412400A1 EP90114613A EP90114613A EP0412400A1 EP 0412400 A1 EP0412400 A1 EP 0412400A1 EP 90114613 A EP90114613 A EP 90114613A EP 90114613 A EP90114613 A EP 90114613A EP 0412400 A1 EP0412400 A1 EP 0412400A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- protection device
- collision
- collision protection
- objects
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/18—Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/18—Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
- E02F3/22—Component parts
- E02F3/26—Safety or control devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/24—Safety devices, e.g. for preventing overload
Definitions
- the invention relates to a collision protection device for excavators, open-pit conveyors or the like, which have cantilevers which are protected by sensors against a collision with the material or with other objects.
- collision protection devices are required in order to avoid high-cost damage to the devices and loss of production.
- sensors in rod or wire form are attached to the devices or are stretched between devices and their brackets.
- Suspended collision protection sensors tensioned by weights are also known.
- the known devices have the disadvantage that they only respond to contact with obstacles and do not recognize the position and location of the touched obstacles. Furthermore, they work sluggishly and are prone to failure.
- contact-free object detection should be possible over longer distances.
- the range of motion of the conveying device can then be better utilized and the security against collisions can be increased taking into account the braking distance.
- the sensors are designed as light beams which are generated in a device and detect the collision objects via reflection, the position of the detected objects in relation to the device being determined and evaluated by a computer.
- the collision safety can also be considerably improved even in the case of open-cast conveyor devices.
- a display with the help of a computer evaluation also offers the possibility of monitoring the working area of a conveyor device in a way never before achieved. Monitoring is possible at much greater distances than before.
- a general or a special collision protection e.g. on embankment edges.
- the attachment of the sensors can be varied depending on the task to be solved.
- the light beams consist of laser light, in particular of pulsed IR laser light (wavelength e.g. approx. 900 nanometers).
- Laser light especially pulsed laser light, has a high energy density and is relatively insensitive to environmental influences. The reflection obtained is high, so that such a device can be operated particularly safely.
- considerable distances can be bridged.
- Stroboscopic flashes can also be used to monitor small distances. Both options allow scanning.
- the scanning is carried out by line scanning in the direction of movement of the conveying device or its extension arm, it being advantageously advantageously possible to monitor a disk-shaped or disk-segment-shaped area against collisions.
- An enlargement of the monitoring area is grid-like due to the radiation of the light rays possible over a predetermined solid angle, in particular line by line as in a television camera or through conical or spherical radiation areas. For this purpose, swiveling movements that can only be achieved by simple optical devices are necessary.
- the occupational safety of the collision protection device according to the invention is increased if the light beam is connected to an evaluation device and a computer in which a free space calculation is carried out and in particular if this free space is displayed on a screen.
- the changes in the open space can also be visually recorded and monitored.
- a security room can also be inserted in the display, the reaching of which is indicated optically or acoustically.
- This safety area can be determined by a distance-to-go calculation in relation to the collision objects, so that braking and stopping of the moving parts of the conveying device in front of an obstacle is always ensured.
- the detection of the safety area increases the collision safety considerably with the help of the collision protection device and, in the past, with the mechanically working devices, was difficult to implement.
- the collision protection device is designed to measure from time to time on control markings. In this way, a permanent functional check can be carried out, but it is also possible to position the device or the moving parts of the conveyor in the room.
- the control marks can be continuous, e.g. for rail-bound conveyors, but also gradually, relocated and realigned. In this way, progress of the control markings with work progress is guaranteed.
- the computer of the control device stores contours of collision objects which are compared with the contours of the detected objects.
- the collision protection can advantageously be expanded to include general information about the shape of the objects, for example embankments, located in the area of the collision protection device.
- a statement about the correct approach to objects that limit the work area, for example, is possible. Information of this type is of considerable interest for the control of the conveyor and its individual parts.
- 1 denotes the schematically indicated conveying device, which in the exemplary embodiment represents a bucket wheel excavator.
- the device 2 of the collision protection device is arranged on the conveyor device 1 and can be pivoted independently of the conveyor device 1.
- the pivoting is advantageously carried out according to a predetermined program, which is based on the intended working area of the conveyor 1.
- the position of the device 2 is advantageously chosen so that the working area of the conveyor 1 can be scanned as undisturbed as possible by the conveyor 1.
- the conveyor 1, in the example shown here a bucket wheel excavator, is arranged on a chassis 3 which can be moved via the drives 4.
- the paddle wheel 5 works on a conveyor belt 6, which delivers the conveyed material to a further belt 8.
- an apron 7 is arranged in the area of the excavator, which derives falling material.
- the excavator stands on the ground 9, above which there is material 10 to be removed in the example.
- the material 10 to be removed is delimited at the top by a cover layer 11, on which collision objects (12) can also be located. In this case, for which mechanical sensors do not offer a solution, the highest possible location of the device 2 is indicated.
- Light rays 14 emanate from the device 2 and hit the material to be mined and the collision objects 12 at points 13.
- the collision objects are diverse in nature, they can be boulders, sunken embankment parts, the edge of a mining contour, as well as broken down machines of all kinds or even parts of other conveying devices. In all cases, for timely braking and stopping of the movements of the conveyor 1 and its individual parts, e.g. 5 or 6, care should be taken.
- FIG. 2 shows an attachment of light-beam generating devices, such as are known in principle, for example from “Lasertechnik: e.Einf.”, Wegig-Verlag, Heidelberg, 1982, p. 368 ff., To both sides of a paddle wheel 23 its axis 24 stored in the boom 20 approximately in the plane in which the devices 15 and 16 are located. Similar to that shown in FIG. 1, these continuously emit beams, preferably light beams, in particular pulsed laser beams, which continuously scan along the scan lines 18 and 19 one level in front of and one behind the paddle wheel 23 and the dismantling front 21 and the details on the surface , such as the boulder 22.
- these continuously emit beams preferably light beams, in particular pulsed laser beams, which continuously scan along the scan lines 18 and 19 one level in front of and one behind the paddle wheel 23 and the dismantling front 21 and the details on the surface , such as the boulder 22.
- the pulsed laser beams have a pulse frequency in the kilohertz range. So is a perfect off evaluation of the duration of the impulses possible. When evaluating a large number of impulses statistically, the measuring accuracy of a few millimeters is obtained with commercially available electronic components.
- a laser scanner is arranged both in the working direction in front of the paddle wheel 23 and behind it. In this way, collision protection can be achieved in both directions, and data relating to the conveying process can be continuously determined, which can serve to regulate the mining process.
- 25 denotes the light rays, if advantageous, emitted in all directions within a hemisphere, which e.g. are generated in a laser scanner 28.
- the values from the object detection by the light beams 25 in the collision protection device are first fed to an evaluation device 26, which sends them to a computer 27.
- Control signals 29 for braking or stopping the conveyor device or its individual parts are emitted by the computer 27, which preferably has a monitor 30. The further control of the movements is now carried out visually by hand.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Component Parts Of Construction Machinery (AREA)
- Control Of Conveyors (AREA)
- Control And Safety Of Cranes (AREA)
- Attitude Control For Articles On Conveyors (AREA)
- Special Conveying (AREA)
Abstract
Description
- Die Erfindung betrifft eine Kollisionsschutzeinrichtung für Bagger, Tagebau-Fördergeräte o. dgl., die Ausleger aufweisen, welche durch Sensoren vor einer Kollision mit dem Material oder mit anderen Objekten geschützt sind.
- Im gesamten Gebiet des "material-handling", insbesondere aber in Abbaubetrieben für Kohle, Erze etc. im Tagebau, also für Bagger, Schüttgutaufnehmer, Schüttgutabsetzer oder dergleichen, werden Kollisionsschutzeinrichtungen benötigt, um mit hohen Kosten verbundene Beschädigungen der Geräte und Produktionsausfälle zu vermeiden. Es ist bekannt, hierfür als Sensoren Fühler in Stab- oder Drahtform zu verwenden, die an den Geräten angebracht sind oder zwischen Geräten und ihren Auslegern aufgespannt werden. Auch herabhängende, durch Gewichte gespannte Kollisionsschutz-Sensoren sind bekannt. Die bekannten Einrichtungen haben den Nachteil, daß sie nur auf eine Berührung mit Hindernissen ansprechen und die Position und Lage der berührten Hindernisse nicht erkennen. Desweiteren arbeiten sie träge und sind störungsanfällig.
- Es ist Aufgabe der Erfindung, eine Kollisionsschutzeinrichtung für Bagger, Fördergeräte, Schüttgutaufnehmer-Schüttgutabsetzer oder dergleichen anzugeben, mit der die vorstehenden Nachteile vermieden werden. Insbesondere soll eine berührungsfreie Objekterfassung auf größere Entfernungen möglich sein. Damit kann dann der Bewegungsbereich des Fördergerätes besser ausgenutzt und die Sicherheit gegen Kollisionen unter Berücksichtigung des Bremsweges erhöht werden.
- Die Aufgabe wird dadurch gelöste daß die Sensoren als Lichtstrahlen ausgebildet sind, die in einem Gerät erzeugt werden und die Kollisionsobjekte über Reflektion erfassen, wobei die Position der erfaßten Objekte in bezug auf das Gerät durch einen Rechner ermittelt und ausgewertet wird. Mit Hilfe der erfindungsgemäßen Erfassung von Kollisionsmöglichkeiten aller Art durch einen Lichtstrahl kann die Kollisionssicherheit auch bei Tagebau-Fördergeräten erheblich verbessert werden. Durch eine Anzeige mit Hilfe einer Rechnerauswertung ergibt sich darüber hinaus die Möglichkeit, den Arbeitsbereich eines Fördergerätes in bisher unerreichter Weise zu überwachen. Die Überwachung ist dabei auf wesentlich grössere Entfernungen als bisher möglich. Je nach Anbringungsart der Kollisionsschutzeinrichtung am Fördergerät oder an seinen Auslegern kann dabei ein allgemeiner oder ein spezieller Kollisionsschutz, z.B. an Böschungskanten, erreicht werden. Die Anbringung der Sensoren kann dabei je nach der zu lösenden Aufgabe variiert werden.
- In Ausgestaltung der Erfindung ist es vorteilhaft, wenn die Lichtstrahlen aus Laserlicht, insbesondere aus gepulstem IR-Laserlicht (Wellenlänge z.B. ca. 900 Nanometer), bestehen. Laserlicht, insbesondere gepulstes Laserlicht hat eine hohe Energiedichte und ist gegen Umwelteinflüsse relativ unempfindlich. Die erhaltene Reflektion ist hoch, so daß eine solche Einrichtung besonders sicher betrieben werden kann. Je nach Wellenlänge des verwendeten Laserlichtes können erhebliche Entfernungen überbrückt werden. Für die Überwachung kleiner Entfernungen kann auch mit Stroboskop-Lichtblitzen gearbeitet werden. Beide Möglichkeiten erlauben ein Scannen.
- Das Scannen erfolgt im einfachsten Fall durch eine Linienabtastung in Bewegungsrichtung des Fördergerätes oder seiner Ausleger, wobei vorteilhaft einfach ein scheibenförmiger oder scheibensegmentförmiger Bereich gegen Kollisionen überwacht werden kann. Eine Vergrößerung des Überwachungsbereiches ist dabei durch eine Abstrahlung der Lichtstrahlen rasterartig über einen vorgegebenen Raumwinkel, insbesondere zeilenweise wie bei einer Fernsehkamera oder durch kegel- oder kugelförmige Abstrahlbereiche möglich. Hierfür sind lediglich durch einfache optische Einrichtungen erreichbare Schwenkbewegungen notwendig.
- Die Arbeitssicherheit der erfindungsgemäßen Kollisionsschutzeinrichtung wird erhöht, wenn der Lichtstrahl mit einem Auswertegerät und einem Rechner verbunden ist, in dem eine Freiraumberechnung durchgeführt wird und insbesondere, wenn dieser Freiraum auf einem Bildschirm dargestellt wird. So lassen sich die Veränderungen des Freiraumes auch visuell erfassen und überwachen. In die Darstellung kann dabei auch noch ein Sicherheitsraum eingefügt werden, dessen Erreichen optisch oder akustisch angezeigt wird. Dieser Sicherheitsbereich kann durch eine Restwegberechnung in bezug auf die Kollisionsobjekte ermittelt werden, so daß stets für eine Abbremsung und einen Stopp der bewegten Teile des Fördergerätes vor einem Hindernis gesorgt wird. Die Erkennung des Sicherheitsbereiches erhöht die Kollisionssicherheit mit Hilfe der Kollisionsschutzeinrichtung erheblich und in bisher, mit den mechanisch arbeitenden Einrichtungen, nur schwer realisierbarer Weise.
- Zur weiteren Erhöhung der Sicherheit ist vorgesehen, daß die Kollisionsschutzeinrichtung von Zeit zu Zeit auf Kontrollmarkierungen messend ausgebildet ist. Hierdurch kann zum einen eine beständige Funktionskontrolle durchgeführt werden, desweiteren ist aber auch noch eine Positionierung des Gerätes oder der bewegten Teile des Fördergerätes im Raum möglich. Die Kontrollmarkierungen können fortlaufend, z.B. bei schienengebundenen Fördergeräten, aber auch schrittweise, versetzt und neu ausgerichtet werden. So ist ein Fortschritt der Kontrollmarkierungen mit dem Arbeitsfortschritt gewährleistet.
- Von besonderem Vorteil ist es, wenn in dem Rechner der Kontrolleinrichtung Konturen von Kollisionsobjekten gespeichert sind, die mit den Konturen der erfaßten Objekte verglichen werden. Hierdurch kann vorteilhaft der Kollisionsschutz erweitert werden auf eine allgemeine Information über die Gestalt der im Bereich der Kollisionsschutzeinrichtung liegenden Objekte, z.B. Böschungen. Desweiteren ist eine Aussage über die korrekte Annäherung an Objekte, die z.B. den Arbeitsbereich begrenzen, möglich. Informationen dieser Art sind für die Steuerung des Fördergerätes und seiner Einzelteile von erheblichen Interesse.
- Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispieles anhand der Zeichnung und in Verbindung mit den Unteransprüchen. Es zeigen:
- FIG 1 die Erfindung in Prinzipdarstellung mit einer Anbringung der Kollisionsschutzeinrichtung am Pylon eines Schaufelradbaggers von der Seite,
- FIG 2 eine Anordnung der Kollisionsschutzeinrichtung am Schaufelradausleger von oben und
- FIG 3 ein Blockschaltbild der Einrichtung mit ihrem Rechner in vereinfachter Form.
- In FIG 1 ist mit 1 das schematisch angedeutete Fördergerät bezeichnet, das in dem Ausführungsbeispiel einen Schaufelradbagger darstellt. Auf dem Fördergerät 1 ist das Gerät 2 der Kollisionsschutzeinrichtung angeordnet, das gegenüber dem Fördergerät 1 unabhängig verschwenkbar ist. Die Verschwenkung erfolgt vorteilhaft nach einem vorgegebenen Programm, das sich an dem vorgesehenen Arbeitsbereich des Fördergerätes 1 orientiert. Die Position des Gerätes 2 ist vorteilhaft so gewählt, daß ein von dem Fördergerät 1 möglichst ungestörtes Abtasten des Arbeitsbereiches des Fördergerätes 1 möglich ist.
- Das Fördergerät 1, in dem hier dargestellten Beispiel ein Schaufelradbagger, ist auf einem Fahrgestell 3 angeordnet, das über die Laufwerke 4 verfahrbar ist. Das Schaufelrad 5 arbeitet auf ein Förderband 6, das das geförderte Material auf ein weiterführendes Band 8 abgibt. Unter dem Förderband 6 ist im Bereich des Baggers eine Schürze 7 angeordnet, die herabfallendes Material ableitet. Der Bagger steht auf dem Grund 9, über dem sich in dem Beispiel abzutragendes Material 10 befindet. Oben wird das abzutragende Material 10 durch eine Deckschicht 11 begrenzt, auf der sich auch Kollisionsobjekte (12) befinden können. In diesem Fall, für den mechanische Sensoren keine Lösungsmöglichkeit bieten, ist ein möglichst hoher Standort des Gerätes 2 angezeigt.
- Von dem Gerät 2 gehen Lichtstrahlen 14 aus, die in den Punkten 13 auf das abzubauende Material und auf Kollisionsobjekte 12 treffen. Die Kollisionsobjekte sind vielfältiger Natur, es kann sich sowohl um Felsbrocken, eingefallene Böschungsteile, die Kante einer Abbaukontur als auch um liegengebliebene Maschinen aller Art oder sogar um Teile anderer Fördervorrichtungen handeln. In allen Fällen muß für ein rechtzeitiges Bremsen und Abstoppen der Bewegungen der Fördervorrichtung 1 und ihrer einzelnen Teile, z.B. 5 oder 6, Sorge getragen werden.
- Eine Anbringung von Lichtstrahlenerzeugungsgeräten, wie sie z.B. aus "Lasertechnik: e.Einf.", Hüthig-Verlag, Heidelberg, 1982, S. 368 ff. prinzipiell bekannt sind, zu beiden Seiten eines Schaufelrades 23 zeigt FIG 2. Das Schaufelrad 23 ist mit seiner Achse 24 im Ausleger 20 etwa in der Ebene gelagert, in der sich die Geräte 15 und 16 befinden. Diese senden, ähnlich wie in FIG 1 gezeigt, fortlaufend Strahlen, vorzugsweise Lichtstrahlen, insbesondere gepulste Laserstrahlen, aus, die entlang der Scanlinien 18 und 19 je eine Ebene vor und hinter dem Schaufelrad 23 fortlaufend abtasten und die Abbaufront 21 sowie die Einzelheiten auf der Oberfläche, wie den Felsbrocken 22, erfassen. Die gepulsten Laserstrahlen haben bei einer Pulsdauer von einigen Nanosekunden, vorteilhaft 1-2 Nanosekunden, eine Pulsfrequenz im Kilohertzbereich. So ist eine einwandfreie Aus wertung der Laufdauer der Impulse möglich. Bei statistischer Auswertung einer großen Impulszahl ergibt sich mit im Handel befindlichen Elektronikbausteinen eine Meßgenauigkeit von einigen Millimetern.
- Es besonders vorteilhaft, wenn sowohl in Arbeitsrichtung vor dem Schaufelrad 23 ein Laserscanner angeordnet ist als auch dahinter. Hierdurch kann sowohl ein Kollisionsschutz in beiden Richtungen erreicht werden, als auch mit dem Fördervorgang zusammenhängende Daten fortlaufend ermittelt werden, die der Regelung des Abbauvorganges dienen können.
- In FIG 3 bezeichnen 25 die, falls vorteilhaft, nach allen Richtungen innerhalb einer Halbkugel, abgestrahlten Lichtstrahlen, die z.B. in einem Laserscanner 28 erzeugt werden.
- Wie sich aus dem Blockschaltbild in FIG 3 ergibt, werden die Werte aus der Objekterfassung durch die Lichtstrahlen 25 in der Kollisionsschutzeinrichtung zunächst einem Auswertegerät 26 zugeführt, das diese einem Rechner 27 aufgibt. Dieser ermittelt den Abstand und die Winkellage des Objektes und errechnet den noch verbliebenen Freiraum sowie bei einer weiteren Annäherung des Fördergerätes oder eines seiner Teile an das Kollisionsobjekt den Restweg, der zur sicheren Abbremsung und zum Stopp der bewegten Teile notwendig ist. Von dem Rechner 27, der vorzugsweise einen Monitor 30 aufweist, werden Steuersignale 29 zur Abbremsung oder zum Stopp des Fördergerätes oder seiner einzelnen Teile abgegeben. Die weitere Steuerung der Bewegungen erfolgt nunmehr visuell geführt von Hand.
- Die vorstehende Erfindung ist anhand von Beispielen beschrieben. Es versteht sich dabei für den Fachmann von selbst, daß naheliegende Ausgestaltungen, z.B. bezüglich des Lichtstrahles, seiner Erzeugung und Auswertung, mit von der Erfindung umfaßt werden. Gerade auf dem Gebiet der Laser- und Rechnertechnik ist zur Zeit ein schneller Fortschritt zu beobachten.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT90114613T ATE102276T1 (de) | 1989-08-08 | 1990-07-30 | Kollisionsschutzeinrichtung fuer foerdergeraete. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3926224 | 1989-08-08 | ||
DE3926224 | 1989-08-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0412400A1 true EP0412400A1 (de) | 1991-02-13 |
EP0412400B1 EP0412400B1 (de) | 1994-03-02 |
Family
ID=6386751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90114613A Expired - Lifetime EP0412400B1 (de) | 1989-08-08 | 1990-07-30 | Kollisionsschutzeinrichtung für Fördergeräte |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0412400B1 (de) |
AT (1) | ATE102276T1 (de) |
DE (1) | DE59004748D1 (de) |
ES (1) | ES2049876T3 (de) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4133392C1 (en) * | 1991-10-09 | 1992-12-24 | Rheinbraun Ag, 5000 Koeln, De | Determining progress of mining material spreader - receiving signals from at least four satellites at end of tipping arm and at vehicle base and calculating actual geodetic positions and height of material tip |
GB2316668A (en) * | 1996-08-24 | 1998-03-04 | Robert Wilson | Elevation limiting safety device for excavator arm |
GB2332415A (en) * | 1997-12-19 | 1999-06-23 | Univ Carnegie Mellon | Plural terrain scanning sensor arrangement for an earth working machine |
GB2342640A (en) * | 1998-10-09 | 2000-04-19 | Univ Carnegie Mellon | System for autonomous excavation and truck loading |
DE10021675A1 (de) * | 2000-05-05 | 2001-11-15 | Isam Inma Ges Fuer Angewandte | Steuer-System bzw. Verfahren für die automatische Steuerung eines verfahrbaren Schaufelradgerätes |
WO2010017823A1 (de) * | 2008-08-09 | 2010-02-18 | Eickhoff Bergbautechnik Gmbh | Verfahren und einrichtung zur überwachung einer schneidenden gewinnungsmaschine |
WO2010022113A1 (en) * | 2008-08-22 | 2010-02-25 | Caterpillar Trimble Control Technologies Llc | Three dimensional scanning arrangement including dynamic updating |
US8768579B2 (en) | 2011-04-14 | 2014-07-01 | Harnischfeger Technologies, Inc. | Swing automation for rope shovel |
US9206587B2 (en) | 2012-03-16 | 2015-12-08 | Harnischfeger Technologies, Inc. | Automated control of dipper swing for a shovel |
CN108130933A (zh) * | 2011-12-26 | 2018-06-08 | 住友重机械工业株式会社 | 挖土机、挖土机的图像显示方法以及装置 |
USRE48490E1 (en) | 2006-07-13 | 2021-03-30 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
US10983218B2 (en) | 2016-06-01 | 2021-04-20 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US11073617B2 (en) | 2016-03-19 | 2021-07-27 | Velodyne Lidar Usa, Inc. | Integrated illumination and detection for LIDAR based 3-D imaging |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
US11137480B2 (en) | 2016-01-31 | 2021-10-05 | Velodyne Lidar Usa, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US11703569B2 (en) | 2017-05-08 | 2023-07-18 | Velodyne Lidar Usa, Inc. | LIDAR data acquisition and control |
US11796648B2 (en) | 2018-09-18 | 2023-10-24 | Velodyne Lidar Usa, Inc. | Multi-channel lidar illumination driver |
US11808891B2 (en) | 2017-03-31 | 2023-11-07 | Velodyne Lidar Usa, Inc. | Integrated LIDAR illumination power control |
US11885958B2 (en) | 2019-01-07 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for a dual axis resonant scanning mirror |
US11933967B2 (en) | 2019-08-22 | 2024-03-19 | Red Creamery, LLC | Distally actuated scanning mirror |
US11939748B2 (en) | 2021-03-29 | 2024-03-26 | Joy Global Surface Mining Inc | Virtual track model for a mining machine |
US11987961B2 (en) | 2021-03-29 | 2024-05-21 | Joy Global Surface Mining Inc | Virtual field-based track protection for a mining machine |
US12061263B2 (en) | 2019-01-07 | 2024-08-13 | Velodyne Lidar Usa, Inc. | Systems and methods for a configurable sensor system |
US12123950B2 (en) | 2021-08-05 | 2024-10-22 | Red Creamery, LLC | Hybrid LADAR with co-planar scanning and imaging field-of-view |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9598836B2 (en) * | 2012-03-29 | 2017-03-21 | Harnischfeger Technologies, Inc. | Overhead view system for a shovel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2561152A (en) * | 1947-05-20 | 1951-07-17 | Albert R Stryker | Ditch digging machine with warning device |
DE2541405A1 (de) * | 1975-09-17 | 1977-03-31 | Born Ultraschall | Vorrichtung zur verhinderung der kollision von beweglichen teilen einer anlage |
EP0072567A2 (de) * | 1981-08-17 | 1983-02-23 | Fmc Corporation | Grenzflächenwarnungssystem |
EP0087198A2 (de) * | 1982-02-24 | 1983-08-31 | Philips Norden AB | Verfahren und Gerät zum Schutz gegen Zusammenstösse von zwei gegeneinander bewegbaren Körpern |
-
1990
- 1990-07-30 EP EP90114613A patent/EP0412400B1/de not_active Expired - Lifetime
- 1990-07-30 DE DE90114613T patent/DE59004748D1/de not_active Expired - Lifetime
- 1990-07-30 ES ES90114613T patent/ES2049876T3/es not_active Expired - Lifetime
- 1990-07-30 AT AT90114613T patent/ATE102276T1/de active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2561152A (en) * | 1947-05-20 | 1951-07-17 | Albert R Stryker | Ditch digging machine with warning device |
DE2541405A1 (de) * | 1975-09-17 | 1977-03-31 | Born Ultraschall | Vorrichtung zur verhinderung der kollision von beweglichen teilen einer anlage |
EP0072567A2 (de) * | 1981-08-17 | 1983-02-23 | Fmc Corporation | Grenzflächenwarnungssystem |
EP0087198A2 (de) * | 1982-02-24 | 1983-08-31 | Philips Norden AB | Verfahren und Gerät zum Schutz gegen Zusammenstösse von zwei gegeneinander bewegbaren Körpern |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4133392C1 (en) * | 1991-10-09 | 1992-12-24 | Rheinbraun Ag, 5000 Koeln, De | Determining progress of mining material spreader - receiving signals from at least four satellites at end of tipping arm and at vehicle base and calculating actual geodetic positions and height of material tip |
GB2316668B (en) * | 1996-08-24 | 2000-05-17 | Robert Wilson | Excavator arm having an elevation limiting system |
GB2316668A (en) * | 1996-08-24 | 1998-03-04 | Robert Wilson | Elevation limiting safety device for excavator arm |
GB2332415A (en) * | 1997-12-19 | 1999-06-23 | Univ Carnegie Mellon | Plural terrain scanning sensor arrangement for an earth working machine |
GB2332415B (en) * | 1997-12-19 | 2001-11-21 | Univ Carnegie Mellon | Sensor configuration for an earthmoving machine |
GB2342640B (en) * | 1998-10-09 | 2002-08-21 | Univ Carnegie Mellon | System for automatic excavation and truck loading |
GB2342640A (en) * | 1998-10-09 | 2000-04-19 | Univ Carnegie Mellon | System for autonomous excavation and truck loading |
DE10021675A1 (de) * | 2000-05-05 | 2001-11-15 | Isam Inma Ges Fuer Angewandte | Steuer-System bzw. Verfahren für die automatische Steuerung eines verfahrbaren Schaufelradgerätes |
US6970801B2 (en) | 2000-05-05 | 2005-11-29 | Isam Holding Gmbh | Control system or process for the automatic control of a moveable bucket wheel device |
USRE48688E1 (en) | 2006-07-13 | 2021-08-17 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48490E1 (en) | 2006-07-13 | 2021-03-30 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48666E1 (en) | 2006-07-13 | 2021-08-03 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48504E1 (en) | 2006-07-13 | 2021-04-06 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48503E1 (en) | 2006-07-13 | 2021-04-06 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48491E1 (en) | 2006-07-13 | 2021-03-30 | Velodyne Lidar Usa, Inc. | High definition lidar system |
EA016425B1 (ru) * | 2008-08-09 | 2012-04-30 | Айкхофф Бергбаутехник Гмбх | Способ контролирования пути движения режущей очистной машины |
WO2010017823A1 (de) * | 2008-08-09 | 2010-02-18 | Eickhoff Bergbautechnik Gmbh | Verfahren und einrichtung zur überwachung einer schneidenden gewinnungsmaschine |
US8474918B2 (en) | 2008-08-09 | 2013-07-02 | Eickhoff Bergbautechnik Gmbh | Method and device for monitoring a cutting extraction machine |
US8345926B2 (en) | 2008-08-22 | 2013-01-01 | Caterpillar Trimble Control Technologies Llc | Three dimensional scanning arrangement including dynamic updating |
DE112009002054B4 (de) * | 2008-08-22 | 2021-03-25 | Caterpillar Trimble Control Technologies Llc | Dreidimensionale Abtastvorrichtung, die eine dynamische Aktualisierung enthält |
CN102131986B (zh) * | 2008-08-22 | 2014-04-16 | 卡特彼勒天宝控制技术有限责任公司 | 包括动态更新的三维扫描装置 |
WO2010022113A1 (en) * | 2008-08-22 | 2010-02-25 | Caterpillar Trimble Control Technologies Llc | Three dimensional scanning arrangement including dynamic updating |
US12018463B2 (en) | 2011-04-14 | 2024-06-25 | Joy Global Surface Mining Inc | Swing automation for rope shovel |
US9567725B2 (en) | 2011-04-14 | 2017-02-14 | Harnischfeger Technologies, Inc. | Swing automation for rope shovel |
US9315967B2 (en) | 2011-04-14 | 2016-04-19 | Harnischfeger Technologies, Inc. | Swing automation for rope shovel |
US8768579B2 (en) | 2011-04-14 | 2014-07-01 | Harnischfeger Technologies, Inc. | Swing automation for rope shovel |
US10227754B2 (en) | 2011-04-14 | 2019-03-12 | Joy Global Surface Mining Inc | Swing automation for rope shovel |
US11028560B2 (en) | 2011-04-14 | 2021-06-08 | Joy Global Surface Mining Inc | Swing automation for rope shovel |
CN108130933A (zh) * | 2011-12-26 | 2018-06-08 | 住友重机械工业株式会社 | 挖土机、挖土机的图像显示方法以及装置 |
US10655301B2 (en) | 2012-03-16 | 2020-05-19 | Joy Global Surface Mining Inc | Automated control of dipper swing for a shovel |
US9206587B2 (en) | 2012-03-16 | 2015-12-08 | Harnischfeger Technologies, Inc. | Automated control of dipper swing for a shovel |
US9745721B2 (en) | 2012-03-16 | 2017-08-29 | Harnischfeger Technologies, Inc. | Automated control of dipper swing for a shovel |
US11822012B2 (en) | 2016-01-31 | 2023-11-21 | Velodyne Lidar Usa, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US11698443B2 (en) | 2016-01-31 | 2023-07-11 | Velodyne Lidar Usa, Inc. | Multiple pulse, lidar based 3-D imaging |
US11137480B2 (en) | 2016-01-31 | 2021-10-05 | Velodyne Lidar Usa, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US11550036B2 (en) | 2016-01-31 | 2023-01-10 | Velodyne Lidar Usa, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US11073617B2 (en) | 2016-03-19 | 2021-07-27 | Velodyne Lidar Usa, Inc. | Integrated illumination and detection for LIDAR based 3-D imaging |
US11808854B2 (en) | 2016-06-01 | 2023-11-07 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US10983218B2 (en) | 2016-06-01 | 2021-04-20 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US11561305B2 (en) | 2016-06-01 | 2023-01-24 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US11550056B2 (en) | 2016-06-01 | 2023-01-10 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning lidar |
US11874377B2 (en) | 2016-06-01 | 2024-01-16 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US11808891B2 (en) | 2017-03-31 | 2023-11-07 | Velodyne Lidar Usa, Inc. | Integrated LIDAR illumination power control |
US11703569B2 (en) | 2017-05-08 | 2023-07-18 | Velodyne Lidar Usa, Inc. | LIDAR data acquisition and control |
US11796648B2 (en) | 2018-09-18 | 2023-10-24 | Velodyne Lidar Usa, Inc. | Multi-channel lidar illumination driver |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
US11885958B2 (en) | 2019-01-07 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for a dual axis resonant scanning mirror |
US12061263B2 (en) | 2019-01-07 | 2024-08-13 | Velodyne Lidar Usa, Inc. | Systems and methods for a configurable sensor system |
US11933967B2 (en) | 2019-08-22 | 2024-03-19 | Red Creamery, LLC | Distally actuated scanning mirror |
US11939748B2 (en) | 2021-03-29 | 2024-03-26 | Joy Global Surface Mining Inc | Virtual track model for a mining machine |
US11987961B2 (en) | 2021-03-29 | 2024-05-21 | Joy Global Surface Mining Inc | Virtual field-based track protection for a mining machine |
US12123950B2 (en) | 2021-08-05 | 2024-10-22 | Red Creamery, LLC | Hybrid LADAR with co-planar scanning and imaging field-of-view |
Also Published As
Publication number | Publication date |
---|---|
ES2049876T3 (es) | 1994-05-01 |
DE59004748D1 (de) | 1994-04-07 |
ATE102276T1 (de) | 1994-03-15 |
EP0412400B1 (de) | 1994-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0412400A1 (de) | Kollisionsschutzeinrichtung für Fördergeräte | |
EP0342655B1 (de) | Containerkrananlage | |
EP0520247B1 (de) | Einen Sender, einen Empfänger und eine Schaltungsanordnung zur Signalauswertung aufweisende Überwachungseinrichtung | |
EP0412398B1 (de) | Fördervolumenmessung aus der Schnittkontur eines Schaufelradbaggers oder anderen Tagebaugeräts | |
WO2018099755A1 (de) | Verfahren und vorrichtung zum bestimmen einer position eines baggerarms mittels eines an einem bagger angeordneten lidar-systems | |
DE102016114995A1 (de) | Vorrichtung und Verfahren zur Aufnahme von Entfernungsbildern | |
DE3888732T2 (de) | Verfahren und Vorrichtung für laser-optische Navigation. | |
DE3909762C2 (de) | Müllsammelsystem mit einem Müllsammelfahrzeug und Müllbehältern | |
EP0412399B1 (de) | Fördermengenregelung eines Schaufelradbaggers oder Schaufelradaufnehmers im Tagebau | |
EP3727933B1 (de) | Schneefahrzeug | |
DE112020002774T5 (de) | System und verfahren zum verwalten von werkzeug auf einer baustelle | |
DE3423536A1 (de) | Lichtelektrische schutzzonenvorrichtung an einem fahrzeug | |
EP1709859A1 (de) | Verfahren und Vorrichtung zur Höhensteuerung | |
EP0412395B1 (de) | Führung eines Bagger-Schaufelrades zum Erzeugen vorherbestimmter Flächen | |
DE4133392C1 (en) | Determining progress of mining material spreader - receiving signals from at least four satellites at end of tipping arm and at vehicle base and calculating actual geodetic positions and height of material tip | |
DE69224671T2 (de) | Räumliche positionierungsvorrichtung | |
DE19953006B4 (de) | Vorrichtung zur Steuerung des Verkehrsflusses im Bereich einer Kreuzung, insbesondere zur Ampelsteuerung | |
EP0994987A1 (de) | Schaufelradgerät | |
EP2808224A1 (de) | Anlage zur Gefahrenbereichsüberwachung einer Eisenbahnmaschine | |
EP1643035B1 (de) | Verfahren zur Oberbausanierung von Schienenwegen unter Einsatz einer Planumsverbesserungsmaschine, Planumsverbesserungsmaschine | |
EP0985630A1 (de) | Verfahren und Vorrichtung zur Bestimmung von Ladeprofilen biem Be- und Entladen von Containern | |
DE102015217314A1 (de) | Überwachungssystem | |
EP0412402B1 (de) | Regelungsverfahren für Tagebau-Fördergeräte | |
EP3553229A1 (de) | Tiefbauvorrichtung und system zum überwachen einer baustelle | |
DE102019135897A1 (de) | System und verfahren zur markierung eines autonomen arbeitsbereichs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19901220 |
|
17Q | First examination report despatched |
Effective date: 19920508 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19940302 Ref country code: GB Effective date: 19940302 Ref country code: NL Effective date: 19940302 Ref country code: BE Effective date: 19940302 Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19940302 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19940302 |
|
REF | Corresponds to: |
Ref document number: 102276 Country of ref document: AT Date of ref document: 19940315 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59004748 Country of ref document: DE Date of ref document: 19940407 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2049876 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19940622 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19940706 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19940711 Year of fee payment: 5 |
|
EN | Fr: translation not filed | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3011834 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19940731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19940731 Ref country code: LI Effective date: 19940731 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19940302 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19950730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 19950731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960131 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MM2A Free format text: 3011834 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19991007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090918 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100730 |