EP0406107A1 - Procédé et dispositif de réception de fibres minérales - Google Patents

Procédé et dispositif de réception de fibres minérales Download PDF

Info

Publication number
EP0406107A1
EP0406107A1 EP90401839A EP90401839A EP0406107A1 EP 0406107 A1 EP0406107 A1 EP 0406107A1 EP 90401839 A EP90401839 A EP 90401839A EP 90401839 A EP90401839 A EP 90401839A EP 0406107 A1 EP0406107 A1 EP 0406107A1
Authority
EP
European Patent Office
Prior art keywords
fibers
fiberizing
reception
machines
drums
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90401839A
Other languages
German (de)
English (en)
Other versions
EP0406107B1 (fr
Inventor
Hans Furtak
Wilfrid Naber
Raymond Lejeune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Publication of EP0406107A1 publication Critical patent/EP0406107A1/fr
Application granted granted Critical
Publication of EP0406107B1 publication Critical patent/EP0406107B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • D04H1/4226Glass fibres characterised by the apparatus for manufacturing the glass fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7683Fibrous blankets or panels characterised by the orientation of the fibres

Definitions

  • the invention relates to techniques for receiving mineral fibers known as insulation, in particular glass fibers, with a view to the separation under the fiberizing machines, of fibers and ambient gases - in particular gases induced or having served for the drawing of these fibers - in order to make a mineral wool mattress.
  • a common type of receiving device called belt receiving is described for example in US-A-3,220,812 where it is proposed to receive fibers from a series of fiberizing machines on a single conveyor of the belt type without thin, gas permeable and under which is placed a vacuum chamber or better a plurality of independent vacuum chambers.
  • the fiber-drawing machines can be brought together to the limits of their respective dimensions, which allows relatively short lines; this point is not negligible if we know that some production lines can reach the number of 9 or more fiberizing machines, each fiberizing machine being of a diameter of the order of 600 mm for example.
  • the only lower limit to the grammage (or surface mass) of the felt produced is that dictated by the problems of mechanical strength, which therefore allows the manufacture of the lightest products likely to be obtained.
  • heavy products are understood to mean products whose grammage is for example greater than 2.5 kg / m2 in the case of glass wool products. whose micronaire is 3 per 5 g, with the exception of dense products obtained by molding and pressing which are not directly within the scope of the present invention.
  • This difficulty in obtaining is easily explained by the fact that the heavier the mattress that it is sought to produce, the greater the quantity of fibers which are deposited on the same surface of the endless belt and therefore the greater resistance to gas passage.
  • a greater depression must be exerted, which results in crushing of the felt by the pressure of the gases, especially sensitive crushing in the lower part of the felt which corresponds to the fibers harvested in the first place.
  • the mechanical performance of the product is less good.
  • the resulting deterioration in the quality of the product is very noticeable as soon as the vacuum must be raised beyond 8000 to 9000 Pa, while in certain installations a vacuum of more than 10 000 Pa is already necessary for mattresses whose grammage is 2500 g / m2.
  • this gas backflow increases the temperature in the fiber hood and therefore risk of pre-gelling of the binder, that is to say of a polymerization of the binder while the fibers are still in a unitary state, which removes almost all activity.
  • this backflow can cause the formation of wicks, that is to say dense sets of agglomerated fibers, which affect the homogeneity of the product, its appearance and lower its thermal resistance.
  • the real gain is very small because the increase in the dimensions of the hood causes an increase in the air induction and therefore in the quantity of air to be sucked.
  • a primitive of low grammage is prepared by means of a receiving device facing one or two fiberizing machines, consisting of a pair of drums rotating in reverse rotation, the perforated surface of which allows the suction of gases by suitable devices placed in the drums.
  • the primitive is formed between the drums and falls in a vertical plane before being taken up by the lapper, that is to say a pendulum device which deposits it in intertwined layers on a conveyor where the felt of the desired high grammage is obtained.
  • a lapper imposes a primitive of at least 100 g / m2 below which its mechanical resistance would be insufficient in particular to support the movements of the pendulum, and a sufficient number of superimposed layers - to have an optimization of the distribution with in every point of the felt the same number of layers.
  • the object of the invention is a new conception of the reception of units for the production of felts in mineral wool, in particular in glass wool, tending to widen the range of products capable of being produced by the same production line; this widening of the range extending to both low and heavy weights so as to increase the versatility of the production line, while preserving or even improving the quality of the products obtained.
  • the range of products produced goes, for example, from 300 g to 4000 g / m2 or more, possibly by combining a lapper.
  • the invention provides a reception method for the separation of fibers and gases produced by a plurality of fiberizing machines with a view to obtaining a mineral wool mattress, method according to which the fibers are collected by suction of the gases, each fiberizing machine i having its own collection zone Zi, the fibers collected in the various collection zones Zi being removed from the collection zone by one or more zones Zi, this reception process being characterized by the fact that the surfaces collection zones Zi are increasing in the direction of increasing the grammages on said conveyor belts.
  • one operates at a constant delivery rate.
  • discharge rate is meant the percentage of gas not sucked in at the reception. Preferably, this rate is zero, and this in accordance with claim 1 even for fiberizing machines downstream of the line.
  • the collection surfaces are preferably delimited on one side by the conveyor belts themselves, which therefore form receiving belts. We compensate for the increase in resistance to gas passage due to the removal of fibers from upstream fiberizing machines (always considering the line oriented in the direction of travel of the primitive).
  • the receptions according to the invention are receptions common to several fiberizing machines and preferably to 3 or more fiberizing machines. The number of receptions per production line therefore generally does not exceed two, which avoids the drawbacks of excessive modularization.
  • the increase in the collection surface in the areas of heavy weights makes it possible to maintain in them relatively low levels of depression, for example advantageously less than 4000 Pa, that is to say at a good level. lower than the level for which the first damage is observed for high quality fibers such as glass fibers whose micronaire is for example 3 per 5 g.
  • one chooses to operate with the same level of vacuum for all the collection surfaces.
  • we compensate completely from one collection zone to another the slightest permeability of the felt due to the thickness of felt already deposited from other fiberizing machines - and this without harming the aspiration, because as indicated in the preamble sucking only part of the gases would lead to a backflow of the fibers, especially with the formation of wicks and therefore obtaining a product of poorer quality.
  • the present invention relates more specifically to cases where the fall heights of the fibers differ according to their original fiberizing machines, that is to say all case where the conveyor belts have a trajectory which is not horizontal but is generally convex.
  • the surfaces of the collection zones Zi increase with the average distance that the fibers must travel to reach these collection zones Zi.
  • this variation of the angle of inclination is carried out continuously so as to avoid sharp angles which could adversely affect the final quality of the felt.
  • the receiving strip on which the fibers from the different fiberizing machines are deposited then follows a trajectory which at least in its terminal portion is that which is convex, for example elliptical, curved.
  • the fiberizing machines are divided into groups of for example 3 or 4 forming as many reception modules as groups: each module thus corresponds to a primitive and all the primitives formed are then collected before being driven in the form of '' a single felt in the binder polymerization oven.
  • each module thus corresponds to a primitive and all the primitives formed are then collected before being driven in the form of '' a single felt in the binder polymerization oven.
  • at most two reception modules are necessary even for large tonnage production lines.
  • There is thus a modularization of the reception but a modularization which is intended to be limited in much smaller proportions than according to the prior art.
  • the receiving modules can be arranged in series one after the other with a single glass feed channel for all fiberizing machines or in parallel with in this case as many molten glass feed channels as reception modules. Subsequently, the primitives are brought together by superposition in parallel layers or in intersecting layers, the choice between these two superposition modes being carried out in particular according to the densities desired for the final products.
  • each reception module not one but two converging receiving bands facing each other and symmetrical to one another, the fibers deposited on one or the other band being gathered in a single felt at the common end of the receiving strips.
  • the place of final formation of the felt is located at the point of convergence of the two receiving bands.
  • the power required to drive the receiving bands is a function of the mass of fibers deposited on each of them, it is preferable to distribute the number of fiberizing machines in equal parts for each receiving band, which simplifies synchronization. speeds of the two receiving bands, synchronization necessary to prevent the two primitives formed from sliding over each other. If the fiberizing machines are in odd number, the last fiberizing machine preferably has a collecting surface shared between two receiving bands, the symmetry of the torus coming from a fiberizing machine allowing a division into two equal parts if one chooses to mount the receiver bands in such a way that their plane of symmetry contains the axis of symmetry of the torus of the central machine.
  • the curve drawn by the trajectory of a receiving strip is preferably a circle, the circular trajectories are certainly not the optimal trajectories calculated on the assumption for example of an equal depression in all the collection zones, but are of a practical point of view much simpler to put in artwork.
  • the receiving bands are formed by the peripheral surface of one or two drums.
  • a more particularly preferred example is that of a receiving module with double drums per group of 3 fiberizing machines with the formation of a primitive between the two drums.
  • the production line comprises nx3 fiberizing machines, there are then n reception modules which form n primitives which are then gathered in a single mat before the polymerization of the resin intended to bind the fibers is caused.
  • the collection of primitives from the different modules can then be obtained as indicated above by superimposing them in parallel layers.
  • the assembly, for example on a horizontal conveyor, of the primitives produced in a vertical plane between the drums can be done almost immediately under the drums so that the "life" time of these primitives is very short and that one does not notice not on the finished products of delamination phenomenon.
  • the assembly can also be obtained by means of lappers.
  • the reception scheme thus defined - 3 fiberizing machines for two drums - is in fact very different from those known in the art - where there is either a collection surface distributed over two receiving bands (1 machine - 2 drums), or a conveyor belt serving as a collection surface specific to each machine (2 machines - 2 drums), and never conveyor belts common to several fiberizing machines.
  • the preferred solution according to the invention has numerous advantages.
  • each reception is normally supplied by 3 fiberizing machines, the minimum grammage which can be obtained with for example a line of 6 fiberizing machines is only 200 g / m2, it being understood that each reception must necessarily produce a primitive of at least 100 g / m2 for a question of mechanical resistance.
  • a type of 2 drums reception by fiberizing machine - or 2 drums for 2 fiberizing machines - is only capable of producing mineral wool mattresses whose grammage is respectively at least 600 or 300 g / m2. In fact, this lower limit of 200 g / m2 is lower than the lightness limit of the products sold.
  • drums constitute very large collecting surfaces capable of receiving high flow rates which correspond perfectly to the possibilities of fiberizing machines.
  • the authors of the present invention have thus found that it is perfectly possible to directly produce a primitive of high grammage, without systematic use of the layers, the known disadvantage of which is a relatively low speed which limits the total speed of the line. production.
  • Another particularly advantageous point of the invention is that the greater efficiency of the suction leads to greater cooling of the felt; however, the colder the felt, the less the risk that the binder will polymerize before passing through the polymerization oven, which leads to final products with much better mechanical strength, a greater proportion of the resin actually used to bind the fibers. while too hasty polymerization is carried out practically in pure loss, the thickness of the felt not yet being controlled at this stage of the process. This lower temperature also leads to less evaporation of the size, a greater amount of which is found in the finished product, which reduces the costs of cleaning up the fumes.
  • the device associated with each group of 3 fiberizing machines includes a hood isolating each reception in which are placed a pair of drums perforated over their entire peripheral surface and provided with devices centering and rotation drive and fixed interior suction boxes when the drums are rotating.
  • the suction surface corresponds to the peripheral surface of the drum placed inside the hood and opposite an interior suction box.
  • each drum is preferably obtained by means of pairs of rollers, for example shouldered, also serving for axial guidance, each pair consisting of an idler roller and a drive roller whose rotation is for example controlled by a motor mounted on its axis, the rollers preferably being provided with a coating giving a good coefficient of friction.
  • the drive by rollers cannot lead to a deterioration of the other reception organs and in particular of those serving to seal the reception chamber and moreover it leaves the internal space of the drum entirely free which is therefore totally available for mounting the suction box.
  • the hood is preferably in two parts.
  • the lower part - closest to the drums - is made up of cooled plates provided with recesses corresponding to the location of the drums.
  • the upper part is of the rotating bat-flank type associated with cleaning devices external to the hood, so that the fibers which stick to the lower flanks are definitively evacuated from the receiving hood.
  • Means such as flexible curtains are also provided, guaranteeing the seal between the hood and the drum on the one hand and, between the interior suction box and the drum on the other hand, the fiber itself sufficient to seal between the drums.
  • each drum with a compressed air blowing ramp, the blown jet being directed at the outlet of the drums so as to promote the take-off of the fibers and the formation of the primitive under the drums.
  • means are provided for modifying the length and the location relative to the fiberizing machines of the suction zone.
  • These means are for example devices making it possible to rotate the caissons interiors - in this case centered on the axis of rotation of the drums - so as to move the peripheral zone of the drum opposite an internal box.
  • suction boxes and the drums themselves are preferably provided with adequate cleaning and drying means, this in particular in order to avoid fouling by fine fibers.
  • FIG. 1 illustrates by a schematic diagram the reception method according to the invention, for a glass wool production line comprising 3 fiberizing machines 1, 2, 3 arranged in the same row.
  • These fibering machines 1, 2, 3 constituted for example by centrifuges rotating at high speed provided at their periphery with a large number of orifices through which the molten material - preferably glass - escapes in the form of filaments which are then drawn into fibers by a current concentric gas, parallel to the axis of the centrifuge, emitted at high temperature and speed by an annular burner.
  • fiberizing devices well known in the art can be used which all allow the formation of a core of fibers, centered on an axis, core formed by the drawing gases and especially the gases induced in very large quantities .
  • the reception of the fibers - intended to separate them from the gases - is obtained by means of an endless band 4 permeable to gases driven continuously.
  • a hood 5 laterally delimits the fiber collection zone.
  • the gas suction is obtained by independent vacuum chambers 5.
  • Each fiberizing machine 1 is associated here with a box 6.
  • the hood 5 is closed as tightly as possible and is therefore provided at the outlet of a steamroller 7 possibly ensuring a certain traction on the felt to help the 'extract from the hood.
  • each fiberizing machine "i" corresponds to a collection zone Zi, delimited from below by the endless band 4. These zones Zi are increasing with their index and are therefore all the larger as they are close to the exit.
  • the distance E between the machines is constant, there is therefore no increase in the induced air and therefore a lower risk of gas backflow and formation of wicks.
  • the trajectory represented in FIG. 1 is fictitious: in reality one operates with non-rectilinear but convex trajectories, for example elliptical, with as simplest embodiment, a circular trajectory associated with the use of drums.
  • the number of fiberizing machines for a reception is equal to 3 or 4, so that for a large production line, two reception modules will be used.
  • FIG. 2 An example of such a module is shown diagrammatically in FIG. 2 provided for collecting the fibers produced by 3 fiberizing machines. Under the fiberizing machines 8 are arranged two drums 10, 19 driven in reverse rotation and rotating towards each other. These drums 10, 19 are placed under a hood 11.
  • the hood 11 has a lower part 12, cooled by appropriate means, with recesses in the form of arcs of a circle for housing the drums.
  • the upper part 13 can also be composed of fixed, cooled plates or better still of rotating sidewalls - of the vertical endless band type - the rear (that is to say the part external to the receiving unit) is preferably provided with cleaning means.
  • the cooling means prevent a total blockage of reception from occurring by agglomerated fibers; the rotating bat-flanks improve the quality of the felt insofar as this prevents small tufts of fibers from forming - tufts which, without being able to cause the blocking of the installation, can still slightly harm the homogeneity felt, because when they finally peel off the wall they form in the felt areas with a higher content of binder which are identified by a darker shade giving the appearance of stains.
  • the tightness of the reception is critical and is preferably obtained by means of polyurethane mats.
  • the drums 10, 19 are placed in a pit under the fiber-drawing machines at a height calculated so that the minimum height of fiber fall is greater than 2500 mm in order to prevent the average speed of impact of the fibers on the drum calculated at the center of the torus is greater than 20 m / s.
  • this drop height does not exceed 5000 mm in order to avoid the formation of large tufts of fibers detrimental to the good quality of the insulating mat.
  • the drums 10, 19 have a peripheral surface that perforated gas permeable. They consist, for example, of two round end plates, rigid, onto which a perforated sheet is screwed, the diameter of the orifices being chosen as a function of the type of fibers produced. They are provided with centering and guiding devices, for example on rollers, their rotational drive being for example by chain or preferably by external rollers which guide the drum axially, these rollers being for example coated with polyurethane to ensure a good drum-roller friction.
  • these drums are mounted internal suction boxes 14, centered on the rotation shafts of the drums and fixed for example on the manifold of a valve provided for the revision of the drum.
  • the boxes 14 are delimited by side walls mounted for example along the radii of the drums, with an angle of for example 120 °, the boxes being able to be turned around the axis of the drums so as to modify the suction length and the location of the suction zone, in particular when the reception conditions must be modified by stopping the central fiberizing machine as explained below.
  • cleaning and drying elements are, for example, of the brush, concurrent nozzle or air ramp type for taking off the fine fibers.
  • washing assembly constituted by a nylon brush with long bristles placed inside the drum and driven in rotation by the latter and a small brush mounted outside the drum, these two brushes being optionally supplemented downstream (relative to the direction of rotation of the drum) by washing and drying nozzles preferably operating only intermittently and which cleans the surface of the drum of the binder film which is deposited at the long.
  • suction boxes are connected by pipes to one or more fans capable of creating the necessary vacuum, and here not shown.
  • the axis 15, 16 of a lateral fiberizing machine 8 is vertical to the drum 10 respectively 9 facing it, the axis 17 of the central fiberizing machine being him coincident with the axis of the median plane of the pair of drums.
  • This arrangement makes it possible to obtain the largest possible suction surface.
  • the diameter D of the drums must therefore be chosen equal to twice the distance E between two fiberizing machines or more precisely very slightly smaller than this in order to preserve a free space of for example 100 mm between the two rollers.
  • the fibers produced by the lateral fibering machines of a reception fall into the suction zones shown diagrammatically by double arrows L1, while the fibers produced by the central machine fall on one or other of the drums, in the L2 reception area.
  • This zone L2 is practically twice the length of zone L1. This compensates - and even very broadly - the resistance to the passage of smoke from the central machine created by the fibers from the side machines and already deposited on the surface of the drum when it reaches the L2 area.
  • the reception can operate with speed settings to compensate for the loss of grammage, when one of the side machines is stopped. If the stop concerns the central fiberizing machine, it is preferable to shift the suction zones to the sides so as to limit the increase in induced air generated by the central "vacuum” and above all to avoid the formation of wicks which wrap around themselves near the drums.
  • This fiberizing possibility constitutes a very great advantage of the reception modules according to the invention, because it takes into account the operating hazards of fiberizing machines.
  • a reception module conforming to the preferred embodiment of the invention enables products of higher quality to be obtained than the products capable of being obtained when two receiving drums are provided for two fiberizing machines.
  • This can be explained by the fact that the torus from a fiberizing machine is not perfectly homogeneous; an analysis of the gas velocity profile indeed shows that the speed is maximum around the axis of rotation of the fiberizing machine and decreases on the edges of the torus.
  • an air current tangential to the surface is generated at the periphery of the receiving surface; due to the higher suction on the side parts less loaded with fibers. This tangent current drives fibers which roll on themselves and form wicks.
  • FIG. 3 corresponds to a double online reception, that is to say that the 6 fiber-drawing machines are fed with molten glass by the same main channel, here with an assembly of the primitives by superposition in parallel layers.
  • each receiver Under the 6 fiber drawing machines 20 are arranged two receivers constituted by two pairs 22, 23 of two drums 21 moved in reverse rotation, each reception collecting the fibers produced by a group of 3 fiber drawing machines, the central fiber drawing machine of a given group being oriented along the median plane to the two drums of a reception.
  • Each pair of drums is isolated from the other pairs of drums by a hood, the receptions are therefore independent here.
  • Each receiving unit thus forms a basic module, reproduced as many times as necessary according to the production capacities of the line, the relative arrangement of the modules with respect to each other, however, having to take account of the means for supplying molten glass to the different fiberizing machines, that is to say the number of molten glass supply channels provided at the outlet of the melting furnace and the arrangement thereof in line as shown here, or in parallel as in FIG. 4.
  • the fibers collected by a given pair of drums form a primitive 24 respectively 25 which falls in a vertical plane and is then collected by a horizontal conveyor 26 of the endless non-perforated strip type located at the bottom of the pit on which are superimposed in layers 27, 28 the primitives 24, 25 from the different groups of 3 fiberizing machines. Finally, an inclined conveyor, not shown here, leads the felt formed outside the receiving pit.
  • the pitch has a slight tendency to lengthen, all the more so as the grammage is low.
  • the horizontal conveyor must therefore be driven at a speed very slightly higher than the peripheral speed of the drums; depending on the grammage, the theoretical difference to be respected is between 0 and 1%.
  • FIG. 4 corresponds to a double reception in parallel associated with an assembly of the primitives by superposition in interlaced layers.
  • reception modules 30, 31 associated with lappers 32, 33 Each module is thus associated with a pendulum movement member supplied by a conveyor belt 34, 35, so that the primitive undergoes 2 changes of direction consecutively at 90 °.
  • the pendulum member 32 respectively 33 is constituted by two continuous bands 36, 37 between which the primitives pass.
  • the pendulum member 32 is connected by a system of connecting rod-crank to a drive motor communicating to it a pendulum movement, so that the primitive is deposited on a conveyor 38 in the form of layers of intertwined felt, said conveyor 38 having a direction of travel perpendicular to the initial direction of the primitives .
  • the continuous strips can also play a role of stretching the felt, a role which for receptions not provided with pendular members can advantageously be fulfilled by stretching mats or the roller 7 visible in FIG. 1. The stretching allows '' avoid accumulation of felt in the hood.
  • the device of FIG. 4 allows the production of products whose grammage is for example greater than 10 kg per m2, while the device of FIG. 4 gives all satisfaction for the most common products whose grammage is for example close to 4000 g / m2, which is already considered for a glass wool insulation product as a heavy product.
  • the first test corresponds to a so-called strip fiber reception, which made it possible to define a reference base 100 for the total flow of smoke to be sucked in and the total power dissipated at the level of the installation.
  • this smoke flow of 100% corresponds to a smoke flow (drawing gas and induced gases) from 360,000 to 450,000 Nm3 / hour.
  • Tests 2 and 3 correspond to receptions with two drums for each fiberizing machine, these receptions being or not isolated from each other to form separate modules.
  • the maximum depression that the felt undergoes is much lower than that of the reference test, and much lower than the value for which the first damage can be observed.
  • the total power dissipated is also lower, but the gain is not directly comparable to that recorded at the level of depressions, this due to the greater pressure losses due to the multiplication of ancillary equipment such as pipes, washers, etc. ..
  • the first is a line to a traditional line, with a horizontal receiving band, but however meeting the criteria of claim 1, that is to say for which the collection areas are increasing in the direction of the increase in grammages, this growth being obtained by a progressive increase in the distances between the fiber-drawing machines; this line comprises two reception modules formed by converging receiving bands (tests 7 and 9) the second line conforms to the diagram in FIG. 3. (tests 8 and 10). Test No.
  • Drum diameter D 2575 2575 Minimum distance between 2 machines 1500 1300 1500 1300 Suction length (mm) L 2600 2653 2650 2653 Smoke flow% 100 79 100 78 Speed m / s 3.29 2.36 3.29 2.35 Maximum depression (Pa) 4890 1520 8140 2470 Total power 100% 52% 100% 45%
  • Tests 7 and 8 concerned the manufacture of a felt with a grammage equal to 2500 g / m2, tests 9 and 10 at a grammage of 4000 g / m2, with in all cases 2 x 3 centrifuges through which a flow rate of 20 tonnes per day of molten glass is passed.
  • a last advantageous aspect of the invention is that it leads to the formation of relatively cold felts, this because the primitives are cooled in the open air before being recovered by the horizontal conveyor and especially because the suction is just as effective in the area of heavy weights as in the area of low weights, which prevents the accumulation of hot gases.
  • the products obtained according to the invention typically have a temperature at the entrance to the oven lower from 20 to 50 ° C. than that of the products according to the art, the greatest differences being observed for the heaviest products. This results in less pre-polymerization of the binder which leads to significantly improved mechanical strengths.
  • a lower temperature - associated with a higher initial thickness of the fibers which are not packed by the suction in the reception - bring a greater stability of the production in particular a greater constancy of thickness of the products, this which makes it possible to reduce non-functional excess thicknesses which are simply intended to guarantee the customer a given nominal thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Fibers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

L'invention concerne la réception de fibres sous des machines de fibrage (1,2,3) en vue de l'obtention d'un matelas en laine minérale. Elle propose d'affecter à chaque machine de fibrage sa propre zone de collecte (Z1,Z2,Z3), les surfaces des zones de collecte étant croissantes dans le sens de l'augmentation des grammages. L'invention propose également un dispositif caractérisé par la présence de deux tambours de réception pour trois machines de fibrage.

Description

  • L'invention a trait aux techniques de réception de fibres minérales dites d'isolation, notamment de fibres de verre, en vue de la séparation sous les machines de fi­brage, des fibres et des gaz ambiants - notamment des gaz induits ou ayant servi à l'étirage de ces fibres - afin de fabriquer un matelas de laine minérale.
  • Une étape importante de la fabrication des produits à base de fibres minérales telles des fibres de verre est celle de leur collecte sous les machines de fibrage. Cette opération a notamment pour but la séparation des fibres et des grandes quantités de gaz générées par le fibrage par les brûleurs et surtout par induction d'air. Cette sépara­tion s'opère de façon bien connue par aspiration au travers d'un dispositif de réception perméable aux gaz et imper­méable aux fibres.
  • Un type de dispositif de réception courant dit récep­tion à bandes est décrit par exemple dans le brevet US-A-3 220 812 où il est proposé de réceptionner les fibres pro­venant d'une série de machines de fibrage sur un convoyeur unique du type bande sans fin, perméable aux gaz et sous lequel est placé un caisson sous dépression ou mieux une pluralité de caissons sous dépression indépendants. Dans ce type de réception, les machines de fibrage peuvent être rapprochées jusqu'aux limites de leurs encombrements res­pectifs ce qui permet des lignes relativement courtes ; ce point n'étant pas négligeable si l'on sait que certaines lignes de production peuvent atteindre le nombre de 9 ma­chines de fibrage ou plus, chaque machine de fibrage étant d'un diamètre de l'ordre de 600 mm par exemple. De plus, la seule limite inférieure au grammage (ou masse surfacique) du feutre produit est celle dictée par les problèmes de tenue mécanique, ce qui autorise donc la fabrication des produits les plus légers susceptibles d'être obtenus.
  • Toutefois, l'obtention des produits lourds pose de nombreux problèmes - dans la suite de ce mémoire, on entend par produits lourds des produits dont le grammage est par exemple supérieur à 2,5 kg/m² s'agissant de produits en laine de verre dont le micronaire est de 3 pour 5 g, à l'exception des produits denses obtenus par moulage et pressage qui n'entrent pas directement dans le cadre de la présente invention. Cette difficulté d'obtention s'explique aisément par le fait que plus le matelas que l'on cherche à produire est lourd, plus la quantité de fibres qui se dé­posent sur une même surface de la bande sans fin est grande et donc plus grande est la résistance au passage des gaz. Pour compenser cette moindre perméabilité, on doit exercer une dépression plus grande qui a pour conséquence un écra­sement du feutre par la pression des gaz, écrasement sur­tout sensible dans la partie inférieure du feutre qui cor­respond aux fibres récoltées en premier lieu. De ce fait, les performances mécaniques du produit surtout au niveau des reprises d'épaisseur après compression sont moins bonnes. La dégradation de la qualité du produit qui en ré­sulte est bien sensible dès que la dépression doit être portée au-delà de 8000 à 9000 Pa, alors que dans certaines installations une dépression de plus de 10 000 Pa est déjà nécessaire pour des matelas dont le grammage est de 2500 g/m².
  • Pour remédier à cet inconvénient, on peut certes n'aspirer que partiellement les gaz afin de limiter la dé­pression à une valeur n'endommageant pas le feutre, mais il se produit alors un phénomène de refoulement des fibres en direction des machines de fibrage. Outre qu'il nuit à un bon étirage, ce refoulement des gaz entraîne une augmenta­tion de la température dans la hotte de fibrage et donc un risque de pré-gélification du liant, c'est-à-dire d'une polymérisation du liant alors que les fibres sont encore à l'état unitaire, ce qui lui ôte presque toute activité. De plus, ce refoulement peut provoquer la formation de mèches, c'est-à-dire d'ensembles denses de fibres agglomérées, qui nuisent à l'homogénéité du produit, à son aspect et abaissent sa résistance thermique.
  • On peut également chercher à réduire la vitesse de passage des gaz au travers des feutres en écartant les ma­chines de fibrage les unes des autres. Toutefois le gain réel est très faible car l'augmentation des dimensions de la hotte entraîne une augmentation de l'induction d'air et donc de la quantité d'air à aspirer.
  • Dans une variante connue de la demande de brevet EP-A-102 385, il a été proposé de séparer la réception en deux parties recevant chacune les fibres produites par une machine de fibrage sur deux. La réception comporte alors deux convoyeurs orientés l'un vers l'autre, de façon à rassembler les deux demi-feutres formés. Ce type de récep­tion présente l'avantage de fournir des produits d'un bel aspect extérieur dû à la présence sur les deux faces de croûtes surencollées qui améliorent la tenue mécanique du produit. Toutefois, l'encombrement de la réception est plus grand que dans une réception traditionnelle et surtout il peut se produire pour les forts grammages un début de polymérisation du liant avant la réunion des demi-feutres qui amorce un délaminage du produit.
  • Cette notion d'une subdivision des réceptions a été développée par ailleurs dans la publication US-A-4 120 676 qui propose d'associer à chaque machine de fibrage une unité de réception, la ligne de production étant ainsi conçue comme une juxtaposition de modules de base pro­duisant chacun un feutre relativement mince, les différents feutres minces étant ultérieurement empilés pour ne plus former qu'un feutre de grande épaisseur.
  • Cette conception modulaire permet de maintenir cons­tantes les conditions de fibrage quelque soit le produit fabriqué. Toutefois, elle suppose que les produits les plus légers soient obtenus avec une ligne utilisée très largement en dessous de sa capacité théorique ce qui n'est guère intéressant du point de vue économique.
  • Un autre exemple de modularisation des lignes de pro­duction de laine minérale est donné par les réceptions dites à tambours associées à un nappeur. Dans ce cas exem­plifié par la publication US-A-2785728, la réception s'ef­fectue sur des organes en rotation du type tambours. On prépare un primitif d'un faible grammage au moyen d'un dispositif de réception faisant face à une ou deux machines de fibrage, constitué d'une paire de tambours tournant en rotation inverse dont la surface perforée permet l'aspira­tion des gaz par des dispositifs idoines placés dans les tambours. Le primitif se forme entre les tambours et tombe selon un plan vertical avant d'être repris par le nappeur, c'est-à-dire un dispositif pendulaire qui le dépose en couches entrecroisées sur un convoyeur où on obtient le feutre du grammage élevé voulu.
  • Ces conceptions modulaires des réceptions permettent en théorie de viser une gamme de produits bien plus large dans la mesure où on débute systématiquement par la pro­duction d'un feutre de faible grammage.
  • Toutefois, cela suppose un investissement initial plus grand avec de plus la multiplication des équipements an­nexes (dispositifs d'aspiration et de lavage notamment). Par ailleurs, les moyens de cloisonnement des réceptions conduisent à un grand espacement des machines de fibrage et on en vient à des lignes de production exceptionnellement longues dès lors que l'on multiplie le nombre des machines de fibrage.
  • De plus, les risques de délaminage et d'inhomogénéité du produit interdisent la production des feutres de plus faibles grammages. Ainsi un nappeur impose t-il un primitif d'au moins 100 g/m² en-dessous duquel sa résistance méca­nique serait insuffisante notamment pour supporter les mouvements du pendule, et un nombre suffisant de couches superposées - pour avoir une optimisation de la répartition avec en tout point du feutre un même nombre de couches.
  • Par ailleurs, opérer systématiquement avec le même débit de masse fibrée revient certes à se placer dans des conditions favorisant la reproductibilité des paramètres du fibrage et par la même leur optimisation, mais c'est sur­tout se priver de l'extraordinaire capacité des machines de fibrage à fonctionner selon des débits de matière fibrée allant par exemple de 1 à 10.
  • Enfin, à qualités de fibres égales, un produit est commercialisé à un prix moindre lorsque son grammage dimi­nue. Il paraît donc peu judicieux de se placer alors jus­tement dans le cas où la ligne produit les plus faibles tonnages.
  • L'invention a pour but une conception nouvelle des réceptions d'unités de production de feutres en laine mi­nérale, notamment en laine de verre, tendant à élargir la gamme des produits susceptibles d'être fabriqués par une même ligne de production ; cet élargissement de la gamme s'étendant à la fois vers les faibles et les forts grammages de manière à accroître la polyvalence de la ligne de production, tout en préservant ou même améliorant la qualité des produits obtenus. La gamme des produits fabri­qués va par exemple de 300 g à 4000 g/m² ou plus en asso­ciant éventuellement un nappeur.
  • L'invention propose un procédé de réception pour la séparation de fibres et de gaz produits par une pluralité de machines de fibrage en vue de l'obtention d'un matelas en laine minérale, procédé selon lequel les fibres sont collectées par aspiration des gaz, chaque machine de fib­rage i ayant sa propre zone de collecte Zi, les fibres collectées dans les différentes zones de collecte Zi étant évacuées hors de la zone de collecte par une ou plusieurs zones Zi, ce procédé de réception se caractérisant par le fait que les surfaces des zones de collecte Zi sont crois­santes dans le sens de l'augmentation des grammages sur lesdites bandes transporteuses.
  • En d'autres termes, plus une machine de fibrage i est proche du lieu de formation finale, plus la zone de col­lecte Zi qui lui est affectée est grande, ce qui permet de compenser la plus grande résistance au passage des gaz due à la dépose sur les mêmes bandes transporteuses des fibres provenant des machines de fibrage plus éloignées.
  • Avantageusement, on opère à taux de refoulement cons­tant.
  • Par taux de réfoulement, on entend le pourcentage de gaz non aspiré au niveau de la réception. De préférence, ce taux est nul, et ceci conformément à la revendication 1 même pour les machines de fibrage en aval de la ligne. Les surfaces de collecte sont de préférence délimitées d'un côté par les bandes transporteuses elles-mêmes qui forment de ce fait des bandes réceptrices. On compense l'augmenta­tion de la résistance aux passages des gaz due à la dépose des fibres provenant de machines de fibrage en amont (tou­jours en considérant la ligne orientée dans le sens de dé­filement du primitif). Il doit être noté que les réceptions selon l'invention sont des réceptions communes à plusieurs machines de fibrage et de préférence à 3 ou plus machines de fibrage. Le nombre de réceptions par ligne de production n'excède donc généralement pas deux, ce qui permet d'éviter les inconvénients d'une modularisation excessive.
  • Par contre, l'accroissement de la surface de collecte dans les zones de forts grammages permet de maintenir dans celles-ci des niveaux de dépression relativement faibles, par exemple avantageusement inférieurs à 4000 Pa, c'est-à-­dire à un niveau bien inférieur au niveau pour lequel on observe les premiers dommages pour des fibres de grande qualité telles des fibres de verre dont le micronaire est par exemple de 3 pour 5 g.
  • Avantageusement, on choisit d'opérer avec le même ni­veau de dépression pour toutes les surfaces de collecte. Autrement dit, on compense totalement d'une zone de col­lecte à l'autre, la moindre perméabilité du feutre imputa­ble à l'épaisseur de feutre déjà déposée en provenance des autres machines de fibrage - et ceci sans nuire à l'aspi­ration, car comme indiqué au préambule n'aspirer qu'une partie des gaz conduirait à un refoulement des fibres avec surtout la formation de mèches et donc l'obtention d'un produit de moins bonne qualité.
  • La présente invention concerne plus spécialement les cas où les hauteurs de chute des fibres différent selon leurs machines de fibrage d'origine, c'est-à-dire tous les cas où les bandes transporteuses ont une trajectoire qui n'est pas horizontale mais est généralement convexe. Suivant l'invention, les surfaces des zones de collecte Zi croissent avec la distance moyenne que doivent parcourir les fibres pour atteindre ces zones de collecte Zi.
  • Avantageusement, on ne modifie donc rien à la position des machines de fibrage - et donc aux dimensions des tores (fibres et air) issus de ces machines de fibrage, mais on modifie l'angle d'inclinaison à la normale à la surface de collecte par rapport à l'axe de rotation des tores. Plus cet angle d'inclinaison est grand et plus la surface de la bande collectrice interceptée par le tore est grande, ce qui permet ainsi de mettre en oeuvre l'invention sans mo­difier substantiellement l'entraxe des machines de fibrage.
  • De façon préférée, cette variation de l'angle d'in­clinaison est effectuée en continue de façon à éviter les angles vifs qui pourraient nuire à la qualité finale du feutre. La bande réceptrice sur laquelle se déposent les fibres issues des différentes machines de fibrage suit alors une trajectoire qui au moins dans sa portion termi­nale est celle courbe convexe par exemple elliptique.
  • Eventuellement, on peut également combiner l'utilisa­tion de surfaces réceptrices convexes avec une augmentation de l'entraxe entre deux machines de fibrage situées dans les zones de plus forts grammages et/ou avec une inclinai­son progressive des axes de rotation des machines de fibrage, ces deux méthodes permettant elles aussi l'ac­croissement des surfaces des zones de collecte.
  • De préférence les machines de fibrage sont réparties par groupes de par exemple 3 ou 4 formant autant de modules de réception que de groupes: à chaque module correspond ainsi un primitif et tous les primitifs formés sont ensuite rassemblés avant d'être conduits sous la forme d'un feutre unique dans l'étuve de polymérisation du liant. Géné­ralement au plus deux modules de réception sont nécessaires même pour des lignes de production de fort tonnage. On a ainsi une modularisation de la réception, mais une mod­ularisation qui se veut limitée dans des proportions beau­coup plus réduites que selon l'art antérieur.
  • Selon les cas les modules de réception peuvent être disposés en série les uns à la suite des autres avec un seul canal d'alimentation en verre pour toutes les machines de fibrage ou en parallèle avec dans ce cas autant de ca­naux d'alimentation en verre fondu que de modules de ré­ception. A la suite, le rassemblement des primitifs s'opèrent par superposition en couches parallèles ou en couches entrecroisées, le choix entre ces deux modes de superposition s'effectuant notamment en fonction des den­sités voulues pour les produits définitifs.
  • Il peut être également avantageux de disposer pour chaque module de réception non d'une mais de deux bandes réceptrices convergentes se faisant face et symétriques l'une de l'autre, les fibres déposées sur l'une ou l'autre bande étant rassemblées en un feutre unique à l'extrémité commune des bandes réceptrices. Dans ce cas, le lieu de formation finale du feutre est situé au point de conver­gence des deux bandes réceptrices.
  • Comme la puissance nécessaire à l'entraînement des bandes réceptrices est fonction de la masse de fibres dé­posées sur chacune d'elles, il est préférable de répartir le nombre des machines de fibrage en parts égales pour chaque bande réceptrice ce qui permet de simplifier la synchronisation des vitesses des deux bandes réceptrices, synchronisation nécessaire pour éviter que les deux primi­tifs formés ne glissent l'un sur l'autre. Si les machines de fibrage sont en nombre impair, la dernière machine de fibrage a de préférence une surface de collecte partagée entre deux bandes réceptrices, la symétrie du tore issu d'une machine de fibrage permettant une division en deux parties égales si on choisit de monter les bandes récep­trices de manière telle que leur plan de symétrie contienne l'axe de symétrie du tore de la machine centrale.
  • La courbe tracée par la trajectoire d'une bande ré­ceptrice est de préférence un cercle, les trajectoires circulaires ne sont certes pas les trajectoires optimales calculées dans l'hypothèse par exemple d'une dépression égale dans toutes les zones de collecte, mais sont d'un point de vue pratique beaucoup plus simples à mettre en oeuvre. Dans ce cas, les bandes réceptrices sont consti­tuées par la surface périphérique de un ou deux tambours.
  • Un exemple plus particulièrement préféré est celui d'un module de réception à double tambours par groupe de 3 machines de fibrage avec la formation d'un primitif entre les deux tambours. Lorsque la ligne de production comporte nx3 machines de fibrage, on a alors n modules de réception qui forment n primitifs qui sont ensuite rassemblés en un matelas unique avant qu'on ne provoque la polymérisation de la résine destinée à lier les fibres.
  • Le rassemblement des primitifs issus des différents modules peut être alors obtenu comme indiqué précedemment en les superposant en couches parallèles. L'assemblage, par exemple sur un convoyeur horizontal, des primitifs produits dans un plan vertical entre les tambours peut être faite presque immédiatement sous les tambours de sorte que le temps "de vie" de ces primitifs est très bref et qu'on ne constate pas sur les produits finis de phénomène de délaminage. L'assemblage peut être également obtenu au moyen de nappeurs.
  • Le schéma de réception ainsi défini - 3 machines de fibrage pour deux tambours - est de fait fort différent de ceux connus de l'art - où on a soit une surface de collecte répartie sur deux bandes réceptrices (1 machine - 2 tam­bours), soit une bande transporteuse faisant office de surface de collecte propre à chaque machine (2 machines - 2 tambours), et jamais de bandes transporteuses communes à plusieurs machines de fibrage. En effet outre l'intérêt immédiat d'une réduction du nombre de modules de réception pour une même ligne de production, la solution préférée selon l'invention présente de très nombreux avantages.
  • Comme selon l'invention chaque réception est nor­malement alimentée par 3 machines de fibrage, le grammage minimum susceptible d'être obtenu avec par exemple une li­gne de 6 machines de fibrage n'est que de 200 g/m² étant entendu que chaque réception doit obligatoirement produire un primitif d'au moins 100 g/m² pour une question de ré­sistance mécanique. En comparaison, une réception du type 2 tambours par machine de fibrage - ou 2 tambours pour 2 machines de fibrage - n'est susceptible de produire des matelas de laine minérale dont le grammage est respective­ment d'au moins 600 ou 300 g/m². De fait, cette limite in­férieure de 200 g/m² est inférieure à la limite en légèreté des produits commercialisés.
  • Par ailleurs, les tambours constituent des surfaces de collecte très grandes susceptibles de réceptionner de forts débits qui correspondent parfaitement aux possibilités des machines de fibrage. Les auteurs de la présente invention ont ainsi constaté qu'il est parfaitement possible de pro­duire directement un primitif d'un grammage élevé, sans recours systématique aux nappeurs dont l'inconvénient connu est une vitesse relativement faible qui limite la vitesse totale de la ligne de production.
  • Un autre point tout particulièrement avantageux de l'invention est que l'efficacité plus grande de l'aspira­tion conduit à un plus grand refroidissement du feutre ; or plus le feutre est froid, moins le liant ne risque de polymériser avant le passage dans l'étuve de polymérisation ce qui conduit à des produits finals présentant une tenue mécanique bien meilleure, une plus grande proportion de la résine servant effectivement à lier les fibres alors qu'une polymérisation trop hative s'effectue elle pratiquement en pure perte, l'épaisseur du feutre n'étant pas encore con­trôlée à ce stade du procédé. Cette température plus basse conduit de plus à une moindre évaporation de l'encollage dont une quantité plus grande se retrouve dans le produit fini, ce qui réduit les coûts de dépollution des fumées.
  • Pour la mise en oeuvre de cette forme préférée de l'invention, le dispositif associé à chaque groupe de 3 machines de fibrage comporte une hotte isolant chaque ré­ception dans laquelle sont placés une paire de tambours perforés sur toute leur surface périphérique et munis de dispositifs de centrage et d'entraînement en rotation et des caissons d'aspiration intérieurs fixes lorsque les tambours sont en rotation. La surface d'aspiration corres­pond à la surface périphérique du tambour placée à l'inté­rieur de la hotte et en regard d'un caisson intérieur d'aspiration.
  • L'entraînement de chaque tambour est obtenu de préfé­rence au moyen de paires de galets par exemple épaulés servant également au guidage axial, chaque paire étant constituée par un galet fou et un galet moteur dont la ro­tation est par exemple contrôlée par un moteur monté sur son axe, les galets étant de préférence munis d'un revête­ment donnant un bon coefficient de frottement. L'entraîne­ment par galets ne peut pas conduire à une détérioration des autres organes de la réception et notamment de ceux servant à réaliser l'étanchéité de la chambre de réception et par ailleurs il laisse entièrement libre l'espace inté­rieur du tambour qui est donc totalement disponible pour le montage du caisson d'aspiration.
  • Pour éviter un blocage de la réception par des fibres agglomérées collées aux parois de la hotte, celles-ci sont de préférence refroidies, de sorte que la température des parois soit toujours inférieure à la température de poly­mérisation du liant. De plus, la hotte est de préférence en deux parties. La partie inférieure - la plus proche des tambours - est formée de plaques refroidies munies d'évi­dements correspondant à l'emplacement des tambours. La partie supérieure est du type bat-flanc tournants associés à des dispositifs de nettoyage extérieurs à la hotte, de sorte que les fibres qui se collent aux bas-flancs soient évacuées définitivement hors de la hotte de réception.
  • Il est par ailleurs prévu des moyens tels que des ri­deaux souples garantissant l'étanchéité entre la hotte et le tambour d'une part et, entre le caisson d'aspiration intérieur et le tambour d'autre part, la fibre suffisant elle-même à assurer l'étanchéité entre les tambours.
  • Il est en outre avantageux de muni chaque tambour d'une rampe de soufflage d'air comprimé, le jet soufflé étant dirigé à la sortie des tambours de manière à favo­riser le décollage des fibres et la formation du primitif sous les tambours.
  • De préférence, on prévoit des moyens de modification de la longueur et de l'emplacement par rapport aux machines de fibrage de la zone d'aspiration. Ces moyens sont par exemple des dispositifs permettant de tourner les caissons intérieurs - dans ce cas centrés sur l'axe de rotation des tambours - de façon à déplacer la zone périphérique du tambour en regard d'un caisson intérieur.
  • Il est enfin avantageux d'associer au module de ré­ception, pour chaque primitif, un rouleau d'étirage en­traîné à une vitesse périphérique rigoureusement identique à celle du convoyeur horizontal qui récupère les différents primitifs formés, la vitesse périphérique des tambours étant elle réglée très légèrement inférieure à la vitesse du convoyeur horizontal afin de tenir compte du fluage des fibres qui s'opère sous l'effet de la gravité pendant la trajectoire verticale des primitifs.
  • De plus, les caissons d'aspiration et les tambours eux-mêmes sont de préférence pourvus de moyens adéquats de nettoyage et de séchage, ceci notamment en vue d'éviter leur encrassement par des fibres fines.
  • D'autres détails et caractéristiques avantageuses de l'invention sont décrits ci-après en référence aux dessins annexés qui représentent :
    • . figure 1 : un schéma général illustrant le principe du procédé selon l'invention,
    • . figure 2 : un schéma de réalisation d'un module de réception conforme au mode de réalisation préféré de l'in­vention,
    • . figure 3 : une vue en perspective d'une ligne com­portant 6 machines de fibrage et deux modules de réception conformes à la figure 2, avec un assemblage des primitifs en parallèle,
    • . figure 4 : une vue identique à la figure 3 mais avec un assemblage des primitifs par des nappeurs.
  • La figure 1 illustre par un schéma de principe le procédé de réception selon l'invention, pour une ligne de production de laine de verre comportant 3 machines de fib­rage 1, 2, 3 disposées selon une même rangée. Ces machines de fibrage 1, 2, 3 constituées par exemple par des centri­fugeurs tournant à grande vitesse munis à leur périphérie d'un grand nombre d'orifices par lesquels le matériau en fusion - de préférence du verre - s'échappe sous forme de filaments qui sont ensuite étirés en fibres par un courant gazeux concentrique, parallèle à l'axe du centrifugeur, émis à température et vitesse élevées par un brûleur annu­laire. Eventuellement d'autres dispositifs de fibrage bien connus de l'art peuvent être utilisés qui tous permettent la formation d'un tore de fibres, centrées sur un axe, tore formé par les gaz d'étirage et surtout les gaz induits en très grande quantité.
  • La réception des fibres - destinée à séparer celles-ci des gaz - est obtenue au moyen d'une bande sans fin 4 per­méable aux gaz entraînée en continu. Une hotte 5 délimite latéralement la zone de collecte des fibres. L'aspiration des gaz est obtenue par des caissons 5 sous dépression, indépendants. A chaque machine de fibrage 1 est ici associé un caisson 6. La hotte 5 est fermée de façon aussi étanche que possible et est pour cela pourvue à la sortie d'un rouleau compresseur 7 assurant éventuellement une certaine traction sur le feutre pour aider à l'extraire de la hotte.
  • Conformément à l'invention, à chaque machine de fib­rage "i" correspond une zone de collecte Zi, délimitée par le bas par la bande sans fin 4. Ces zones Zi sont crois­santes avec leur indice et sont donc d'autant plus grandes qu'elles sont proches de la sortie.
  • Il a été proposé une réception comportant autant de caissons que de machines de fibrage mais dans la mesure où l'invention permet une homogénéisation des valeurs de dé­pression, on peut bien sûr sans sortir du cadre de l'in­vention utiliser des caissons communs à plusieurs machines de fibrage. A la limite, on peut n'utiliser qu'un seul caisson pour toute la rangée de machines 1, 2, 3.
  • Avantageusement, l'entraxe E entre les machine est constant, il n'y a donc pas d'augmentation de l'air induit et donc un moindre risque de refoulement des gaz et de formation de mèches.
  • La trajectoire représentée à la figure 1 est fictive : en réalité on opère avec des trajectoires non rectilignes mais convexes, par exemple élliptiques, avec comme forme de réalisation la plus simple, une trajectoire circulaire as­sociée à l'emploi de tambours.
  • De préférence, le nombre de machines de fibrage pour une réception est égale à 3 ou 4, de sorte que pour une ligne de production importante, deux modules de réception seront utilisés.
  • Un exemple d'un tel module est schématisé à la figure 2 prévu pour recueillir les fibres produites par 3 machines de fibrage. Sous les machines de fibrage 8 sont disposés deux tambours 10, 19 mus en rotation inverse et tournant l'un vers l'autre. Ces tambours 10, 19 sont placés sous une hotte 11.
  • La hotte 11 comporte une partie inférieure 12, re­froidie par des moyens appropriés, avec des évidements en forme d'arcs de cercle pour le logement des tambours. La partie supérieure 13 peut être également composée de pla­ques fixes refroidies ou mieux de bat-flanc tournants - du type bande sans fin verticale - dont l'arrière (c'est-à-­dire la partie extérieur à l'unité de réception) est muni de préférence de moyens de nettoyage. Les moyens de re­froidissement empêchent que ne se produisent un blocage total d'une réception par des fibres agglomérées ; les bat-flanc tournants eux améliorent la qualité du feutre dans le mesure où on évite ainsi que de petites touffes de fibres ne se forment - touffes qui sans pouvoir entraîner le blocage de l'installation peuvent tout de même nuire un peu à l'homogénéité du feutre, car lorsqu'elles se dé­collent finalement de la paroi elles forment dans le feutre des zones à plus forte teneur en liant qui se repèrent par une teinte plus sombre donnant l'aspect de tâches.
  • L'étanchéité de la réception est critique et est de préférence obtenue au moyen de tapis en polyuréthane.
  • Les tambours 10, 19 sont placés dans une fosse sous les machines de fibrage à une hauteur calculée de manière telle que la hauteur minimum de chûte des fibres soit su­périeure à 2500 mm afin d'éviter que la vitesse moyenne d'impact des fibres sur le tambour calculée au centre du tore soit supérieure à 20 m/s. De préférence, cette hauteur de chûte n'excède pas 5000 mm afin d'éviter la formation de grandes touffes de fibres préjudiciables à une bonne qua­lité du matelas isolant.
  • Les tambours 10, 19 présentent une surface périphéri­ que perforée perméable aux gaz. Ils sont par exemple cons­titués de deux plaques rondes d'extrémité, rigides, sur lesquelles une tôle perforée est vissée, le diamètre des orifices étant choisi en fonction du type de fibres pro­duites. Ils sont munis de dispositifs de centrage et de guidage par exemple sur galets, leur entraînement en rota­tion se faisant par exemple par chaine ou de façon préférée par des galets extérieurs qui guident le tambour axia­lement, ces galets étant par exemple revêtus de poly­uréthane pour assurer un bon frottement tambour-galet.
  • Dans ces tambours sont montés des caissons d'aspira­tion intérieurs 14, centrés sur les arbres de rotation des tambours et fixés par exemple sur la tubulure d'un clapet prévu pour la révision du tambour. Les caissons 14 sont délimités par des parois latérales montées par exemple se­lon les rayons des tambours, avec un angle de par exemple 120°, les caissons pouvant être tournés autour de l'axe des tambours de façon à modifier la longueur d'aspiration et l'emplacement de la zone d'aspiration, notamment lorsque les conditions de réception doivent être modifiées de part l'arrêt de la machine de fibrage centrale comme il est ex­pliqué plus après.
  • De préférence, on prévoit d'intégrer à ces caissons, des éléments de nettoyage et de séchage de la surface des tambours pour éviter que les orifices desdits tambours ne soient à la longue colmatés par les fibres les plus fines. Ces éléments de nettoyage et de séchage sont par exemple du type brosse, buse concourante ou rampe d'air pour le dé­collage des fibres fines.
  • A titre indicatif, de bons résultats ont été obtenus avec un ensemble de lavage constitué par une brosse nylon à poils longs disposée à l'intérieur du tambour et entraînée en rotation par celui-ci et une petite brosse montée à l'extérieur du tambour, ces deux brosses étant éventuelle­ment complétées en aval (par rapport au sens de rotation du tambour) par des buses de lavage et de séchage ne fonc­tionnant de préférence que par intermittence et qui nettoie la surface du tambour de la pellicule de liant qui se dé­pose à la longue.
  • Ces caissons d'aspiration sont raccordés par des tuyauteries à un ou des ventilateurs aptes à créer la dé­pression nécessaire, et ici non représentés.
  • Sur cette figure 2, on peut par ailleurs remarquer l'axe 15, 16 d'une machine de fibrage 8 latérale est à la verticale du tambour 10 respectivement 9 lui faisant face, l'axe 17 de la machine de fibrage centrale étant lui con­fondu avec l'axe du plan médian de la paire de tambours. Cette disposition permet d'obtenir la surface utile d'as­piration la plus grande possible. Dans ces conditions, le diamètre D des tambours doit donc être choisi égal à deux fois l'entraxe E entre deux machines de fibrage ou plus précisément très légèrement plus petit que celui-ci afin de préserver un espace libre de par exemple 100 mm entre les deux rouleaux.
  • Les fibres produites par les machines de fibrage la­térales d'une réception tombent dans les zones d'aspiration schématisées par des doubles flèches L₁, alors que les fi­bres produites par la machine centrale tombent sur l'un ou l'autre des tambours, dans la zone de réception L₂. Cette zone L₂ est pratiquement d'une longueur double de la zone L₁. On compense ainsi - et même de façon très large - la résistance au passage des fumées de la machine centrale que créent les fibres provenant des machines latérales et déjà déposées à la surface du tambour lorsque celle-ci atteinte la zone L₂.
  • La réception peut fonctionner avec des réglages de vitesse pour compenser la perte de grammage, lorsqu'une des machines latérales est arrétée. Si l'arrêt concerne la ma­chine de fibrage centrale, il est préférable de décaler les zones d'aspiration vers les côtés de façon à limiter l'augmentation d'air induit générée par le "vide" central et surtout à éviter la formation de mêches qui s'enroulent autour d'elles-mêmes à proximité des tambours. Cette pos­sibilité de fibrage constitue un avantage très grand des modules de réception selon l'invention, car elle tient compte des aléas de fonctionnement des machines de fibrage.
  • De façon assez paradoxale, un module de réception conforme au mode de réalisation préféré de l'invention permet l'obtention de produits de qualités supérieures aux produits susceptibles d'être obtenus lorsqu'on prévoit deux tambours de réception pour deux machines de fibrage. Ceci peut s'expliquer par le fait que le tore issu d'une machine de fibrage n'est pas parfaitement homogène ; une analyse du profil de vitesses des gaz montre en effet que la vitesse est maximum autour de l'axe de rotation de la machine de fibrage et décroît sur les bords du tore. Lorsqu'une ou seulement deux machines de fibrage sont utilisées, on gé­nère à la périphérie de la surface de réception un courant d'air tangent à la surface; de par la plus forte aspiration sur les parties latérales moins chargées en fibres. Ce courant tangent entraîne des fibres qui roulent sur elles-­mêmes et forment des mèches. Quand on augmente le nombre de machines de fibrage en préservant un petit entraxe entre celles-ci, on obtient un profil des dépressions isomorphe au profil des vitesses - avec pour conséquence une meil­leure homogénéité des produits.
  • Les figures 3 et 4 illustrent l'application des mo­dules de réception selon l'invention à des lignes de pro­duction comportant 6 machines de fibrage. La figure 3 cor­respond à une double réception en ligne, c'est-à-dire que les 6 machines de fibrage sont alimentées en verre fondu par un même canal principal, avec ici un assemblage des primitifs par superposition en couches parallèles.
  • Sous les 6 machines 20 de fibrage sont disposées deux réceptions constituées par deux paires 22, 23 de deux tambours 21 mus en rotation inverse, chaque réception re­cueillant les fibres produites par un groupe de 3 machines de fibrage, la machine de fibrage centrale d'un groupe donné étant orientée suivant le plan médian aux deux tam­bours d'une réception. Chaque paire de tambours est isolée des autres paires de tambours par une hotte, les réceptions sont donc ici indépendantes. Chaque unité de réception forme ainsi un module de base, reproduit autant de fois que nécessaire suivant les capacités de production de la ligne, la disposition relative des modules les uns par rapport aux autres devant toutefois tenir compte des moyens d'alimen­tation en verre fondu des différentes machines de fibrage, c'est-à-dire du nombre de canaux d'alimentation en verre fondu prévus en sortie du four de fusion et de la disposi­tion de ceux-ci en ligne comme ici représenté, ou en pa­rallèle comme à la figure 4.
  • Les fibres récoltées par une paire donnée de tambours forment un primitif 24 respectivement 25 qui tombe dans un plan vertical et est ensuite recueilli par un convoyeur horizontal 26 du type bande sans fin non perforée situé au fond de la fosse sur lequel viennent se superposer en cou­ches parallèles 27, 28 les primitifs 24, 25 issus des dif­férents groupes de 3 machines de fibrage. Enfin un con­voyeur incliné, ici non représenté, conduit le feutre formé à l'extérieur de la fosse de réception.
  • Lors de sa chute verticale vers le convoyeur horizon­tal, le primitif a légèrement tendance à s'allonger, ceci d'autant que le grammage est faible. Pour éviter que le feutre ne forme une boucle, le convoyeur horizontal doit donc être entraîné à une vitesse très légèrement supérieure à la vitesse périphérique des tambours ; selon les grammages, l'écart théorique à respecter est compris entre O et 1 %. Comme il est relativement difficile d'opérer exactement avec un rapport de vitesse correspondant à ce rapport théorique, il est avantageux d'équiper l'installa­tion de rouleaux d'étirage placés juste au-dessus du con­voyeur horizontal et ici non représentés, ces rouleaux d'étirage exercant le plus souvent une légère traction sur le feutre et étant entraînés exactement à la vitesse du convoyeur horizontal.
  • La figure 4 correspond à une double réception en pa­rallèle associée à un assemblage des primitifs par super­position en couches entrecroisées.
  • Sont ainsi représentés des modules 30, 31 de réception associés à des nappeurs 32, 33. A chaque module est ainsi associé un organe à mouvement pendulaire alimenté par un tapis convoyeur 34, 35, de sorte que le primitif subit consécutivement 2 changements de direction à 90°. L'organe pendulaire 32 respectivement 33 est constitué par deux bandes continues 36, 37 entre lesquelles passent les pri­mitifs. L'organe pendulaire 32 est relié par un système de bielle-manivelle à un moteur d'entraînement lui communi­quant un mouvement de balancier, de sorte que le primitif est déposé sur un convoyeur 38 sous forme de couches de feutres entrecroisées, ledit convoyeur 38 ayant une direc­tion de défilement perpendiculaire à la direction initiale des primitifs. Les bandes continues peuvent également jouer un rôle d'étirage du feutre, rôle qui pour des réceptions non pourvues d'organes pendulaires peut être avanta­geusement rempli par des tapis d'étirage ou le rouleau 7 visible à la figure 1. L'étirage permet d'éviter une accu­mulation du feutre dans la hotte.
  • Le dispositif de la figure 4 permet la réalisation de produits dont le grammage est par exemple supérieur à 10 kg au m², tandis que le dispositif de la figure 4 donne toute satisfaction pour les produits plus courants dont le gram­mage est par exemple voisin de 4000 g/m², ce qui est déjà considéré pour un produit isolant en laine de verre comme un produit lourd.
  • Les performances des réceptions selon l'invention ont été par ailleurs vérifiées de façon quantitative.
  • Dans un premier temps, on a utilisé 6 machines de fi­brage espacées selon un entraxe fixe de 2000 mm, en uti­lisant différents types de modules de réception et des nombres différents de modules. On a obtenu les résultats suivants :
    Essai no 1 2 3 4 5 6
    Nbre modules 1 6 1 3 1 2
    tambours/bande bande tamb. tamb. tamb. tamb. tamb.
    Nombre de tambours - 12 12 6 6 4
    Diamètre tambours (mm) - 950 950 1950 1950 2575
    Débit fumée (%) 100 98 107 99 107 79
    Depression maxi (Pa) 13140 480 550 1260 1410 1520
    Puissance 100 22 24 29 33 52
  • Tous les essais ont été effectués sur une même ligne de production comportant 6 machines de fibrage de type centrifugeur de 20 tonnes par jour de verre fondu et sur un grammage final du matelas de laine de verre de 2500g/m².
  • Le premier essai correspond à une réception des fibres dite à bandes qui a permis de définir une base 100 de ré­férence pour le débit total des fumées à aspirer et la puissance totale dissipée au niveau de l'installation. A titre indicatif, ce débit des fumées de 100 % correspond à un débit de fumées (gaz d'étirage et gaz induits) de 360000 à 450000 Nm³/heure.
  • Les essais 2 et 3 correspondent à des réceptions à deux tambours pour chaque machine de fibrage, ces récep­tions étant ou non isolées les unes des autres pour former des modules distincts. La dépression maximum que subit le feutre est très inférieure à celle de l'essai de référence, et très inférieure à la valeur pour laquelle les premiers dommages peuvent être constatés. La puissance totale dis­sipée est également plus faible, mais le gain n'est pas directement comparable à celui enregistré au niveau des dépressions, ceci en raison des pertes de charges plus grandes dues à la multiplication des équipements annexes du type conduites, laveurs, etc...
  • On constate par ailleurs que les meilleurs résultats sont obtenus avec une modularisation extrême (6 modules pour 6 machines de fibrage), ce qui entraîne la multipli­cation des hottes et donc des zones d'encrassement qui faute d'un nettoyage adéquat laissent retomber des pous­sières ou amas de fibres liées qui à leur tour dégradent la qualité du produit. Lorsqu'on supprime cette modularisation (essai no 3) on obtient une très forte augmentation du dé­bit des fumées - qui se traduit par une légère augmentation de la dépression maxima exercée sur le feutre pour leur aspiration. De plus - et ce que ne montre pas le tableau ci-dessus - la qualité des fibres est moindre, avec pour conséquence une diminution du pouvoir isolant du feutre final.
  • On retrouve les mêmes conclusions avec les essais 4 et 5 correspondant à 2 machines de fibrage pour deux tambours, si ce n'est qu'on doit noter la formation de mèches de fi­bres qui s'enroulent de part et d'autre des tambours qui entraînent une très nette dégradation de la qualité finale du feutre.
  • En procédant par contre conformément à l'invention (eesai no 6), on retrouve les mêmes conditions du point de vue du bilan énergétique et à nouveau des très faibles va­leurs de dépression - tout en n'ayant que deux modules de réception et donc un investissement initial bien plus fai­ble.
  • Il est enfin intéressant de comparer deux lignes de production, la première est une ligne à une ligne tradi­tionnelle, avec une bande réceptrice horizontale, mais ré­pondant toutefois aux critères de la revendication 1, c'es-à-dire pour laquelle les zones de collecte sont croissantes dans le sens de l'augmentation des grammages, cette croissance étant obtenue par une augmentation pro­gressive des entraxes entre les machines de fibrage ; cette ligne comporte deux modules de réception formées par des bandes réceptrices convergentes (essais 7 et 9) la seconde ligne est conforme au schéma de la figure 3. (essais 8 et 10).
    Essai no 7 8 9 10
    Diamètre D des tambours (mm) 2575 2575
    Entraxe minimum entre 2 machines 1500 1300 1500 1300
    Longueur d'aspiration (mm) L 2600 2653 2650 2653
    Débit fumées % 100 79 100 78
    Vitesse m/s 3,29 2,36 3,29 2,35
    Dépression maxi (Pa) 4890 1520 8140 2470
    Puissance totale 100 % 52 % 100 % 45 %
  • L représente la longueur des zones de collecte cor­respondant aux plus forts grammages. Les essais 7 et 8 ont concernés la fabrication d'un feutre d'un grammage égal à 2500 g/m², les essais 9 et 10 à un grammage de 4000 g/m², avec dans tous les cas 2 x 3 centrifugeurs au travers des­quels on fait passer un débit de 20 tonnes par jour de verre fondu.
  • Dans les deux cas, on obtient sans difficulté des produits denses sans recourir à un nappeur. Toutefois, la comparaison des vitesses du passage des gaz au travers du feutre et des dépressions ou niveau des zones de plus fort grammage montrent sans conteste la supériorité du mode préféré de l'invention.
  • La possibilité de procéder avec des entraxes non constants peut être également étendue au cas de réceptions selon l'invention, correspondant à des hauteurs de chute distinctes en fonction des machines de fibrage, par exemple dans un schéma de réception conforme à la figure 1. Les résultats les plus satisfaisants sont toutefois obtenus avec n modules de réception à deux tambours pour 3 n ma­chines de fibrage.
  • Un dernier aspect avantageux de l'invention tient en ce qu'il conduit à la formation de feutres relativement froids, ceci car les primitifs sont refroidis à l'air libre avant d'être récupérés par le convoyeur horizontal et sur­tout car l'aspiration est tout aussi efficace dans la zone des forts grammages que dans la zone des faibles grammages, ce qui évite l'accumulation des gaz chauds. Les produits obtenus selon l'invention ont typiquement une température à l'entrée de l'étuve inférieure de 20 à 50° C à celle des produits selon l'art, les écarts les plus grands étant ob­servés pour les produits les plus lourds. Il en résulte une moindre pré-polymérisation du liant qui conduit à des ré­sistances mécaniques significativement améliorées.
  • De plus, une température plus basse - associée à une épaisseur initiale plus élevée des fibres qui ne sont pas tassées par l'aspiration dans la réception - apportent une plus grande stabilité de la production notamment une plus grande constance d'épaisseur des produits, ce qui permet de réduire les surépaisseurs non fonctionnelles simplement destinées à garantir au client une épaisseur nominale donnée.

Claims (27)

1. Procédé de réception pour la séparation de fibres et de gaz produits par une pluralité de machines de fibrage en vue de l'obtention d'un matelas en laine minérale, pro­cédé selon lequel les fibres sont collectées par aspiration des gaz, chaque machine de fibrage i ayant sa propre zone de collecte Zi, les fibres collectées étant évacuées hors de la zone de collecte par une ou plusieurs des bandes tr­ansporteuses communes à plusieurs zones de collecte Zi, caractérisé en ce que les surfaces des zones de collecte Zi sont croissantes dans le sens de l'augmentation des gramm­ages sur lesdites bandes transporteuses.
2. Procédé de réception pour la séparation de fibres et de gaz produits par une pluralité de machines de fibrage en vue de l'obtention d'un matelas en laine minérale, pro­cédé selon lequel les fibres sont évacuées par deux bandes transporteuses convergentes selon la revendication 1, ca­ractérisé en ce que les surfaces des zones de collecte Zi sont croissantes en direction du lieu de formation finale du feutre commun.
3. Procédé de réception selon la revendication 1 ou 2, caractérisé en ce que le taux de refoulement est constant.
4. Procédé de réception selon la revendication 1 ou 2, caractérisé en ce que le taux de refoulement est nul.
5. Procédé de réception selon l'une des revendications 1 ou 2, caractérisé en ce que les zones de collecte Zi sont constituées par des portions de bandes transporteuses.
6. Procédé de réception selon l'une des revendications 1 à 5, caractérisé en ce que la dépression exercée sur le feutre est la même pour toutes les zones de collecte Zi.
7. Procédé de réception selon l'une des revendications 1 à 6, caractérisé en ce que les hauteurs de chute des fi­bres diffèrent selon leurs machines de fibrage d'origine.
8. Procédé de réception selon l'une des revendications 1 à 6, caractérisé en ce que la trajectoire des bandes tr­ansporteuses est convexe.
9. Procédé de réception selon l'une des revendication 1 à 8, caractérisé en ce que l'accroissement des surfaces des zones de collecte Zi est obtenu par une modification de l'angle d'inclinaison de la normale à la surface de col­lecte par rapport à l'axe de rotation de la machine de fibrage associée à la surface de collecte.
10. Procédé de réception selon la revendication 9 ca­ractérisé en ce que l'accroissement des surfaces des zones de collecte Zi est obtenu de plus en augmentant l'entraxe entre deux machines de fibrage.
11. Procédé de réception selon l'une des revendica­tions 9 ou 10, caractérisé en ce que l'accroissement des surfaces des zones de collecte est obtenu de plus en in­clinant progressivement les axes de rotation des machines de fibrage.
12. Procédé de réception selon l'une des revendica­tions précédentes, caractérisé en ce qu'on opère un étirage sur le primitif pour aider à son extraction hors de la zone de collecte.
13. Procédé de réception selon l'une des revendica­tions 1 à 12, caractérisé en ce que les machines de fibrage sont réparties par groupes de par exemple 3 ou 4 machines, à chaque groupe de machines correspondant un module de ré­ception
14. Procédé de réception selon la revendication 13, caractérisé en ce que lesdits modules de réception sont montés en série.
15. Procédé de réception selon la revendication 13, caractérisé en ce que lesdits modules de réception sont montés en parallèle.
16. Procédé de réception de fibres minérales selon la revendication 14 ou 15, caractérisé en ce que les primitifs formés par chaque module de réception sont rassemblés par superposition en couches parallèles.
17. Procédé de réception de fibres minérales selon la revendication 14 ou 15, caractérisé en ce que les primitifs formés par chaque module de réception sont rassemblés par superposition d'au moins 6 couches de primitifs entre­croisées.
18. Procédé de réception selon les revendications 7 à 17, caractérisé en ce que les surfaces de collecte sont constituées par des tambours.
19. Procédé de réception de fibres minérales dites d'isolation, notamment de fibres de verre en vue de la sé­paration sous les machines de fibrage des fibres et des gaz ambiants pour l'obtention d'un matelas en laine minérale, selon lequel les fibres minérales sont collectées sur des organes en rotation de type tambours, afin de former des primitifs rassemblés ultérieurement mais avant qu'on ne provoque la polymérisation de la résine destinée à lier les fibres, caractérisé en ce qu'on prévoit une paire de tam­bours par groupe de 3 machines de fibrage.
20. Procédé de réception de fibres minérales selon l'une des revendications 18 ou 19, caractérisé en ce que la hauteur minimum de chûte des fibres minérales est telle que la vitesse d'impact des fibres sur les tambours soit infé­rieure à 20 m/s.
21. Procédé de réception de fibres minérales selon la revendication 20, caractérisé en ce que ladite hauteur mi­nimum de chûte est comprise entre 2500 et 5000 mm.
22. Dispositif de réception de fibres minérales dites d'isolation notamment de fibres de verre en vue de la sé­paration sous les machines de fibrage des fibres et des gaz ambiants pour l'obtention d'un matelas en laine minérale comportant en association avec chaque groupe de 3 machines de fibrage, une réception formée d'une hotte dans laquelle sont placés une paire de tambours perforés sur toute leur surface périphérique munis de dispositifs de centrage et d'entraînement en rotation, des caissons d'aspiration in­térieurs.
23. Dispositif selon la revendication 22, caractérisé en ce que les tambours et les caissons d'aspiration sont munis d'équipements de nettoyage et de séchage.
24. Dispositif selon l'une des revendications 22 à 23, caractérisé en ce qu'il comporte en outre un convoyeur à bande sans fin placé sous les différents tambours dont il recueille directement les primitifs.
25. Dispositif selon lune des revendication 22 à 24, caractérisé en ce qu'il comporte en outre un nappeur.
26. Dispositif selon la revendication 22, caractérisé en ce que chaque tambour est entraîné par une paire de galets.
27. Dispositif selon l'une des revendications 22 à 26, caractérisé en ce qu'un rouleau d'étirage exerce une légère traction sur le primitif avant que celui-ci ne soit re­cueilli par le convoyeur à bande sans fin.
EP90401839A 1989-06-29 1990-06-27 Procédé et dispositif de réception de fibres minérales Expired - Lifetime EP0406107B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP89401864 1989-06-29
EP89401864 1989-06-29

Publications (2)

Publication Number Publication Date
EP0406107A1 true EP0406107A1 (fr) 1991-01-02
EP0406107B1 EP0406107B1 (fr) 1994-04-13

Family

ID=8202967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90401839A Expired - Lifetime EP0406107B1 (fr) 1989-06-29 1990-06-27 Procédé et dispositif de réception de fibres minérales

Country Status (28)

Country Link
US (2) US5065478A (fr)
EP (1) EP0406107B1 (fr)
JP (1) JP2904874B2 (fr)
KR (1) KR0131319B1 (fr)
CN (1) CN1026139C (fr)
AR (1) AR243615A1 (fr)
AT (1) ATE104374T1 (fr)
AU (1) AU631217B2 (fr)
BR (1) BR9003076A (fr)
CA (1) CA2020070C (fr)
CZ (1) CZ283887B6 (fr)
DD (1) DD296322A5 (fr)
DE (1) DE69008055T2 (fr)
DK (1) DK0406107T3 (fr)
ES (1) ES2054294T3 (fr)
FI (1) FI100114B (fr)
HR (1) HRP950202B1 (fr)
HU (1) HU210427B (fr)
IE (1) IE64769B1 (fr)
NO (2) NO170294C (fr)
NZ (1) NZ234137A (fr)
PL (1) PL164769B1 (fr)
PT (1) PT94519B (fr)
SI (1) SI9011204A (fr)
SK (1) SK280747B6 (fr)
TR (1) TR25049A (fr)
YU (1) YU47358B (fr)
ZA (1) ZA904810B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547587A1 (fr) * 1991-12-17 1993-06-23 Grünzweig + Hartmann AG Appareil pour réaliser un matelas de fibres minerals en continu
DE19834963A1 (de) * 1998-08-03 2000-02-17 Pfleiderer Daemmstofftechnik G Vorrichtung und Verfahren zur Herstellung von Mineralwollevlies
FR2811662A1 (fr) 2000-07-13 2002-01-18 Saint Gobain Isover Produit d'isolation thermique/phonique a base de laine minerale
WO2013093348A1 (fr) 2011-12-20 2013-06-27 Saint-Gobain Isover Etuve pour la fabrication d'un produit en laine minerale
EP2695984A1 (fr) * 2012-08-06 2014-02-12 Oskar Dilo Maschinenfabrik KG Dispositif de formation d'un tissu non-tissé ou d'un matelas de fibres floquées
WO2021058634A1 (fr) 2019-09-26 2021-04-01 Saint-Gobain Isover Methode de recyclage des eaux issues d'un procede de fabrication d'un matelas de fibres minerales

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970702397A (ko) * 1994-05-02 1997-05-13 로너간 로버트 씨. 고속 회전드럼 및 저주파 음향분포를 이용한 울팩 형성방법(wool pack forming process using high speed rotating drums and low frequency sound distribution)
US5545453A (en) 1994-08-15 1996-08-13 Owens Corning Fiberglas Technology, Inc. Conformable insulation assembly
US5980680A (en) * 1994-09-21 1999-11-09 Owens Corning Fiberglas Technology, Inc. Method of forming an insulation product
US5885390A (en) * 1994-09-21 1999-03-23 Owens-Corning Fiberglas Technology Inc. Processing methods and products for irregularly shaped bicomponent glass fibers
US5595584A (en) * 1994-12-29 1997-01-21 Owens Corning Fiberglas Technology, Inc. Method of alternate commingling of mineral fibers and organic fibers
US5603743A (en) * 1995-03-31 1997-02-18 Owens-Corning Fiberglas Technology Inc. High frequency air lapper for fibrous material
US5605556A (en) * 1995-03-31 1997-02-25 Owens-Corning Fiberglas Technology Inc. Linear ramped air lapper for fibrous material
US5772948A (en) * 1996-11-19 1998-06-30 Plastaflex Corporation Melt-blown fiber system with pivotal oscillating member and corresponding method
DE19808518C1 (de) * 1998-02-27 1999-08-05 Rockwool Mineralwolle Verfahren und Vorrichtung zur Beschichtung und/oder Imprägnierung von Mineralwolleprodukten
US20040132371A1 (en) * 1998-08-03 2004-07-08 Pfleiderer Dammstofftechnik International Gmbh & Co. Method and device for producing a mineral wool nonwoven fabric
FR2811661B1 (fr) * 2000-07-13 2003-05-02 Saint Gobain Isover Produit d'isolation thermique/phonique a base de laine minerale et son procede de fabrication
KR20020010744A (ko) * 2000-07-31 2002-02-06 김효중 충격흡수용 운동화
US6596205B1 (en) * 2000-08-09 2003-07-22 Aaf-Mcquay Arrangement for forming a layered fibrous mat of varied porosity
FR2845697B1 (fr) * 2002-10-11 2005-05-27 Rieter Perfojet Procede et machine de production d'un non-tisse a reduction de la vitesse de deplacement de la nappe compactee
US20050138834A1 (en) * 2003-12-03 2005-06-30 Suda David I. Fiberglass insulation curing oven tower and method of curing fiberglass insulation
US7252868B2 (en) * 2004-01-08 2007-08-07 Certainteed Corporation Reinforced fibrous insulation product and method of reinforcing same
US7264422B2 (en) * 2004-03-25 2007-09-04 Owens-Corning Fiberglas Technology Inc. Rotary separator for mineral fibers
DE102005001687A1 (de) * 2005-01-13 2006-07-27 Saint-Gobain Isover G+H Ag Einrichtung zur Herstellung von Mineralwollevliesen
DE102010034777A1 (de) * 2010-08-18 2012-02-23 Hubert Hergeth Vlieslegemaschine und Verfahren zum Legen eines Vlieses
FR2996565B1 (fr) * 2012-10-04 2014-11-28 Saint Gobain Isover Installation et procede pour fabriquer un produit d'isolation thermique et/ou phonique
FR3000971B1 (fr) * 2013-01-11 2016-05-27 Saint Gobain Isover Produit d'isolation thermique a base de laine minerale et procede de fabrication du produit
US10160004B2 (en) * 2015-07-07 2018-12-25 Palo Alto Research Center Incorporated Creating aligned and oriented fiber reinforced polymer composites
FR3049278B1 (fr) * 2016-03-24 2018-04-13 Saint-Gobain Isover Procede de fabrication de matelas de laine minerale autoadhesifs
CN105970533B (zh) * 2016-07-12 2018-02-23 泰山玻璃纤维有限公司 玻璃纤维耐碱网格布用可旋转式热熔机构
JP6091692B1 (ja) 2016-09-20 2017-03-08 サン−ゴバン イゾベール 無機繊維積層体、それを用いた真空断熱材、及びその製造方法
IT202000023782A1 (it) * 2020-10-09 2022-04-09 Stm Tech S R L Apparecchiatura per la produzione continua di un materasso comprendente fibre minerali agglomerate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1063235A (fr) * 1951-06-29 1954-04-30 Owens Corning Fiberglass Corp Fabrication de nattes ou paillassons en fibres
FR1234390A (fr) * 1959-07-28 1960-10-17 Owens Corning Fiberglass Corp Procédé de formation de fibres en matériaux minéraux se ramollissant à la chaleur
FR1342362A (fr) * 1961-10-17 1963-11-08 Owens Corning Fiberglass Corp Procédé et appareil pour former et recueillir des fibres
FR2088396A1 (en) * 1970-05-07 1972-01-07 Fiberglas Canada Ltd Slag wool carpeting or felt
FR2176935A1 (fr) * 1972-03-21 1973-11-02 Owens Corning Fiberglass Corp

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2442880A (en) * 1944-04-04 1948-06-08 Celanese Corp Textile product
US2714081A (en) * 1950-03-17 1955-07-26 William H Rambo Process of forming fibrous sheets
NL197431A (fr) * 1954-05-22
US2993239A (en) * 1954-11-08 1961-07-25 Weyerhaeuser Co Production of integral layered felts
US2913365A (en) * 1954-12-01 1959-11-17 C H Dexter & Sons Inc Fibrous webs and method and apparatus for making same
US2897874A (en) * 1955-12-16 1959-08-04 Owens Corning Fiberglass Corp Method and apparatus of forming, processing and assembling fibers
US3493452A (en) * 1965-05-17 1970-02-03 Du Pont Apparatus and continuous process for producing fibrous sheet structures
US3509604A (en) * 1967-10-03 1970-05-05 Int Paper Co Air laying system having a seal roll
US3546898A (en) * 1967-12-28 1970-12-15 Owens Corning Fiberglass Corp Nonuniform motion producing structure for producing fibrous mats
AT322963B (de) * 1970-10-30 1975-06-25 Arledter Hanns F Dr Ing Verfahren zur blattbildung bei einer doppelsieb-papiermaschinen
US3787194A (en) * 1972-05-16 1974-01-22 Johns Manville Collection chamber for making mats of inorganic fibers
US3961397A (en) * 1974-11-21 1976-06-08 Scott Paper Company Clump removal devices
US4201247A (en) * 1977-06-29 1980-05-06 Owens-Corning Fiberglas Corporation Fibrous product and method and apparatus for producing same
AT356505B (de) * 1977-07-27 1980-05-12 Escher Wyss Gmbh Stoffauflauf fuer papiermaschinen
US4353686A (en) * 1981-01-19 1982-10-12 Formica Corporation Apparatus for air-layer fibrous webs
US4495119A (en) * 1982-07-12 1985-01-22 Raymond Chung Method for producing homogeneous batts of air-laid fibers
IT1159034B (it) * 1983-06-10 1987-02-25 Cselt Centro Studi Lab Telecom Sintetizzatore vocale
FR2548695B1 (fr) * 1983-07-07 1986-06-20 Saint Gobain Isover Formation de feutres a structure isotrope
IT1184011B (it) * 1985-12-11 1987-10-22 Fonderie Officine Riunite Ing Dispositivo per la produzione di veli sovrapposti di tessuto non tessuto con fibre disposte longitudinalmente particolarmante per l alimentazione di una trapuntatrice ad aghi

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1063235A (fr) * 1951-06-29 1954-04-30 Owens Corning Fiberglass Corp Fabrication de nattes ou paillassons en fibres
FR1234390A (fr) * 1959-07-28 1960-10-17 Owens Corning Fiberglass Corp Procédé de formation de fibres en matériaux minéraux se ramollissant à la chaleur
FR1342362A (fr) * 1961-10-17 1963-11-08 Owens Corning Fiberglass Corp Procédé et appareil pour former et recueillir des fibres
FR2088396A1 (en) * 1970-05-07 1972-01-07 Fiberglas Canada Ltd Slag wool carpeting or felt
FR2176935A1 (fr) * 1972-03-21 1973-11-02 Owens Corning Fiberglass Corp

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547587A1 (fr) * 1991-12-17 1993-06-23 Grünzweig + Hartmann AG Appareil pour réaliser un matelas de fibres minerals en continu
DE19834963A1 (de) * 1998-08-03 2000-02-17 Pfleiderer Daemmstofftechnik G Vorrichtung und Verfahren zur Herstellung von Mineralwollevlies
FR2811662A1 (fr) 2000-07-13 2002-01-18 Saint Gobain Isover Produit d'isolation thermique/phonique a base de laine minerale
WO2013093348A1 (fr) 2011-12-20 2013-06-27 Saint-Gobain Isover Etuve pour la fabrication d'un produit en laine minerale
EP2695984A1 (fr) * 2012-08-06 2014-02-12 Oskar Dilo Maschinenfabrik KG Dispositif de formation d'un tissu non-tissé ou d'un matelas de fibres floquées
WO2021058634A1 (fr) 2019-09-26 2021-04-01 Saint-Gobain Isover Methode de recyclage des eaux issues d'un procede de fabrication d'un matelas de fibres minerales
FR3101343A1 (fr) 2019-09-26 2021-04-02 Saint-Gobain Isover Methode de recyclage des eaux issues d’un procede de fabrication d’un matelas de fibres minerales

Also Published As

Publication number Publication date
AU5718390A (en) 1991-01-03
PL285857A1 (en) 1991-01-14
DK0406107T3 (da) 1994-08-29
US5268015A (en) 1993-12-07
ATE104374T1 (de) 1994-04-15
NO902859L (no) 1991-01-02
DE69008055D1 (de) 1994-05-19
ZA904810B (en) 1991-05-29
CN1026139C (zh) 1994-10-05
FI903272A0 (fi) 1990-06-28
KR0131319B1 (ko) 1998-04-16
NO920634D0 (no) 1992-02-18
SK280747B6 (sk) 2000-07-11
ES2054294T3 (es) 1994-08-01
IE64769B1 (en) 1995-09-06
CA2020070C (fr) 2002-01-01
HUT62245A (en) 1993-04-28
AU631217B2 (en) 1992-11-19
TR25049A (tr) 1992-09-01
IE902187A1 (en) 1991-01-02
PT94519B (pt) 1997-07-31
NO174166B (no) 1993-12-13
NO170294B (no) 1992-06-22
BR9003076A (pt) 1991-08-27
DE69008055T2 (de) 1994-10-13
FI100114B (fi) 1997-09-30
PL164769B1 (en) 1994-10-31
JP2904874B2 (ja) 1999-06-14
CN1048419A (zh) 1991-01-09
NO902859D0 (no) 1990-06-27
NO174166C (no) 1994-03-23
JPH0340853A (ja) 1991-02-21
HU210427B (en) 1995-04-28
CA2020070A1 (fr) 1990-12-30
KR910001133A (ko) 1991-01-30
NO920634L (no) 1991-01-02
YU47358B (sh) 1995-01-31
IE902187L (en) 1990-12-29
YU120490A (sh) 1992-09-07
HRP950202B1 (en) 1999-04-30
HU904026D0 (en) 1990-12-28
AR243615A1 (es) 1993-08-31
SI9011204A (en) 1994-12-31
DD296322A5 (de) 1991-11-28
PT94519A (pt) 1992-01-31
NO170294C (no) 1992-09-30
US5065478A (en) 1991-11-19
NZ234137A (en) 1992-11-25
CZ283887B6 (cs) 1998-06-17
HRP950202A2 (en) 1997-08-31
EP0406107B1 (fr) 1994-04-13

Similar Documents

Publication Publication Date Title
EP0406107B1 (fr) Procédé et dispositif de réception de fibres minérales
EP1360152B1 (fr) Procede et dispositif de formation de laine minerale
CA1340688C (fr) Formation de feutres a structure isotrope
EP0072300B1 (fr) Procédé et dispositif pour l'amélioration de la distribution sur un organe de reception de fibres véhiculées par un courant gazeux
WO2003100148A1 (fr) Procede et installation pour la fabrication de preformes fibreuses annulaires
EP0091866B1 (fr) Formation de fibres comprenant une centrifugation
CA2547526A1 (fr) Machine de production de non-tisse, son procede de reglage et non-tisse obtenu
FR2824084A1 (fr) Alimentation aiguilleteuse par bande spirale continue
EP2904137B1 (fr) Installation et procédé pour fabriquer un produit d'isolation thermique et/ou phonique
EP0091381B1 (fr) Perfectionnements aux techniques de formation de fibres par centrifugation et étirage gazeux
AU661948B2 (en) Apparatus for the continuous production of mineral wool nonwovens
EP0406106B1 (fr) Procédé et dispositif de réception de fibres minérales
FR2584105A1 (fr) Procede et appareil de fabrication d'un feutre de fibres de carbone et feutre obtenu par leur mise en oeuvre
FR2736940A1 (fr) Procede et dispositif pour la formation d'un feutre de fibres minerales de qualite amelioree
CA2294440C (fr) Procede et dispositif de fibrage de laine minerale par centrifugation libre
WO2010031912A2 (fr) Procede et installation de production d'un voile de non tisse avec depoussierage
FR2529878A1 (fr) Perfectionnements aux techniques de formation de fibres comprenant une centrifugation
EP0801635B2 (fr) Procede et dispositif pour la centrifugation libre de fibres minerales
EP0489639B1 (fr) Matelas fibreux destiné au pressage
EP3472380B1 (fr) Installation de traitement d'un matelas de fibres minerales par detection et evacuation de defauts localises, et procede correspondant
CA1038674A (fr) Fabrication de nappes uniformes a partir de materiaux particulaires
WO2022185012A1 (fr) Installation de fabrication de laine minerale
EP1672110A1 (fr) Procédé et dispositif de transport d'un non-tisse carde ou d'un non-tisse produit par voie aéraulique
EP4301915A1 (fr) Installation de fabrication de laine minerale
BE529263A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910522

17Q First examination report despatched

Effective date: 19921110

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 104374

Country of ref document: AT

Date of ref document: 19940415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69008055

Country of ref document: DE

Date of ref document: 19940519

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2054294

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940708

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3012439

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 90401839.7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20080612

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080612

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080625

Year of fee payment: 19

Ref country code: BE

Payment date: 20080626

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080710

Year of fee payment: 19

Ref country code: DE

Payment date: 20080624

Year of fee payment: 19

Ref country code: ES

Payment date: 20080717

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080702

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090603

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090610

Year of fee payment: 20

Ref country code: SE

Payment date: 20090605

Year of fee payment: 20

Ref country code: LU

Payment date: 20090612

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090514

Year of fee payment: 20

BERE Be: lapsed

Owner name: *ISOVER SAINT-GOBAIN

Effective date: 20090630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090627

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100627

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090629

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090627