EP0404881B1 - Brenngasgenerator - Google Patents

Brenngasgenerator Download PDF

Info

Publication number
EP0404881B1
EP0404881B1 EP89911757A EP89911757A EP0404881B1 EP 0404881 B1 EP0404881 B1 EP 0404881B1 EP 89911757 A EP89911757 A EP 89911757A EP 89911757 A EP89911757 A EP 89911757A EP 0404881 B1 EP0404881 B1 EP 0404881B1
Authority
EP
European Patent Office
Prior art keywords
gas
shaft
ash
zone
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89911757A
Other languages
English (en)
French (fr)
Other versions
EP0404881A1 (de
Inventor
Helmut Juch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUCH Helmut
Original Assignee
JUCH Helmut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUCH Helmut filed Critical JUCH Helmut
Publication of EP0404881A1 publication Critical patent/EP0404881A1/de
Application granted granted Critical
Publication of EP0404881B1 publication Critical patent/EP0404881B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0005Injecting liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices

Definitions

  • the invention relates to a fuel gas generator according to the preamble of claim 1.
  • Fuel gas generators of this type are used together with a kiln and a drying oven for ceramic moldings, in particular brick moldings.
  • the kilns for the moldings which are generally designed as tunnel ovens, are always preceded by drying ovens or dryers in order to remove the water contained in the freshly pressed molded bodies.
  • the design of the tunnel furnaces and the design of the devices are adapted to the type of energy used to generate the process heat.
  • the fire zone of such a tunnel kiln comprises a number of staggered rows of stoves arranged in the stoves' vault, with each row of stoves having a number of staggered holes with burners. Two or more rows of stoves are usually combined into control zones that can be controlled independently of one another.
  • the generator gas obtained according to the principle of countercurrent gasification can only be used for the subsequent direct combustion, since it contains a high content of difficult liquid pyrolysis products such as tar, phenol and the like, which condense at temperatures below 400 ° C.
  • the drying and pyrolysis zones are formed in the upper part of the reactor.
  • the air is fed in from above immediately after the pyrolysis zone.
  • the combustion generates the necessary temperatures to split the descending smoldering products from the pyrolysis zone into easily combustible gases.
  • the remaining volatile substances are also gasified from the charcoal. As a result, no tar products get into the subsequent reduction zone.
  • the fuel gas generator described in this patent has a shaft with essentially cylindrical inner dimensions.
  • the shaft consists of several ring-shaped sheet metal armor with fire-resistant lining, which are separated from one another by disc-like intermediate layers, the lower edge of the shaft being supported on a bracket.
  • the annular bodies formed by the sheet metal armor should be secured against one another by screwing or in some other way.
  • the loading column in the known fuel gas generator rests with its full weight on the wide-area rotating grate, so that it is considerably stressed becomes.
  • the gas is extracted via lateral pipe sockets in the stove ceramic.
  • the invention has for its object to provide a fuel gas generator of the type mentioned, which enables extremely inexpensive gas generation and whose combustion gases do not only meet the highest applicable requirements for exhaust gas purity (TA-Luft), but fall below them.
  • the fill level control of the feed chamber of the lock ends this process after the set fill level has been reached.
  • the upper slide then closes the feed lock. If the fill level in the preheating zone falls below the set level, the next level is initiated by the fill level control.
  • the fire in the constriction of the reactor shaft also known as the firebox, has the task of forming a layer of charcoal. This combustion generates the necessary temperature to split the descending carbonization products from the pyrolysis zone into easily combustible gases.
  • the central supply of the combustion air in the constriction guarantees the temperature necessary for the separation of the gases.
  • the reduction zone is closed at the bottom by a new design of the firebox.
  • An annular grate element is created by means of the counter cone entering the area of the firebox from below.
  • An annular passage for the ashes is formed, the cross section of which is variable.
  • the ash produced in very small quantities is collected in the ash room and transported away. Part of this ash can be mixed into the clay for the brick production as a porizing agent.
  • An important special feature of the fuel gas generator according to the invention is the design of the firebox, which also acts as a rust element. It is formed from a conical constriction which narrows from top to bottom and a conical constriction which adjoins this from the bottom up.
  • a counter cone can be inserted more or less concentrically into the conical constriction of the firebox, which narrows from bottom to top, thereby producing an annular passage of variable cross-section which forms the grate element. It is provided that the counter cone is arranged at the upper end of a lifting rod which is guided centrally in the reactor shaft and is equipped with a lifting drive, and further that the counter cone is rotatable and its lifting rod is additionally equipped with a rotary drive.
  • This configuration makes it possible to adapt the grate element formed by the firebox to the nature and grain size of the feed material and to influence the process control.
  • the annular passage between the cone and the conical surface of the firebox is changed, whereby the throughput speed can also be controlled.
  • gas-tight feed lock which consists of two mutually openable and closable, arranged in the shaft head above and below a loading container, which closes this downwards towards the reactor shaft and upwards to an upstream fuel delivery device , there are sealed flat or rotary valves in their guides.
  • gas-tight ash chamber lock which is constructed in a technical and functional manner like the loading lock, it is ensured that the entire reactor shaft, except for the area where the lean gas is drawn off, is absolutely gas-tight.
  • the gas generator according to the invention is equipped with a number of measuring, display and control devices.
  • At least one fill level measuring and display device is arranged in the feed chamber and in the area of the preheating zone in the reactor shaft according to claim 6, by means of which the feed rate of the feed device can be influenced and the feed lock can be controlled via a control device.
  • two or more level and display devices can be arranged in the reactor shaft to control the fill level in order to detect the upper and lower fill level limit.
  • thermocouples for temperature control in the preheating, the degassing and the oxidation zone are arranged above and in the area of the fire box, the air quantity supply being able to be influenced by changes in cross section of the air openings by means of the measurement results of the thermocouples.
  • the fan suction power in the to the lean gas discharge line can be influenced by means of measurement results of the thermocouples.
  • the control system in such a way that the oxygen content of the reaction air supply can be influenced by means of the measurement results of the thermocouples, depending on the feedstock used and the desired process.
  • the structural features of the fuel gas generator are of great importance, which, according to claim 5, consist in the shaft casing of the generator with the gas-tight generator shaft and the material loading devices being suspended in a frame which consists of frame stands and frame beams connecting them . It is provided that the generator shaft casing are attached to the frame cross members by means of flexible brackets, and further that the frame consisting of the frame stands and the frame cross members is completely surrounded by a frame casing, only the air openings in the area of the Serve foundations for air access.
  • an annular space between the frame casing and the shaft casing serves for the reaction supply air supply and is connected to the riser pipe and the air introduction pipe. This ensures that the sucked-in reaction air sweeps along the hot shaft casing and is thereby heated.
  • a further advantageous thermal effect results from the measure according to claim 4.
  • This arrangement and design ensures that the lean gas emerging downward in the area of the lower edge of the reactor shaft draws upward in this cylindrical cavity and thereby releases part of its heat to the reactor shaft wall in the upper area of the reactor shaft, ie in the area of the preheating zone Preheating is improved and cooled at the same time.
  • the fuel gas generator 41 is designed as a gas generator and is suspended in a frame, which in the exemplary embodiment consists of four frame stands 42 which are connected to one another at their upper end by frame cross members 45.
  • a bracket 46 is attached to the frame cross members 45, in which the cylindrical shaft casing 47 of the gas generator is fastened, the larger part of the shaft casing hanging downward in the frame 42, while a shorter piece of the shaft casing holds the frame cross members 45 towering above. This ensures that the shaft casing can move up and down without constraint.
  • the shaft casing 47 is closed at the bottom by a base plate 48 and at the top by a head plate 49, both of which are annular.
  • the shaft head 50 is placed on the upper head plate 49 and is closed at the top by a gas-tight loading lock; This consists of a flat slide 52, 53 arranged below and above a loading chamber 51, which are sealed in their guides. Above the upper flat slide 53, a feed feeder 54, not shown, is provided above the upper flat slide 53. The material falls into the loading chamber 51 when the upper flat slide 53 is open. This is equipped with a fill level measuring and display device 89. In this way, the feed supply 54 can be influenced and the feed lock controlled via a control device (not shown). After closing the upper flat slide 53, the lower flat slide 52 is opened and the material falls into the generator shaft 55, 57 located underneath.
  • the upper shaft part 55 is connected to the upper top plate 49 in a hanging manner, provided with an inner lining and serves as a preheating and degassing zone 56 for the filled material.
  • a fill level measuring device 88 is arranged, which can also be combined with a temperature sensor.
  • a lower shaft part 57 which is equipped with a highly refractory lining 58 and has a fire box 65. This is formed from a conical constriction 59 which narrows from top to bottom and a conical constriction 60 which adjoins this from bottom to top.
  • the oxidation and reduction zones 70 are formed in this area.
  • a cylindrical cavity 66 extends between the shaft casing 47 and the upper and lower shaft parts 55 and 57 of smaller outside diameter, which extends from the lower edge of the lower shaft part 57 to the head plate 49.
  • the lean gas produced and drawn down at 64 pulls upwards and heats the material present in the preheating zone 56, after which it passes through the lean gas collecting pipes 67 and the ring line 68 into the lean gas discharge line 77.
  • the reaction air or an inert gas is fed into the reactor shaft 55, 57 through an air inlet pipe 63, which runs centrally in the vertical axis A of the reactor 41 and extends down to the starting area of the firebox 65 and is connected to the riser pipe 62.
  • the reaction air is sucked into the area of the openings 44, which are left free in the frame casing 43 surrounding the frame stand 42 in the area of the foundation. Between this casing 43 and the cylindrical manhole casing 47, an annular space 61 is created, through which the sucked-in air rises, heats up and enters the riser 62.
  • the counter-cone 71 which can be inserted into the fire box 65 from below, sits concentrically to the vertical axis at the upper end of a lifting rod 72, which is sealed and can be raised and lowered in a vertical guide 73.
  • the lower part of the vertical guide 73 is designed in a manner not shown as a hydraulic lifting cylinder.
  • the hydraulic drive consists of the motor 84, the hydraulic pump 82 and the expansion tank 83. Furthermore, a rotary drive with a motor 78 is arranged such that it acts directly on the lifting rod 72.
  • the counter cone 71 can be adjusted so that the conical ring-shaped passage 69 is larger or smaller.
  • the combination of firebox 65 with counter cone 71 acts as an adjustable grate element which can be adapted to the nature, in particular the grain size, of the feed material.
  • the ash parts fall through the passage 69 and reach the ash chamber 76 located above the ash chamber lock 91, 92, 93, where it accumulates on the upper flat slide 92.
  • the ash chamber 76 has an inclined surface 74 which is penetrated by the vertical guide 73 of the lifting rod 72 and is sealed off from it by the stuffing box 75. Furthermore, this inclined surface is steep enough and coated in such a way that ash bridges do not occur.
  • the ash chamber lock consists of the upper ash chamber flat slide 92 and the lower ash room flat slide 93, between which the ash chamber 91 can be closed airtight upwards and downwards.
  • the ash is emptied periodically - like the material loading - always one
  • the amount of ash drained from the ash chamber 76 into the ash chamber 91 and from there by opening and closing the lower flat ash slide valve 93 into the collection and transport container 94.
  • a sensor 87 is arranged in the ash chamber, which reports a certain fill level and initiates the sluicing of this amount of ash. After a larger ash element has been passed through and accumulated in the transport container 94, the latter is removed and exchanged for an empty container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

  • Die Erfindung betrifft einen Brenngasgenerator gemäß dem Oberbegriff des Anspruchs 1.
  • Brenngasgeneratoren dieser Art dienen zur Verwendung zusammen mit einem Brenn- sowie einem Trockenofen für keramische Formkörper, insbesondere Ziegelstein-Formlinge. Den in der Regel als Tunnelöfen ausgebildeten Brennöfen für die Formlinge sind stets Trockenöfen bzw. Trockner vorgeschaltet, um das in dem frischgepreßten Formkörpern enthaltene Wasser zu entfernen.
  • Die Tunnelöfen sind in ihrer Auslegung und vorrichtungsmäßigen Gestaltung an die jeweils zur Erzeugung der Prozeßwärme eingesetzte Energieart angepaßt. In aller Regel umfaßt die Feuerzone eines derartigen Tunnelofens eine Anzahl von gestaffelt im Ofengewölbe angeordneten Schürreihen, wobei jede Schürreihe eine Anzahl von in Abständen nebeneinanderliegenden, mit Brennern ausgerüsteten Schürlöchern aufweist. Zwei oder mehr Schürreihen sind zumeist zu voneinander unabhängig steuerbaren Regelzonen zusammengefaßt.
  • Der Betrieb solcher Anlagen, insbesondere von Ziegeleien, erfordert einen außerordentlich hohen Energieeinsatz für den Antrieb der Förder- und Formmaschinen und vor allem für die Prozeßwärme an Öfen und Trocknern. Die Möglichkeit der Reduzierung des Kostenaufwandes für die Prozeßwärme ist häufig entscheidend darüber, ob eine derartige Anlage noch kostendeckend betrieben werden kann.
  • Von ausschlaggebender Bedeutung für den störungsfreien Betrieb der Brenn- und Trockenofen-Anlage ist die Lieferung eines diesen technologischen Anforderungen entsprechenden Generator-Schwachgases. Von den hauptsächlichen Generator-Vergasersystemen, dem zumeist bevorzugten Gegenstrom- und dem Gleichstromvergaser wird hier letzterem zur Erzeugung des Schwachgases der Vorzug gegeben. Das nach dem Prinzip der Gegenstromvergasung gewonnene Generatorgas kann nur zur anschließenden direkten Verbrennung verwendet werden, da es einen hohen Gehalt an schwerflüssigen Pyrolyseprodukten wie Teer, Phenol und dgl. enthält, die bei Temperaturen unter 400°C kondensieren.
  • Bei dem hier bevorzugten Prinzip mit absteigender Vergasung bilden sich im oberen Teil des Reaktors die Trocken- und die Pyrolysezone aus. In Abweichung vom Gegenstromprinzip wird die Luft unmittelbar nach der Pyrolysezone von oben zugeführt. Die Verbrennung erzeugt die notwendigen Temperaturen, um die absteigenden Schwelprodukte aus der Pyrolysezone in leichtbrennbare Gase aufzuspalten. Ebenfalls werden aus der Holzkohle die restlichen flüchtigen Stoffe vergast. Dadurch gelangen in die anschließende Reduktionszone keine Teerprodukte.
  • Bezüglich der technologischen Besonderheiten dieser Vergasungsprozesse wird hingewiesen auf "Holzvergasung", Willy Bierter/Christian Gaegauf, Karlsruhe, 1982, S. 52 ff. Ein Brenngasgenerator der eingangs genannten Art ist der DE-PS 32 39 624 zu entnehmen. Der in dieser Patentschrift beschriebene Brenngasgenerator hat einen Schacht mit im wesentlichen zylindrischen Innenabmessungen. Der Schacht besteht aus mehreren ringförmigen Blechpanzern mit feuerfester Auskleidung, die durch scheibenartige Zwischenlagen voneinander getrennt sind, wobei sich die Unterkante des Schachtes auf einer Konsole abstützt. Die von den Blechpanzern gebildeten Ringkörper sollen durch Verschraubung oder auf andere Weise gegeneinander gesichert sein. Die Beschickungssäule in dem bekannten Brenngasgenerator ruht mit ihrem vollen Gewicht auf dem breitflächigen Drehrost, so daß dieser erheblich belastet wird. Der Gasabzug erfolgt über seitliche Rohrstutzen in der Herdkeramik.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Brenngasgenerator der eingangs genannten Art zu schaffen, der eine äußerst kostengünstige Gaserzeugung ermöglicht und dessen Verbrennungsabgase den höchsten geltenden Anforderungen an Abgasreinheit (TA-Luft) nicht nur genügen, sondern diese unterschreiten.
  • Diese Aufgabe wird erfindungsgemäß durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.
  • Über eine Beschickungszuführung wird der vorher zerkleinerte Brennstoff, z. B. Holz, in die Beschickungsschleuse gebracht, dabei ist der obere Schieber der Schleuse geöffnet, der untere geschlossen. Durch die Füllstandsteuerung der Beschickungskammer der Schleuse wird nach Erreichen der eingestellten Füllhöhe dieser Vorgang beendet. Danach schließt der obere Schieber die Beschickungsschleuse. Rutscht die Füllhöhe in der Vorwärmzone unter die eingestellte Höhe, dann wird durch die Füllstandssteuerung ein nächster Beschickungsvorgang eingeleitet. Das Feuer in der auch als Feuerbüchse bezeichneten Einschnürung des Reaktorschachts hat die Aufgabe, eine Holzkohlenschicht zu bilden. Diese Verbrennung erzeugt die notwendige Temperatur um die absteigenden Schwelprodukte aus der Pyrolysezone in leichtbrennbare Gase aufzuspalten. Die zentrale Zuführung der Verbrennungsluft gewährt in der Einschnürung die zur Aufspaltung der Gase notwendige Temperatur.
  • Die Reduktionszone wird nach unten durch eine neuartige Ausbildung der Feuerbüchse abgeschlossen. Mittels des von unten in den Bereich der Feuerbüchse eintretenden Gegenkegels wird ein ringförmiges Rostelement geschaffen. Es wird ein ringförmiger Durchlaß für die Asche gebildet, dessen Querschnitt veränderlich ist.
  • Die in ganz geringen Mengen anfallende Asche wird im Ascheraum gesammelt und abtransportiert. Von dieser Asche kann ein Teil dem Lehm für die Backsteinherstellung als Porisierungsmittel beigemischt werden.
  • Eine bedeutsame Besonderheit des erfindungsgemäßen Brenngaserzeugers besteht in der Ausgestaltung der Feuerbüchse, welche zugleich als Rost-Element wirkt. Sie ist aus einer sich von oben nach unten verengenden konischen Einschnürung und einer sich an diese anschließenden von unten nach oben verengenden konischen Einschnürung gebildet. Nach einem zusätzlichen Merkmal ist in die sich von unten nach oben verengende konische Einschnürung der Feuerbüchse ein Gegenkegel konzentrisch mehr oder weniger hoch einschiebbar und dadurch ein das Rost-Element bildender ringförmiger Durchlaß von veränderlichem Querschnitt herstellbar. Dabei ist vorgesehen, daß der Gegenkegel am oberen Ende einer zentrisch im Reaktorschacht geführten und mit einem Hubantrieb ausgerüsteten Hubstange angeordnet, und ferner daß der Gegenkegel drehbar und seine Hubstange zusätzlich mit einem Drehantrieb ausgerüstet ist.
  • Durch diese Ausgestaltung ist es möglich, das durch die Feuerbüchse gebildete Rost-Element an die Beschaffenheit und Korngröße des Einsatzmaterials anzupassen und die Prozeßführung zu beeinflussen. Mittels des verstellbaren Gegenkegels wird der ringförmige Durchlass zwischen dem Kegel und der Kegelfläche der Feuerbüchse verändert, wodurch auch die Durchsatzgeschwindigkeit gesteuert werden kann.
  • Ein weiteres wesentliches Merkmal ist in der gasdichten Beschickungsschleuse gemäß Anspruch 2 zu sehen, die aus zwei im Schachtkopf oberhalb und unterhalb eines Beschickungsbehälters angeordnete, diesen nach unten zum Reaktorschacht hin und nach oben zu einer vorgeschalteten Brennstoff-Fördervorrichtung hin abschließenden, wechselseitig öffen- und schließbaren, in ihren Führungen abgedichteten Flach- oder Drehschiebern besteht. In Verbindung mit der ebenfalls gasdichten Ascheraumschleuse, welche technisch-funktionell wie die Beschickungsschleuse aufgebaut ist, wird sichergestellt, daß der gesamte Reaktorschacht bis auf den Bereich des Abzugs des erzeugten Schwachgases absolut gasdicht geschlossen ist.
  • Um eine dem jeweiligen Einsatzmaterial angepaßten optimalen Prozeßverlauf zu ermöglichen, ist der Gaserzeuger nach der Erfindung mit einer Anzahl von Meß-, Anzeige- und Steuervorrichtungen ausgestattet.
  • Die Zuförderung und Beschickung des Generators mit Einsatzmaterial muß entsprechend dem Prozeßfortschritt gesteuert werden. Zu diesem Zweck ist in der Beschickungskammer sowie im Bereich der Vorwärmzone im Reaktorschacht gemäß Anspruch 6 jeweils wenigstens ein Füllstandmeß- und Anzeigegerät angeordnet, mittels welchen über ein Regelgerät die Förderleistung der Beschickungsvorrichtung beeinflußbar und die Beschickungsschleuse steuerbar sind. Es können vor allem im Reaktorschacht zur Kontrolle der Füllhöhe auch zwei oder mehr Füllstands- und Anzeigegeräte angeordnet sein, um den oberen und unteren Füllstand-Grenzwert zu erfassen. Mittels dieser Meßvorrichtungen können die periodische Beschickung und deren jeweilige Beschickungsmenge sowie die hierfür erforderlichen Funktionen eines Beschickungsförderers und der Schieber der Beschickungsschleuse ferngesteuert werden.
  • Ferner sind nach der weiteren Erfindung oberhalb und im Bereich der Feuerbüchse Thermoelemente zur Temperaturkontrolle in der Vorwärm, der Entgasungs- und der Oxidationszone angeordnet sind, wobei mittels der Meßergebnisse der Thermoelemente die Luftmengen-Zuführung durch Querschnittsveränderungen der Luftöffnungen beeinflußbar ist. Weiterhin kann auch vorgesehen sein, daß mittels Meßergebnisse der Thermoelemente die Ventilator-Saugzugleistung in der an die Schwachgasabführungsleitung beeinflußbar ist. Darüber hinaus ist es auch möglich, die Steuerung derart auszulegen, daß in Abhängigkeit von dem verwendeten Einsatzmaterial und dem gewünschten Prozeßverlauf mittels der Meßergebnisse der Thermoelemente der Sauerstoffanteil der Reaktionsluft-Zuführung beeinflußbar ist.
  • Die Konzeption dieses Gaserzeugers als Ganzes ermöglicht in bisher nicht bekannter Weise seine vielseitige Anwendungs-und Einsatzmöglichkeiten. Es können die unterschiedlichsten organischen bzw. fossilen oder anorganischen Materialien in einem weiten Korngrößenbereich eingesetzt werden, um ein Schwachgas von sehr gutem Brennwert herzustellen. Wesentlich bei diesem Generatorkonzept ist vor allem, daß die Verbrennung des erzeugten Schwachgases besonders umweltverträglich ist. Messungen eines anerkannten Instituts für Umweltanalytik haben ergeben, daß das Abgas folgende Meßwerte aufwies:
    Gaschromatographische Messungen:
    Sauerstoff 15,5 Vol.%
    Stickstoff 78,3 Vol.%
    Methan < 0,03 Vol.%
    Kohlendioxid 6,2 Vol.%
    Wasserstoff < 0,01 Vol.%
  • Diese Durchschnittswerte ergaben sich im Normalbetrieb etwa zwei Stunden nach Zündung des Generators. Als weiteres Meßergebnis konnte festgestellt werden:
    Formaldehydkonzentr. < 0,01 Vol.%
  • Mit diesen Abgaswerten können die Grenzwerte der Luftreinhaltungsvorschriften (TA Luft) unterschritten werden.
  • Nach der weiteren Erfindung sind auch die konstruktiven Baumerkmale des Brenngaserzeugers von großer Bedeutung, die gemäß Anspruch 5 darin, bestehen, daß der Schachtmantel des Generators mit dem gasdichten Generatorschacht sowie den Materialbeschickungsvorrichtungen hängend in einem Gestell angeordnet ist, welches aus Gestellständern und diese verbindenden Gestelltraversen besteht. Dabei ist vorgesehen, daß der Generator-Schachtmantel mittels nachgiebigen Halterungen an den Gestelltraversen angehängt sind, und ferner, daß das Gestell, bestehend aus den Gestellständern und den Gestelltraversen von einer Gestell-Ummantelung vollständig umgeben ist, wobei lediglich die Luft-Öffnungen im Bereich des Fundaments dem Luftzutritt dienen.
  • Von großem Vorteil ist vor allem die Ausbildungsweise, daß gemäß Anspruch 3 ein Ringraum zwischen der Gestell-Ummantelung und dem Schachtmantel der Reaktionszuluftzuführung dient und mit dem Steigrohr und dem Lufteinführungsrohr in Verbindung steht. Dadurch wird erreicht, daß die angesaugte Reaktionsluft an dem heissen Schachtmantel entlangstreicht und dadurch erwärmt wird. Ein weiterer vorteilhafter thermischer Effekt ergibt sich aus der Maßnahme gemäß Anspruch 4. Danach besteht zwischen dem Schachtmantel und dem oberen und unteren Teil des Reaktorschachts ein vertikaler gasdichter zylinderischer Hohlraum, durch welchen das am unteren Ende unteren Reaktorschachts austretende Schwachgas nach oben abzieht und in die an den Hohlraum angeschlossenen Schwachgas-Sammelrohre gelangt. Durch diese Anordnung und Ausbildung wird erreicht, daß das nach unten im Bereich der Unterkante des Reaktorschachts austretende Schwachgas in diesem zylinderischen Hohlraum nach oben abzieht und dabei im oberen Bereich des Reaktorschachts, d. h. im Bereich der Vorwärmzone einen Teil seiner Wärme an die Reaktorschachwandung abgibt, die Vorwärmung verbessert und zugleich abgekühlt wird.
  • Durch diese Bau-Maßnahmen wird der thermische Wirkungsgrad und daher nicht nur die Wärmebilanz verbessert, sondern es wird auch eine bessere Verkohlung und Entgasung des Einsatzgutes bewirkt, mit dem Ergebnis, daß ein energiereicheres Schwachgas und ein geringerer Rückstandanteil produziert wird.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand des in der Zeichnung dargestellten und im folgenden näher erläuterten Ausführungsbeispiels.
  • Es zeigen
  • Fig. 1
    einen vertikalen Längsschnitt durch einen Brenngaserzeuger;
    Fig. 2
    einen Teilschnitt gem. Fig. 1.
  • Der Brenngaserzeuger 41 ist als Gasgenerator ausgebildet und hängend in einem Gestell angeordnet, welches im Ausführungsbeispiel aus vier Gestellständern 42 besteht, die an ihrem oberen Ende durch Gestelltraversen 45 miteinander verbunden sind. An den Gestelltraversen 45 ist eine Halterung 46 angebracht, in welcher der zylindrische Schachtmantel 47 des Gasgenerators befestigt ist, wobei der größere Teil des Schachtmantels im Gestell 42 nach unten hängt, während ein kürzeres Stück des Schachtmantels die Gestelltraversen 45 nach oben überragt. Dadurch ist gewährleistet, daß sich der Schachtmantel zwängungsfrei nach oben und unten bewegen kann.
  • Der Schachtmantel 47 ist nach unten durch ein Bodenblech 48 und nach oben durch ein Kopfblech 49 abgeschlossen, die beide kreisringartig ausgebildet sind.
  • Auf dem oberen Kopfblech 49 ist der Schachtkopf 50 aufgesetzt, welcher nach oben durch eine gasdichte Beschickungsschleuse abgeschlossen ist; diese besteht aus je einem unterhalb und oberhalb einer Beschickungskammer 51 angeordneten Flachschieber 52, 53, die in ihren Führungen abgedichtet sind. Oberhalb des oberen Flachschiebers 53 ist eine nicht näher dargestellte Beschickungszuführung 54 vorgesehen. Das Material fällt bei geöffnetem oberen Flachschieber 53 in die Beschickungskammer 51. Dies ist mit eine Füllständsmeß- und Anzeigegerät 89 ausgerüstet. Über ein nicht dargestelltes Regelgerät kann dadurch die Beschickungszuführung 54 beeinflußt und die Beschickungsschleuse gesteuert werden. Nach Schließen des oberen Flachschiebers 53 wird der untere Flachschieber 52 geöffnet und das Material fällt in den darunter befindlichen Generatorschacht 55, 57. Der obere Schachtteil 55 ist hängend an das obere Kopfblech 49 angeschlossen, mit einem Innenfutter versehen und dient als Vorwärm- und Entgasungszone 56 für das eingefüllte Material. Im Bereich dieser Zone ist ein Füllstandmeßgerät 88 angeordnet, welches auch zugleich mit einem Temperatursensor kombiniert sein kann. Dadurch kann der Prozeßverlauf, insbesondere die Durchsatzgeschwindigkeit und auch die Prozeßtemperatur überwacht und erfoderlichenfalls beeinflußt werden.
  • Unter der Vorwärm- und Entgasungszone schließt sich ein unterer mit einer hochfeuerfesten Auskleidung 58 ausgerüsteter Schachtteil 57 an, der eine Feuerbüchse 65 aufweist. Diese ist aus einer sich von oben nach unten verengenden konischen Einschnürung 59 und einer sich an diese anschließenden von unten nach oben verengenden konischen Einschnürung 60 gebildet. In diesem Bereich bildet sich die Oxidations-und die Reduktionszone 70 aus.
  • Zwischen dem Schachtmantel 47 und dem oberen und unteren Schachtteil 55 und 57 von kleinerem Außendurchmesser erstreckt sich ein zylindrischer Hohlraum 66, welcher von der Unterkante des unteren Schachtteils 57 bis zum Kopfblech 49 reicht. In diesem Hohlraum 66 zieht das produzierte und bei 64 nach unten ausziehende Schwachgas nach oben und erwärmt dabei das in der Vorwärmzone 56 vorhandene Material, wonach es durch die Schwachgas-Sammelrohre 67 und die Ringleitung 68 in die Schwachgas-Abführungsleitung 77 gelangt.
  • Die Reaktionsluft oder ein Inertgas wird in den Reaktorschacht 55, 57 durch ein zentral in der Vertikalachse A des Reaktors 41 vertikal verlaufende, nach unten bis in den Anfangsbereich der Feuerbüchse 65 reichende Lufteinführungsrohr 63 zugeführt, welches an das Steigrohr 62 angeschlossen ist. Die Reaktionsluft wird in Bereich der Öffnungen 44 angesaugt, welche in der die Gestellständer 42 umgebenden Gestell-Ummantelung 43 im Fundamentbereich freigelassen sind. Zwischen dieser Ummantelung 43 und dem zylindrischen Schachtmantel 47 ist ein Ringraum 61 geschaffen, durch welchen die angesaugte Luft nach oben steigt, sich dabei erwärmt und in die Steigleitung 62 eintritt.
  • Wesentlich für die Prozeßführung im Gënerator ist die Einrichtung des von unten in die Feuerbüchse 65 einschiebbaren Gegenkegels 71, der konzentrisch zur Vertikalachse am oberen Ende einer Hubstange 72 sitzt, welche abgedichtet in einer Vertikalführung 73 heb- und senkbar geführt ist. Der untere Teil der Vertikalführung 73 ist in nicht näher dargestellter Weise als hydraulischer Hubzylinder ausgebildet. Der Hydraulikantrieb besteht aus dem Motor 84, der Hydraulikpumpe 82 und dem Ausgleichsgefäß 83. Ferner ist ein Drehantrieb mit Motor 78 derart angeordnet, daß er direkt auf die Hubstange 72 wirkt.
  • Der Gegenkegel 71 kann so eingestellt werden, daß der kegelringförmige Durchlass 69 größer oder kleiner ist. Die Kombination von Feuerbüchse 65 mit Gegenkegel 71 wirkt als verstellbares Rostelement, welches der Beschaffenheit, insbesondere der Korngröße des Einsatzmaterials angepaßt werden kann. Die Ascheteile fallen durch den Durchlass 69 und gelangen in die oberhalb der Ascheraum-Schleuse 91, 92, 93 befindliche Aschekammer 76, wo sie sich auf dem oberen Flachschieber 92 ansammelt. Die Aschekammer 76 weist eine Schrägfläche 74 auf, die von der Vertikalführung 73 der Hubstange 72 durchsetzt wird und gegenüber dieser durch die Stopfbüchse 75 abgedichtet ist. Ferner ist diese Schrägfläche steil genug ausgelegt und derart beschichtet, daß eine Asche-Brükkenbildung nicht eintritt.
  • Die Ascheraum-Schleuse besteht aus dem oberen Ascheraum-Flachschieber 92 und dem unteren Ascheraum-Flachschieber 93, zwischen denen der Ascheraum 91 nach oben und unten luftdicht verschließbar ist. Die Asche-Entleerung erfolgt - wie die Materialbeschickung - periodisch, wobei stets eine Aschemenge aus der Aschekammer 76 in den Ascheraum 91 abgelassen und von da durch Öffnen und Schließen des unteren Ascheraum-Flachschiebers 93 in den Sammel- und Transportbehälter 94.
  • In der Aschekammer ist ein Fühler 87 angeordnet, welcher einen bestimmten Füllstand meldet und die Schleusung dieser Aschemenge einleitet. Nach dem Durchschleusen einer größeren Aschemente und deren Ansammlung in dem Transportbehälter 94 wird dieser entfernt und gegen einen leeren Behälter ausgetauscht.

Claims (6)

  1. Brenngasgenerator zur Erzeugung von Schwachgas durch Vergasung von organischen stückig vorliegenden Feststoffen. wie Holz, Torf, fossilen Brennstoffen oder auch von anorganischen Stoffen in einem mit einer feuerfesten Auskleidung versehenen Reaktorschacht, der im Mittelbereich zur Abstützung der nach unten wandernden Beschickungssäule und ihrer durch Entgasung gebildeten Reaktionsprodukte durch koaxiale Kegelstümpfe bildende Wandungen zu einer Feuerbüchse mit einem Durchmesser von etwa 2/3 bis 1/4 des Schachtinnendurchmessers verengt ist, sowie mit einem Brennstoff-Beschickungsorgan in Form einer gasdichten Beschickungsschleuse und mit einer zentralen, in der Vertikalachse des Reaktorschachtes liegenden Reaktionsluft-Zuführung im Schachtkopf und schichtweise vorliegender Vorwärmzone, Entgasungszone, Oxidationszone und Reduktionszone sowie im Bereich letzterer angeordneten Schwachgas-Abzugsöffnungen mit wenigstens einer an diese angeschlossenen Schwachgas-Abführungsleitung, ferner mit einem die Reduktionszone nach unten abschließenden kreis- oder ringförmigen Rost-Element sowie einer darunter liegenden Aschekammer und mit einem Ascheaustrag in Form einer gasdichten Ascheraumschleuse, dadurch gekennzeichnet, daß in den nach unten sich erweiternden Kegelstumpf (60) das kreis- oder ringförmige Rost-Element in Form eines axial in seiner Höhenlage verschiebbaren koaxialen Gegenkegels (71) hineinragt und mit dem Kegelstumpf (60) einen ringförmigen konischen Spalt mit veränderbarem Querschnitt als Durchlaß (69) bildet, wobei der Gegenkegel (71) auf einer mit Hubantrieb (81; 82; 83; 84) und Drehantrieb (78) versehenen heb- und senkbaren sowie drehbaren Hubstange (72) sitzt, dergestalt, dass das Ganze die Funktion des Rostes mit Ascheaustrag und Schwachgasabzug erfüllt, indem das Schwachgas den Reaktorschacht (55, 57) erst nach Durchströmen des Rost-Elements (60, 69, 71) verlässt.
  2. Brenngasgenerator nach Anspruch 1, dadurch gekennzeichnet, dass die gasdichte Beschickungsschleuse (51, 52, 53) aus zwei im Schachtkopf (50) oberhalb und unterhalb eines Beschickungsbehälters (51) angeordneten, diesen nach unten zum Reaktorschacht (55) hin und nach oben zu einer vorgeschalteten Brennstoff-Fördereinrichtung (54) hin abschliessenden, und die einen Ascheraum (91) abschliessende gasdichte, von einem Füllstandmess- und Anzeigegerät (87) in der Aschekammer (76) gesteuerte Ascheraumschleuse (91, 92, 93) ebenfalls aus je zwei in ihren Führungen abgedichteten Flachschiebern (52, 53; 92, 93) besteht, die wechselseitig geöffnet und geschlossen werden können.
  3. Brenngasgenerator nach Anspruch 1, dadurch gekennzeichnet, dass koaxial zum Reaktorschacht (55, 57) ein Ringraum (61) zwischen einem äusseren Mantel (43) und einem Zwischenmantel (47) vorgesehen ist, der der Zuführung und Vorwärmung der Reaktionsluft dient und mit einem Steigrohr (62) und einem zentralen Lufteinführungsrohr (63) in Verbindung steht.
  4. Brenngasgenerator nach Anspruch 1, dadurch gekennzeichnet, dass zwischen einem Zwischenmantel (47) und der Aussenwand des Reaktorschachts (55, 57) koaxial zu letzterem ein gasdichter Ringraum (66) vorgesehen ist, der der Führung und Kühlung sowie Wärmeabgabe an die Beschickung des am unteren Ende des unteren Reaktorschachts (57) austretenden Schwachgases und dessen Einleitung in die angeschlossenen Schwachgas-Sammelrohre (67) dient.
  5. Brenngasgenerator nach Anspruch 1, dadurch gekennzeichnet, dass der Zwischenmantel (47) des Generators (41) mit dem gasdichten Reaktorschacht (55, 57) sowie den Materialbeschickungsvorrichtungen mittels nachgiebigen Halterungen (46) an Gestelltraversen (45) angehängt ist, wobei sich letztere auf vertikale, radial angeordnete Gestellständer (42) abstützen, und dass das auf diese Weise gebildete Gestell von einem äusseren Mantel (43) vollständig umgeben ist, wobei lediglich die dem Luftzutritt dienenden Oeffnungen (44) im Bereich des Fundaments freigelassen sind.
  6. Brenngasgenerator nach Anspruch 1, dadurch gekennzeichnet, dass in der Beschickungskammer (51) sowie im Bereich der Vorwärmzone (56) im Reaktorschacht (55) jeweils wenigstens ein Füllstandmess- und Anzeigegerät (89; 88) angeordnet ist, mittels welchem über ein Regelgerät die Förderleistung der Beschickungsvorrichtung (54) beeinflusst und die Beschickungsschleuse (52, 53) gesteuert wird, und dass oberhalb und im Bereich der Feuerbüchse (65) Thermoelemente zur Temperaturkontrolle in der Vorwärm-, der Entgasungs- und der Oxidationszone angeordnet sind, mit deren Massergebnissen die Zufuhr der Reaktionsluft durch Querschnittsveränderung der Oeffnungen (44) sowie der Sauerstoffanteil der zugeführten Reaktionsluft oder des Inertgases und die Durchflussmenge des Ventilators in der Saugleitung (77) der Schwachgasabfuhr gesteuert und geregelt werden.
EP89911757A 1988-11-02 1989-11-01 Brenngasgenerator Expired - Lifetime EP0404881B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH4076/88 1988-11-02
CH4076/88A CH678973A5 (de) 1988-11-02 1988-11-02
PCT/CH1989/000190 WO1990005273A1 (de) 1988-11-02 1989-11-01 Brenn- sowie trockenofen für keramische formkörper, insbesondere ziegelstein-formlinge

Publications (2)

Publication Number Publication Date
EP0404881A1 EP0404881A1 (de) 1991-01-02
EP0404881B1 true EP0404881B1 (de) 1996-02-28

Family

ID=4269373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89911757A Expired - Lifetime EP0404881B1 (de) 1988-11-02 1989-11-01 Brenngasgenerator

Country Status (5)

Country Link
EP (1) EP0404881B1 (de)
AT (1) ATE134697T1 (de)
CH (1) CH678973A5 (de)
DE (1) DE58909612D1 (de)
WO (1) WO1990005273A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19916931C2 (de) * 1999-03-31 2001-07-05 Deponie Wirtschaft Umweltschut Luftzuführrohr für einen Vergaser zur Erzeugung von Brenngas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051591A1 (de) * 2000-01-10 2001-07-19 Fuerst Adrian Vorrichtung und verfahren zur erzeugung von brenngasen
FI113781B (fi) * 2002-11-01 2004-06-15 Timo Saares Kaasugeneraattori
DE102007048673A1 (de) * 2007-10-10 2009-04-23 Lurgi Gmbh Gaserzeuger für die Druckvergasung fester körniger Brennstoffe
CN108438561A (zh) * 2018-02-12 2018-08-24 董武斌 一种防止预热器仓室结料的装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE384762C (de) * 1923-11-05 Nicola Lengersdorff Brenner
AU412982B2 (en) * 1966-10-26 1971-05-06 Gas burner system especially for use in kilns inthe ceramics industry
US4281984A (en) * 1979-07-18 1981-08-04 Kawasaki Steel Corporation Method of heating a side-burner type heating furnace for slab
GB2189591B (en) * 1986-04-18 1989-11-29 British Gas Plc Heating method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19916931C2 (de) * 1999-03-31 2001-07-05 Deponie Wirtschaft Umweltschut Luftzuführrohr für einen Vergaser zur Erzeugung von Brenngas

Also Published As

Publication number Publication date
DE58909612D1 (de) 1996-04-04
CH678973A5 (de) 1991-11-29
EP0404881A1 (de) 1991-01-02
WO1990005273A1 (de) 1990-05-17
ATE134697T1 (de) 1996-03-15

Similar Documents

Publication Publication Date Title
DE3049250C2 (de) Einrichtung mit Schweldrehtrommel und Schachtofen
CH660074A5 (de) Verfahren zur thermischen behandlung von materialstuecken, vorrichtung zur durchfuehrung und eine anwendung des verfahrens.
DE2838749A1 (de) Verfahren und vorrichtung zur behandlung eines zerkleinerten festen karbonisierbaren materials
CH615215A5 (de)
DE3335544A1 (de) Reaktorvorrichtung zur erzeugung von generatorgas aus brennbaren abfallprodukten
EP1248828B1 (de) Vorrichtung und verfahren zur erzeugung von brenngasen
EP2377911A2 (de) Verfahren und Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff
DE102010018197A1 (de) Verfahren und Vorrichtung zur Vergasung von Biomasse
EP3760693A1 (de) Vorrichtung zum herstellen von pflanzenkohle und/oder zur wärmegewinnung
EP3309240A1 (de) Verfahren und vorrichtung zum vergasen von biomasse
WO2018188996A1 (de) Vorrichtung und verfahren zur nutzung von kohlehaltigem einsatzstoff sowie verwendung
EP0404881B1 (de) Brenngasgenerator
EP0277935B1 (de) Verfahren zum Vergasen von Brennstoffen mit Sauerstoff in einem schachtförmigen Ofen
US5318602A (en) Fuel gas generator for lean gas generation
DE102004008621A1 (de) Herdofenreaktoren und Verfahren zur Umwandlung fester und pastöser, organischer Stoffe in Prozessgas
EP0055440A1 (de) Verfahren und Einrichtung zur kontinuierlichen Erzeugung von Brenngas aus organischen Abfallstoffen
EP0271477A1 (de) Vorrichtung zur Ent- und Vergasung von festen Brennstoffen
EP1323809B1 (de) Gleichstrom-Schacht-Reaktor
WO2018188998A1 (de) Vorrichtung und verfahren zur gewinnung von gasen bei verkokung von kohlehaltigem einsatzstoff sowie verwendung
DE3005205C2 (de) Austragsvorrichtung für eine Abfall-Pyrolyseanlage
EP0026450B1 (de) Anordnung und Verfahren zur thermischen Aufbereitung vorwiegend brennbarer Abfallstoffe
DE3523765A1 (de) Verfahren zur vergasung kohlenstoffhaltiger brennstoffe und vorrichtung zur durchfuehrung des verfahrens
DE102007017859A1 (de) Vergaser
DE19830069A1 (de) Gaserzeuger
DE2549076A1 (de) Einrichtung zur verbrennung von abfallstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920826

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960228

Ref country code: BE

Effective date: 19960228

Ref country code: GB

Effective date: 19960228

REF Corresponds to:

Ref document number: 134697

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58909612

Country of ref document: DE

Date of ref document: 19960404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960531

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: JUCH, HELMUT

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19971128

Year of fee payment: 9

Ref country code: FR

Payment date: 19971128

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981101

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: REBMANN-KUPFER & CO. PATENTANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001228

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010226

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL