EP0402941B1 - Réglage de l'air de transport - Google Patents

Réglage de l'air de transport Download PDF

Info

Publication number
EP0402941B1
EP0402941B1 EP90111351A EP90111351A EP0402941B1 EP 0402941 B1 EP0402941 B1 EP 0402941B1 EP 90111351 A EP90111351 A EP 90111351A EP 90111351 A EP90111351 A EP 90111351A EP 0402941 B1 EP0402941 B1 EP 0402941B1
Authority
EP
European Patent Office
Prior art keywords
pressure
suction fan
unit
critical
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90111351A
Other languages
German (de)
English (en)
Other versions
EP0402941A1 (fr
Inventor
Jürg Faas
Christoph Stäheli
Robert Demuth
Robert Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19893919744 external-priority patent/DE3919744A1/de
Priority claimed from DE19893940524 external-priority patent/DE3940524A1/de
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP0402941A1 publication Critical patent/EP0402941A1/fr
Application granted granted Critical
Publication of EP0402941B1 publication Critical patent/EP0402941B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01BMECHANICAL TREATMENT OF NATURAL FIBROUS OR FILAMENTARY MATERIAL TO OBTAIN FIBRES OF FILAMENTS, e.g. FOR SPINNING
    • D01B3/00Mechanical removal of impurities from animal fibres
    • D01B3/02De-burring machines or apparatus
    • D01B3/025Removing pieces of metal
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G23/00Feeding fibres to machines; Conveying fibres between machines
    • D01G23/08Air draught or like pneumatic arrangements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G31/00Warning or safety devices, e.g. automatic fault detectors, stop motions
    • D01G31/006On-line measurement and recording of process and product parameters

Definitions

  • the present invention relates to a method known from EP-B-0 175 056 for operating a pneumatic transport system in a process line of a spinning mill, for example a cleaning line, which leads from a bale removal machine via cleaning and / or mixing and / or dosing machines to a carding machine leads, possibly with autonomously functioning areas, fiber flakes are transported through pipes by means of air flows generated by fans and these air flows can be influenced by units such as the fans, adjustable flaps and false air openings (suction boxes).
  • the present invention also relates to an apparatus for performing the method.
  • the object of the present invention is to design a method or a device of the type mentioned at the outset in such a way that the adjustable units can be set in a relatively simple manner, i.e. to an attitude that reduces energy costs on the one hand, but on the other hand ensures that the treatments to be carried out can be carried out with high efficiency.
  • the method and the device according to the present invention should enable monitoring of the pressure conditions and prevent the occurrence of blockages.
  • control steps should preferably be carried out in such a way that short-term fluctuations that occur are disregarded.
  • control process can be temporarily ended.
  • the control procedure is therefore suitable as a subtask for a computer that controls the entire plant or a plant area. Since this subtask only runs when the system is started up or when the production changes, it represents a task that can largely be carried out by computers already installed in such systems. Thus, there are no significant additional costs when implementing the invention.
  • pressure sensors have to be arranged in the critical areas for the implementation of the "optimization phase" when the system is started up and when decisive production factors are changed, the same sensors can be used to monitor operation during the continuous operation of the system without significant additional costs.
  • the pressure values prevailing in the critical areas can be checked at intervals and adjusted if necessary. Corrective interventions are only necessary in exceptional cases, for example when a change in pressure indicates an impending blockage. If the pressure sensors are used for this purpose, they can be checked at very short intervals. Otherwise, it is sufficient to carry out the check at intervals ranging from one day to several months, preferably once a week.
  • the target areas should be selected or set according to the intended production.
  • the method according to the invention is carried out in all autonomously functioning areas, where several units influence the pressure at the respective critical areas.
  • this unit In autonomously functioning areas, in which only one unit is responsible for the pressure prevailing in a critical area, this unit is set, controlled or regulated separately.
  • this unit When carrying out the method according to the invention, it is advantageous to make the first change to the unit for each critical area that has the greatest influence on the pressure in this area. It can be assumed in the sense of the invention that a change in this unit affects the pressure values in other critical areas less, which then ensures that the iterative method converges quickly and reliably.
  • the sizes of the changes made successively should be chosen to be smaller in order to achieve a converging iterative adjustment of the pressures into the desired ranges.
  • the method according to the invention can be used in particular in a process line consisting of a bale removal machine feeding a fiber flake into a pipeline, a suction fan provided in the pipeline, optionally a metal separation unit and / or dedusting unit built into the pipeline, a coarse cleaning unit, a second suction fan and possibly one
  • a fire separation unit with a spark detector with any prepared outlet being fed into the pipeline between the bale removal machine and the first-mentioned suction fan.
  • the method is then characterized according to the invention in that the pressure of the pipeline in a first critical area at the outlet of the bale removal machine in front of the first-mentioned suction fan and in front of the feed point for any feed possibly fed into the pipeline, and in a second critical area in front of the second suction fan it is measured that the pressure in the first critical area is adjusted primarily by changing the delivery rate of the first suction fan so that the pressure is set in the second critical area by changing the degree of opening of a false air opening leading into the pipeline and / or the delivery rate of the second suction fan and that the last two steps are carried out until the pressures prevailing in the first and second critical areas are within the respective ranges Target ranges are.
  • the fans installed in the treatment devices which are important for the treatment carried out, but have little to do with the transport function of the flakes through the process line, are preferably set according to the invention.
  • a variant of the invention, which is considered to be particularly preferred, is specified in claim 18. Although this embodiment requires more pressure sensors than the system described so far, it has the advantage that the iterative process is designed to be particularly simple and transparent for the user.
  • the process line consists in the direction of flow of a bale removal machine 10 which removes flakes from flake bales (not shown) and feeds them into a pneumatic conveying line 12.
  • a bale removal machine 10 which removes flakes from flake bales (not shown) and feeds them into a pneumatic conveying line 12.
  • the system works with suction fans so that all leaks occur in the transport lines and the environment is not burdened with fiber fly, which would be more likely to be feared if the delivery line were operated with excess pressure.
  • the flakes released from the bale removal machine are transferred to the pneumatic conveying line 12 by means of a first suction fan 14 which is arranged in the pneumatic conveying line 12.
  • a branch line 16 opens into the pneumatic conveying line 12 and offers the possibility of feeding the processed outlet into the conveying line.
  • the mouth of the branch line 16 is provided with a slide 18 which can optionally be opened.
  • the unit 15, as well as the other units optionally included in this drawing, are framed by a dashed line.
  • a metal part for example a needle
  • the transport line 12 leads into a coarse cleaning unit 30 which, for example, is a type B4 / 1 mono-roller cleaner the applicant can be.
  • a coarse cleaning unit 30 which, for example, is a type B4 / 1 mono-roller cleaner the applicant can be.
  • the flakes are first guided against the circumferential direction of the pin roller so that they hit the pins. When the flakes impact the pin roller and when it accelerates in the opposite direction immediately afterwards, a significant proportion of the impurities are already excreted.
  • the pin roller then guides the flakes over a grate, throws them up into a hood surrounding the roller, and grips them again. Since the flakes are turned several times during the centrifuging process, they come into contact on all sides with the grate enclosing part of the circumference of the roller during the passage along the spiral path, as a result of which dirt particles are separated out.
  • the air flow generating the movement of the flakes is generated partly by the first suction fan 14 and partly by a second suction fan 32, which is arranged in the second section of the pneumatic conveying line 12 downstream of the coarse cleaning unit.
  • the coarse cleaning unit 30 also has its own suction fan 34, which ensures the suction of the sky dust, ie the dust that is released when the flakes are flung up. Although this fan 34 sucks about 20% of the transport air from the pneumatic suction line, it runs at a constant speed and has a constant effect on the pressure conditions in the delivery line 12. Furthermore, this suction fan 34 should not be used to adjust the pressure conditions in the suction line 12.
  • Another suction fan is available for transporting the outlet, i.e. for the removal of dirt and flakes falling through the grate.
  • This additional suction fan is operated intermittently and only runs when a certain amount of waste has accumulated.
  • This further suction fan draws the required transport air from the environment, so this suction fan also has no significant effect on the pressure conditions of the delivery line 12.
  • a fire separation unit 36 can optionally be inserted into the pneumatic delivery line 12.
  • a fire separation unit consists of a spark detector 38 and a quick-release flap 40, which opens quickly when sparks are detected by the spark detector and leads flakes together with the sparks through a branch line 42 into a collecting container 44.
  • the pneumatic conveying line 12 then runs further into a mixer, which can be formed, for example, by a combined mixing and cleaning machine such as the applicant's Unimix B7 / 3.
  • the optional cleaning part of this machine is marked with 49.
  • this mixer 46 the flakes are deposited in various vertical chambers and the transport air escapes from line 12, which is indicated by arrow 47.
  • line 12 has ended. In other words, here is the first section of the air system and therefore decoupled from the next section in terms of air pressure.
  • This fine cleaning machine 54 which can be, for example, an ERM cleaner from the applicant, is designed such that the air newly drawn in by the third fan 50 is released again. This is shown in FIG. 2 by arrow 56. In a manner known per se, this takes place in such a way that the fiber material is sucked in by the fan integrated in the suction head of the ERM cleaner by the machine upstream of the ERM cleaner, in this example by the mixer 46, and blown into the lamella shaft of the cleaner. The transport air compresses the flakes into a uniform cotton wool and then escapes between the lamellae.
  • the air passes into a sieve drum and is conveyed as dust-containing transport air in a pipeline directly to the filter system. This is indicated by arrow 56.
  • the pressure prevailing in the critical area is controlled by an adjustable unit, i.e. determined by the suction fan 50.
  • the now thoroughly mixed and once finely cleaned flake mixture is transported from the first fine cleaning machine 54 to a further fine cleaning machine 64 by means of a fourth suction fan 60.
  • a fourth suction fan 60 can also be an ERM cleaner from the applicant, for example.
  • the air passes into a sieve drum and is conveyed as dust-containing transport air in a pipeline directly to the filter system, which is indicated by the arrow 66.
  • the pressure value in the critical area 82 is only determined by adjusting the speed of the suction fan 60.
  • the transport air escapes from the filling chutes of the cards, which is indicated by the arrows 78, and is conveyed to the filter system via a collecting line.
  • the speed of the suction fan 70 determines the pressures in the pneumatic transport line 72.
  • the pneumatic pipelines 52, 62 and 72 thus each contain only one suction fan 50, 60 or 70, which can be set to a predeterminable speed value according to the respective method, possibly depending on the respective production.
  • Critical pressures must also be observed with these pneumatic lines, for example at 80 at the inlet of the pneumatic delivery line 52, i.e. at the outlet of the Unimix mixer 46, at 82 at the inlet of the pneumatic delivery line 62, i.e. at the outlet of the first ERM cleaner and on Output of the pneumatic conveyor line 82, ie after the second ERM fine cleaning unit.
  • the pressure range 86 downstream of the suction fan 70 is also a critical pressure range.
  • the pressure values in the critical pressure ranges 80, 82, 84 and 86 can, however, be easily controlled or regulated by controlling the respectively assigned suction fan 50, 60 or 70, which is easily possible through autonomously functioning control loops.
  • the designer determines a first vacuum area for the critical area 88. As long as the actual pressure is in this range, the operator can assume that this part of the system is working properly.
  • the pressure in the critical area 88 is primarily determined by the suction fan 14. However, it is also influenced by the second suction fan 32 and by the setting of the false air supply opening 48 and the slide 18.
  • the pressure in the second critical pressure range 90 is primarily determined by the setting of the second suction fan 32, then determined by the setting of the false air supply opening 35, but also by the setting of the suction fan 14 and the slide 18. Modifiable units in the sense of regulating the pressure conditions are, however, only the suction fans 14, 32 and the false air supply opening 48 in this example.
  • the setting of the slide 18 depends on the selected production method.
  • the corresponding setpoint inputs for the suction fans 14, 32 and for the setting device for the false air supply opening 35 are specified by a computer, which is identified by 94.
  • the setpoint inputs from the computer 94 are determined using an iterative process.
  • respective pressure value ranges for the pressures prevailing in the critical regions 88 and 90 are stored for each intended production quantity (kg / h). Now it is assumed, for example, that when the system is switched on, the pressure in the critical pressure range 88 is above the permissible limit, while the pressure in the critical range 90 is below the permissible minimum limit.
  • the computer is now aiming to lower the pressure value in the critical area 88 by correcting (increasing) the setpoint for the speed of the first suction fan 14. After correcting this setpoint, the actual value changes accordingly, but the pressure in the critical area 88 does not yet drop so far that the pressure value is within the intended range. However, the increase in the speed of the suction fan 14 by means of the setpoint correction additionally leads to an increase in the pressure value in the critical area 90, but this increase is not sufficient to bring the pressure value at 90 above the minimum limit.
  • the computer Based on the relative size of the changes which have occurred, the computer now determines one further change in the setpoint input of the first suction fan 14 with the aim of further reducing the pressure in the critical region 88.
  • the pressure in the critical area 90 then rises again, but still not so far that the pressure value at 90 is above the minimum limit, so that a further reduction in the rotational speed of the second suction fan 32 is required, but this also increases leads to an increase in the pressure value at 88.
  • control process is only one example of how the control process can work in detail.
  • the exact sequence of the control procedure depends on the pressure conditions measured in each case; however, the computer is programmed in such a way that, depending on the initial pattern, ie the size of the pressure deviation and the direction of the pressure deviations, it performs an iterative control, which means that the pressures at the end of the iterative process lie in the respective target ranges.
  • the computer After each regulation the pressure values change, a new pattern results that is recognized by the computer and forms the basis for determining the further changes in the setpoint inputs.
  • new conditions occur which lead to new pressures and thus to a new adjustment of the adjustable units.
  • the pressure sensors provided in the critical areas can be continuously monitored by the controller to check that the intended pressure values are being maintained. In the event of an undesirable change in the pressure values with constant production, it is known that a blockage is in the offing or that any other sources of error have occurred.
  • the computer can thus trigger an alarm display or interrupt production.
  • the system can also be designed as a self-learning system, which means that the computer remembers the selected target specifications for the adjustable units for different production quantities and then takes these target values for the basic settings of the adjustable units the next time it is switched to production.
  • This regulation of the adjustable units according to the intended setpoints can be carried out by the controllers assigned to the adjustable units or by the computer itself, provided that the computer is also programmed to carry out such control procedures.
  • critical pressure ranges 96 and 98 are also present here.
  • the pressure values in these areas are uniquely determined by the setting of the suction fan 50 or 60, so that in this embodiment these cleaning units belong or represent autonomously functioning areas that can be controlled with a conventional control circuit.
  • the control steps should be carried out in such a way that short-term fluctuations in the measured pressure values that occur are disregarded.
  • the purpose of this measure is to only consider persistent changes in pressure.
  • the subject of the application is not a regulation with the endeavor to regulate a process sequence in such a way that predetermined pressure values are continuously regulated to the respectively intended value, but rather an adjustment of the pressure values into the respectively predetermined pressure range, whereby after the Adjustment should no longer take place, unless a new setting is to be made through a change in production or a change of assortment.
  • Fig. 3 shows a curve which shows the volume flow through a pipeline (in m3 / sec) in relation to the production speed (in kg / hour). This curve basically applies to all pipe elements of the system and therefore also to the guide channels of suction fans and the like.
  • V ⁇ 1 there is a suitable volume flow V ⁇ 1 at a certain production speed P1.
  • the curve in FIG. 4 shows the pressure increase / volume flow characteristic of a suction fan for different rotational speeds.
  • the pressure increase via a suction fan can easily be determined by means of two pressure sensors, of which a first pressure sensor is arranged directly upstream of the fan and a second pressure sensor is arranged immediately downstream of the fan.
  • the first pressure sensor measures P1 and the second pressure sensor P2.
  • a pressure difference ⁇ P1 has therefore been measured at a fan speed of n2.
  • the speed of rotation or speed n is of course known to the computer, which specifies the target speed of the suction fan.
  • FIGS. 5 and 6 show an example which is similar to the first part of the system of FIGS. 1 and 2, but in which the use of pressure difference measurements in the first and second suction fans 14 and 32 is shown.
  • Figures 5 and 6 use the same reference numerals as Figures 1 and 2 to indicate items that are common to both embodiments. These common items therefore do not have to be repeated to be discribed.
  • FIGS. 5 and 6 show the use of two pressure sensors 89 and 89.1, which are respectively arranged upstream and downstream of the suction fan 14, and the use of two further pressure sensors 99 and 99.1, which are correspondingly applicable to the second suction fan 32 are attached.
  • the computer 94 obtains the measured pressure values at the pressure sensors 89, 89.1 and 99, 99.1, from which the prevailing pressure differences are calculated, in order to enable the volume flows to be set iteratively with regard to the characteristics of FIG. 4. If the volume flows are correct, then the pressures in the critical areas 88, 90 and 92 must also be correct and the pressure sensors, which are provided as an option in this example, can be used to check the result of the iterative setting on the two suction fans . If this is not done, special care must be taken to ensure that the amount of air that optionally enters pipeline 12 via branch line 16 does not become excessive, since the pressure in the pipeline in region 88 may otherwise be too low could be.
  • the amount of air flowing through the branch line 16 can be determined by suitable pressure measurements, for example in relation to the volume flow of a further fan (not shown) which is responsible for supplying the waste component along the line 16 or in relation to the pressure drop the opening where the branch line meets line 12. It is of course clear that changing the setting of one of the suction fans will also cause a change in the other suction fan. However, the directions and sizes of the speed changes to be commanded for the two fans can be easily predicted from the stored pressure difference / volume flow characteristic curves for the two fans.
  • the same pressure difference measurement method can also be used for adjusting the rotational speeds of the fans of the autonomously functioning units in order to ensure the desired volume flow through these units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Claims (18)

  1. Procédé pour l'exploitation d'un système de transport pneumatique dans une ligne de processus d'une filature, par exemple dans une ligne de nettoyage qui va depuis une machine à décortiquer les balles (10) vers une installation de cardes (76), via des machines de nettoyage (30), et/ou de mélange (46), et/ou de dosage (54; 64), le cas échéant, avec des zones fonctionnant en autonomie, procédé dans lequel des flocons de fibres sont transportés à travers des gaines (12; 52; 62; 72), à l'aide de courants d'air produits par des ventilateurs (14; 32; 50; 60; 70), et ces courants d'air sont influençables par des unités telles que ventilateurs, clapets réglables, ouvertures d'air de compensation, et caisses d'aspiration,
    caractérisé par le fait
    a) que chaque pression statique, régnant dans des zones critiques, est mesurée à l'aide de détecteurs de pression (89, 89.1; 99, 99.1), et, pour autant que celle-ci se trouve en dehors d'une zone prescrite prédéterminée, une correction est apportée premièrement à une des unités déterminant cette pression, dans le sens d'un changement de la pression dans la zone prescrite désirée, ou dans le direction allant vers la zone prescrite désirée,
    b) que l'effet de ce changement est détecté dans d'autres zones critiques influencées par cela, à l'aide de la pression mesurée à cet endroit, et ensuite, un changement est réalisé dans une autre unité responsable pour la pression dans ces zones,
    c) que les étapes a) et b) sont répétées le cas échéant, éventuellement par changement dans d'autres unités, dans le sens d'une adaptation itérative aux zones prescrites, c'est-à-dire, jusqu'à ce que les pressions mesurées se situent dans chacune des zones prescrites prévues.
  2. Procédé selon revendication 1,
    caractérisé par le fait que
    les étapes de régulation sont réalisées de telle sorte que des variations existant à court terme sont négligées.
  3. Procédé selon revendication 1 ou 2,
    caractérisé par le fait que
    le processus de régulation est provisoirement terminé, après l'obtention de pressions, régnant dans les zones critiques, situées à l'intérieur des zones prescrites.
  4. Procédé selon revendication 3,
    caractérisé par le fait que
    les pressions, régnant dans les zones critiques, sont contrôlées dans des intervalles de temps, et, le cas échéant, sont nouvellement réglées.
  5. Procédé selon revendication 4,
    caractérisé par le fait que
    les contrôles dans ces intervalles de temps sont réalisés dans la zone allant d'un jour à plusieurs mois, de préférence une fois par semaine.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que,
    après un arrêt de production respectivement un changement d'assortiment, le réglage des pressions est contrôlé, et, le cas échéant, est corrigé, après la remise en marche de la production.
  7. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que
    les zones prescrites sont choisies, respectivement nouvellement mises en place, en fonction de la production prévue.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que,
    lors d'un changement de la production, les pressions sont nouvellement réglées dans les zones critiques, selon le procédé de la revendication 1.
  9. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que
    le procédé est réalisé dans toutes les zones fonctionnant en autonomie, où plusieurs unités influencent la pression dans les zones critiques correspondantes.
  10. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que,
    dans les zones fonctionnant en autonomie, où seule une unité est responsable pour la pression régnant dans une zone critique, celle-ci est ajustée, commandée ou réglée d'une manière séparée.
  11. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que,
    pour chaque zone critique, le premier changement est réalisé dans l'unité qui influence au plus la pression dans cette zone.
  12. Procédé selon revendication 11,
    caractérisé par le fait que
    la succession des changements est amenée conformément à la succession des zones critiques, vu dans le sens de l'écoulement, à commencer avec la zone située en amont, où un changement de pression est nécessaire.
  13. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que
    les grandeurs des changements réalisés successivement sont choisies de plus en plus petites, afin d'obtenir un réglage itératif convergent des pressions, allant jusque dans chaque zone prescrite.
  14. Procédé selon l'une des revendications précédentes, dans lequel les lignes de processus à régler sont constituées par une machine à décortiquer les balles (10) alimentant une gaine (12) en flocons de fibres, un ventilateur d'aspiration (14) prévu dans la gaine, au choix une unité d'élimination de particules métalliques (20) incorporée dans la gaine, et/ou une unité de dépoussiérage, une unité de nettoyage grossier (30), un deuxième ventilateur d'aspiration (32), ainsi que, le cas échéant, une unité d'élimination de particules en incandescence (36) avec détecteur d'étincelles (38), et où des déchets, éventuellement traités, sont alimentés dans la gaine (12) entre la machine à décortiquer les balles (10) et le ventilateur d'aspiration (14) cité en premier,
    caractérisé par le fait que
    la pression régnant dans la gaine est mesurée dans une première zone critique (88), située à la sortie de la machine à décortiquer les balles (10), avant le ventilateur d'aspiration (14) cité en premier, et avant le lieu d'alimentation de déchets alimentés éventuellement dans la gaine, ainsi que dans une deuxième zone critique (90), située avant le deuxième ventilateur d'aspiration (32), que la pression régnant dans la première zone critique (88) est réglée principalement par changement de la quantité de transport du premier ventilateur d'aspiration (14), que la pression régnant dans la deuxième zone critique (90) est réglée par changement de l'angle d'ouverture d'une ouverture d'air de compensation (48) débouchant dans la gaine (12), et/ou de la quantité de transport du deuxième ventilateur d'aspiration (32), et que les deux étapes citées en dernier sont effectuées, jusqu'à ce que les pressions, régnant dans les première et deuxième zones critiques, se situent dans la zone prescrite correspondante.
  15. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que,
    après régulation des pressions jusque dans les zones prescrites, les pressions sont contrôlées continuellement, ou dans des intervalles de temps répétés régulièrement, par exemple dans le cycle des minutes, a l'aide des détecteurs de pression prévus (89, 89.1; 99, 99.1), et, lors de la détection d'une déviation inadmissible de la pression réglée, un avertissement ou une signalisation de perturbation, respectivement de défaut, et/ou une interruption du transport de flocons est déclenché.
  16. Procédé selon l'une des revendications précédentes,
    caractérisé par le fait que
    des ventilateurs, montés dans les dispositifs de traitement, et qui sont importants pour le traitement réalisé, mais qui ont très peu à faire avec la fonction de transport des flocons à travers la ligne de processus, sont réglés d'une manière définitive.
  17. Procédé pour l'exploitation d'un système de transport pneumatique selon revendication 1,
    caractérisé par le fait que
    des mesures de différence de pressions sont effectuées sur au moins une des unités, particulièrement sur un des ventilateurs (14; 32), et le nombre de tours du ventilateur, ou une autre grandeur variable correspondante de l'unité, est déterminé(e); que le débit volumétrique momentané (V̇) à travers ladite unité est déterminé en fonction d'une ligne caractéristique de puissance pour l'unité concernée, et où cette ligne caractéristique met en rapport la différence de pressions (ΔP) avec le débit volumétrique, pour différents réglages de la grandeur variable, et que la grandeur variable de l'unité concernée, et/ou la grandeur variable d'au moins une autre unité dans le même système de transport, ou dans la même partie du système de transport est, respectivement sont changées itérativement jusqu'à ce qu'une différence de pressions est mesurée, qui correspond, pour chaque valeur de la grandeur variable correspondante, au débit volumétrique désiré à travers ladite unité, respectivement lesdites unités.
  18. Système de transport pneumatique pour une ligne de processus d'une filature, dans laquelle une machine à décortiquer les balles (10) alimente des flocons de fibres dans une gaine (12) qui, vu dans le sens d'écoulement, dirige les flocons vers un mélangeur de flocons (46), via un premier ventilateur d'aspiration (14), au choix via une unité d'élimination de particules métalliques (20) et/ou une unité de dépoussiérage (34), via une unité de nettoyage grossier (30) et via un deuxième ventilateur d'aspiration (32), et où les flocons sont séparés de l'air de transport avant, respectivement dans le mélangeur, système dans lequel, le cas échéant, une unité d'élimination de particules en incandescence (36) avec détecteur d'étincelles (38) est prévue entre le deuxième ventilateur d'aspiration (32) et le mélangeur (46), et où une ouverture d'air de compensation (48) débouche dans la gaine, après le deuxième ventilateur d'aspiration (32), et des déchets éventuellement traités peuvent être alimentés dans la gaine, entre la machine à décortiquer les balles (10) et le ventilateur d'aspiration (14) cité en premier, particulièrement un système de transport pneumatique pour réaliser le procédé selon l'une ou plusieurs des revendications précédentes,
    caractérisé par le fait que
    des détecteurs de pression (89, 89.1; 99, 99.1) sont prévus dans des zons critiques (88; 90) du système de transport, par exemple au lieu d'introduction dans la gaine des flocons venant de la machine à décortiquer les balles (10), et dans le lieu situé après l'unité de nettoyage grossier (30) et avant le deuxième ventilateur d'aspiration (32), qu'une régulation est prévue pouvant être programmée avec des zones de valeur prescrite pour chaque zone critique, pour chaque vitesse de production prévue, et qu'un réglage itératif des unités, influençant les pressions particulières dans les zones critiques, peut être effectué par la régulation, jusqu'à ce que les pressions se situent dans la zone prescrite correspondante.
EP90111351A 1989-06-16 1990-06-15 Réglage de l'air de transport Expired - Lifetime EP0402941B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3919744 1989-06-16
DE19893919744 DE3919744A1 (de) 1989-06-16 1989-06-16 Transportluftregelung
DE19893940524 DE3940524A1 (de) 1989-12-07 1989-12-07 Transportluftregelung
DE3940524 1989-12-07

Publications (2)

Publication Number Publication Date
EP0402941A1 EP0402941A1 (fr) 1990-12-19
EP0402941B1 true EP0402941B1 (fr) 1995-05-10

Family

ID=25882016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90111351A Expired - Lifetime EP0402941B1 (fr) 1989-06-16 1990-06-15 Réglage de l'air de transport

Country Status (4)

Country Link
US (1) US5143485A (fr)
EP (1) EP0402941B1 (fr)
JP (1) JPH0390631A (fr)
DE (1) DE59009044D1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954258A1 (de) 1999-11-11 2001-05-17 Truetzschler Gmbh & Co Kg Vorrichtung zur elektronischen Steuerung von Spinnereimaschinen, insbesondere Spinnereivorbereitungsmaschinen
EP1215312A1 (fr) * 2000-12-18 2002-06-19 Maschinenfabrik Rieter Ag Techniques de mesure en ligne
JP4244145B2 (ja) * 2002-03-27 2009-03-25 株式会社日清製粉グループ本社 粉粒体搬送システム
DE10305049B4 (de) * 2003-02-07 2018-08-02 Trützschler GmbH & Co Kommanditgesellschaft Vorrichtung zum pneumatischen Speisen mindestens einer Spinnereivorbereitungsmaschine, z.B. Karde, Reiniger
US7524146B2 (en) * 2006-11-30 2009-04-28 William Jeffrey Peet Pneumatic uneven flow factoring for particulate matter distribution system
EP2254818A1 (fr) * 2008-01-28 2010-12-01 Johann Haberl Système de conduit tubulaire, son procédé de commande et d'utilisation
US20120321395A1 (en) * 2010-03-04 2012-12-20 Envac Ab Waste emptying control
CH713861A1 (de) * 2017-06-08 2018-12-14 Rieter Ag Maschf Produktionssteuerung in einer Putzerei.
CH714101A1 (de) * 2017-08-30 2019-03-15 Rieter Ag Maschf Vorrichtung zur Regelung eines Faserflockenstromes in einem Reiniger.
CH715422A1 (de) * 2018-10-02 2020-04-15 Rieter Ag Maschf Faservorbereitung mit einer Abfolge von Maschinen.
CZ2020294A3 (cs) * 2020-05-22 2021-05-12 Rieter Cz S.R.O. Způsob regulace průtoku nebo tlaku v zařízení na dopravu odpadu v přípravě vlákna a zařízení

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1230526A (fr) * 1959-03-21 1960-09-16 Siderurgie Fse Inst Rech Dispositif de régulation automatique d'un distributeur de poudre sous pression
CH525971A (de) * 1969-10-15 1972-07-31 Rieter Ag Maschf Verfahren zum Erzeugen eines gleichmässigen, kontinuierlichen Faserverbandes und Vorrichtung zur Durchführung des Verfahrens
FR2236758B1 (fr) * 1973-07-02 1978-12-29 Pechiney Aluminium
CH599990A5 (fr) * 1975-07-16 1978-06-15 Rieter Ag Maschf
CH619991A5 (fr) * 1977-06-09 1980-10-31 Rieter Ag Maschf
DE2834586C2 (de) * 1978-08-07 1983-02-03 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zur Regelung der einer Karde zuzuführenden Flockenmenge
JPS5948222B2 (ja) * 1979-01-24 1984-11-24 住友金属工業株式会社 スラリ−輸送方法
US4404710A (en) * 1981-05-29 1983-09-20 Rando Machine Corporation Apparatus for feeding fibers to carding machines and the like
DE3134180C2 (de) * 1981-08-28 1983-11-24 Waeschle Maschinenfabrik Gmbh, 7980 Ravensburg Verfahren zur Dosierung von pneumatisch transportiertem Schüttgut
DE3442942A1 (de) * 1984-11-24 1986-05-28 Trützschler GmbH & Co KG, 4050 Mönchengladbach Vorrichtung zum pneumatischen speisen einer anzahl von karden
ATE32918T1 (de) * 1984-08-28 1988-03-15 Rieter Ag Maschf Pneumatische transportanlage fuer faserflocken.
DE3435907A1 (de) * 1984-09-29 1986-04-10 AVT Anlagen- und Verfahrenstechnik GmbH, 7981 Vogt Verfahren und einrichtung zum pneumatischen und hydraulischen transport von feststoffen durch rohrleitungen
DE3562635D1 (en) * 1984-10-30 1988-06-16 Rieter Ag Maschf Transporting duct for fibre flocks
JPS6413306A (en) * 1987-07-08 1989-01-18 Shin Meiwa Ind Co Ltd Conveyance device for refuse container
EP0303023B1 (fr) * 1987-08-12 1996-10-23 Maschinenfabrik Rieter Ag Système pour le traitement de fibres textiles et methode de commande d'un tel système
US5048761A (en) * 1990-03-14 1991-09-17 The Babcock & Wilcox Company Pulverized coal flow monitor and control system and method

Also Published As

Publication number Publication date
DE59009044D1 (de) 1995-06-14
US5143485A (en) 1992-09-01
EP0402941A1 (fr) 1990-12-19
JPH0390631A (ja) 1991-04-16

Similar Documents

Publication Publication Date Title
EP0917828B1 (fr) Procédé et dispositif de régulation de l'humidité de sortie du tabac
EP0402941B1 (fr) Réglage de l'air de transport
WO2014001867A1 (fr) Procédé et dispositif pour réguler l'alimentation en fibres d'une cardeuse
EP0475073B1 (fr) Ligne de nettoyage
EP0810309B1 (fr) Installation pour le traitement de fibres
EP3546625B1 (fr) Dispositif d'alimentation pour une carde
DE10122459A1 (de) Vorrichtung an einer Karde, Reinigungsmaschine, Öffnungsmaschine o. dgl. für Fasermaterial
DE69909715T2 (de) Vorrichtung zum Vorbereiten und Oeffnen von Faserflocken geliefert zu einer Karde
CH714844A1 (de) Speisevorrichtung zu einer Karde.
DE10214389A1 (de) Vorrichtung in der Spinnereivorbereitung zum Abscheiden der Transportluft beim Beschicken von Fasermaterial, z.B. Baumwolle o. dgl., zu einer Verarbeitungsmaschine
DE3819882A1 (de) Verfahren bzw. vorrichtung zur herabsetzung der klebrigkeit von baumwollflocken
EP3530781B1 (fr) Dispositif d'alimentation d'une carde
EP1917388A1 (fr) Systeme d'alimentation en flocons
DE69518535T2 (de) Kardenabfallüberwachung
DE3940524A1 (de) Transportluftregelung
DE3919744A1 (de) Transportluftregelung
CH682921A5 (de) Vorrichtung zum pneumatischen Speisen mindestens einer Faserverarbeitungsmaschine, z.B. Karde.
CH616183A5 (en) Process for forming a lap web of constant weight per unit length and an apparatus for carrying out the process
EP0412446B1 (fr) Procédé pour influencer le conditionnement des fibres traitées sur machine de filature
CH714817A1 (de) Vorrichtung zur Führung eines Vliesbandes in einer Bandbildungseinheit einer Karde.
CH713868A1 (de) Vorrichtung zum Austrag von Faserflocken aus einem Speicher.
CH684487A5 (de) Verfahren zur Vorauflösung, Reinigung und Zerfaserung von Fasermaterial und Vorrichtung zu dessen Durchführung.
CH714101A1 (de) Vorrichtung zur Regelung eines Faserflockenstromes in einem Reiniger.
DE2912158A1 (de) Reissmaschine
DE69009479T2 (de) Rotierende Konditioniertrommel, insbesondere zum Trocknen von Tabak.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19910227

17Q First examination report despatched

Effective date: 19930903

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950510

Ref country code: GB

Effective date: 19950510

Ref country code: FR

Effective date: 19950510

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950510

REF Corresponds to:

Ref document number: 59009044

Country of ref document: DE

Date of ref document: 19950614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950630

Ref country code: CH

Effective date: 19950630

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed