EP0396131B1 - Wärmetauscher - Google Patents
Wärmetauscher Download PDFInfo
- Publication number
- EP0396131B1 EP0396131B1 EP90108360A EP90108360A EP0396131B1 EP 0396131 B1 EP0396131 B1 EP 0396131B1 EP 90108360 A EP90108360 A EP 90108360A EP 90108360 A EP90108360 A EP 90108360A EP 0396131 B1 EP0396131 B1 EP 0396131B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheet
- small
- heat exchanger
- pipes
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002184 metal Substances 0.000 claims description 58
- 230000000295 complement effect Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000007373 indentation Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims 7
- 230000004913 activation Effects 0.000 claims 1
- 238000005219 brazing Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 238000013461 design Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
- F28D9/0075—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2225/00—Reinforcing means
- F28F2225/04—Reinforcing means for conduits
Definitions
- the invention relates to a heat exchanger with two parallel manifolds which are connected to one another via a matrix of several layers of profile tubes, the manifolds and matrix being constructed from a multiplicity of sheet metal shells arranged one above the other, of which two sheet metal shells which are connected to one another in a complementary manner by trough-like profiling between connecting webs Form the profile tube layer and the associated section of the collecting tubes, the connecting webs being regularly spaced to form longitudinal slots.
- a heat exchanger of the aforementioned type is known from DE-C-32 42 845 by the applicant.
- the construction of the collecting tubes and the matrix from a large number of sheet metal shells arranged one above the other and connected to one another compared to conventional designs in which the housing, collecting tubes and matrix tubes had to be assembled as separate components, represents a considerable simplification of production, it can be seen that the profiling of the matrix profile tubes, in particular elaborate tools in the arch section required and despite high accuracy requirements, errors in joining the sheet metal shells have to be accepted, which increases the reject rate and the manufacturing expenditure becomes high. Particular difficulties arise when elliptical or lancet-like profile tubes are provided for the matrix.
- the object of the present invention is therefore to improve a generic heat exchanger in such a way that the production of the header pipes and the matrix is simplified compared to the previously known arrangements.
- this object is achieved in that, in a heat exchanger of the generic type, the sheet metal shells are frame-like, the longitudinal slots extend to the beginning of the transverse sides of the frame, which are each designed to form common deflecting sections as a cavity which communicates with all the profiled tubes, and the collecting tubes are formed by cutouts be formed with a bent collar in the middle of two opposite sides of the frame.
- a major advantage of the design of a heat exchanger according to the invention is that the production of the complete heat exchanger from the sub-elements, ie the individual sheet metal shells, is very simple and this is achieved precisely and with high repeatability.
- the frame-like design with the cross-section of the frame shaped as a communicating cavity has the advantage over designs according to the prior art that no more arcuate profile tubes have to be formed, but only straight. This avoidance of arc contours results in a manufacturing advantage.
- Another advantage of the invention Training is that individual profile tube layers are easily interchangeable. Finally, the position of the header pipes in the middle of the long sides of the frame has an advantageous effect on the heat transfer between the two heat exchange media.
- every second profile tube layer is arranged in cross-section in a checkerboard manner to the adjacent profile tube layers, in such a way that elements are attached to the connecting webs to form spacers with respect to adjacent profile tube layers and extend perpendicular to the sheet metal shell plane. These elements are preferably attached after the connection of two sheet metal shells forming a profile tube layer and in this way enables simple manufacture of spacers with respect to the adjacent profiles.
- these vertically extending elements are two side flaps of a connecting web, which are originally arranged parallel to the longitudinal axis of the profile tube and are folded back inwards to form the spacers. This process can be carried out in a simple automated manner for an entire layer or a whole series of spacers.
- the vertically extending element can also consist of a rivet which is driven by the connecting webs of two complementary metal shells lying one on top of the other.
- the two rivet heads of this rivet are designed so that they are adapted to the shape of the adjacent tube layers at the point of contact.
- the adjacent profile tube layers can also have special shape changes, for example depressions, at the points of contact with the rivet heads in order to achieve a better support effect.
- a further advantageous embodiment of the invention provides that support means are attached between complementary sheet metal shells in the area of the longitudinal axis of the profile tube. This prevents deformation of the profile tubes during operation due to the pressure difference between the outer area and the interior of the profile tubes.
- These support means can be designed as strips running between the sheet metal shells and connected to them, or as support strips extending in the longitudinal direction of the profiled tubes. These support strips can consist of solid material, so that two completely separate cavities are provided within each profile tube, or they can be perforated to save weight.
- an alternative embodiment for preventing the expansion of the profiled tubes is that the sheet metal shells in the region of the center of the profile tube have regularly spaced knob-like indentations on which the complementary sheet metal shells are connected to one another in a punctiform manner.
- this training is very simple to carry out before or after the two complementary shells have been joined, and thus enables the tube support to be designed in a substantially simplified manner.
- These indentations are preferably attached in such a way that they are in the region of the connecting webs of the adjacent profile tube layers are arranged so that rivet heads attached to the connecting webs can be fitted into the indentations.
- the arched shape of the profile tube wall and the rib effect of the profile tip give the necessary rigidity and stability against deformation over the span of the distances between adjacent indentations, while the separation forces from the internal pressure are dissipated via the knob connection.
- the magnitude of the forces at these points corresponds to the length of the respectively assigned pipe section and is therefore proportional to the distance between the indentations described above.
- the indentations must be arranged in closer succession along the length of the pipe.
- the methods according to claims 10 and 12 are proposed.
- sheet metal plates of the required external dimensions, wall thickness and quality under dies are provided with the required relief pattern by a drawing / pressing process, the expression of the symmetrical internal flow spaces being produced as a half-shell.
- a one-sided die can also be used for this purpose, the sheet metal being shaped using hydraulic or pneumatic pressure.
- the heat exchanger should be designed in such a way that these shells are symmetrical even on the envelope, as a result of which the required mirror symmetry of two half-shells, which together form a layer element of the flow interior, can be represented with only one relief pattern.
- the half-shell-like sheet metal shells are then subjected to a surface treatment in order to activate contact surfaces for the subsequent integral connection.
- the connection of the two sheet metal shells then takes place at the contact surfaces with the supply of energy, whereby laser welding, electron beam welding, soldering, pressure welding can be considered as a diffusion connection or analog processes.
- the additional material required can either be applied beforehand to the surfaces to be joined (e.g. galvanically, by vapor deposition, plating, by spraying or printing) or be interposed as a film.
- welding or soldering through resistance heating and high-frequency electrical currents is also possible.
- the complementary sheet metal shells are joined together by means of high-frequency welding, the sheet metal shells which are spread apart being pressed against one another along their contact surfaces by profiled rollers which are shaped and shaped along the sheet metal shells, the ends of which have not yet been joined Tin cups of high frequency electricity is introduced.
- the two complementary sheet metal shells to be joined are precisely aligned with each other in one device and are inserted on one side into an inlet gap of profiled columns rotating against one another.
- the profiling of the otherwise cylindrical surfaces of these rolls corresponds to the negative of the relief pattern of the sheet metal shells, so that the latter are pressed onto one another only at the points to be connected when they pass through the rolls.
- the areas of the sheet metal shells which are not yet in engagement with the rollers are spread apart, so that a gap narrowing up to the point of engagement results between their mutually facing surfaces to be joined.
- a high-frequency electrical voltage of opposite polarity is supplied to both sheet metal shells via sliding contacts.
- An electrical current forms on the inner surfaces of the two sheet metal shells, which runs to the point of contact and passes there to the other side. This current transfer may only take place at the points that are to be cohesively connected. Other points of contact can be passivated.
- additional material in a raised manner to the points to be connected, or to have a mask made of additional material, which has the image of the connection points, run into the joint gap during the joining procedure.
- the alternative manufacturing method according to claim 12 consists in that a passivating layer is applied to flat, pretreated surfaces with the required external dimensions at the points that are not joined together. This is also done, for example, by printing.
- the other areas to be connected are coated with additional material for soldering or diffusion welding, e.g. B. by screen printing.
- the complementary sheets to be joined are then placed on top of one another and joined together by heating. To prevent warping or unacceptably large gaps, the sheets are pressed together.
- the sheets are mechanically pressed only on their outline, while a hydraulic or pneumatic pressure is applied to the surface during the connection process. It can be done by first placing a bell, which compresses the outer contour of the sheets at the edge, and then applying a gas pressure in the closed cavity.
- the joined panels will be then placed between dies and deformed by pneumatic or hydraulic internal pressure such that the inner flow paths of the profile tubes are inflated.
- the sheet metal shell 1 shown in FIG. 1 is constructed like a frame and has two round cutouts 2a, b in the middle of two opposite longitudinal sides of the frame to form two collecting tubes. Furthermore, a plurality of parallel longitudinal slots 4, which are regularly interrupted by connecting webs 3, are provided in such a way that continuous longitudinal strips 5 extending from the area of the recesses 2a, b to the transverse sides of the frame are formed to form walls of the profile tube.
- the sheet metal shell 1 is profiled in the region of the longitudinal strips 5 in a trough-like manner to form profile tubes which are approximately elliptical in cross section.
- FIG. 2 shows how a layer of profile tubes is formed by two sheet metal shells 1a, b lying one on top of the other.
- the sheet metal shells 1a, b are correspondingly profiled in the area of the longitudinal strips 5.
- the longitudinal slots 4 are interrupted by the connecting webs 3.
- the profile tubes 6 are formed in that the longitudinal strips 5 along their edges 7 z. B. be joined together by welding.
- Adjacent profile tube layers 8a, b are arranged offset such that the profile tubes 6 of one layer 8a are arranged in the region of the longitudinal slots 4 of the second profile tube layer 8b.
- Rivets with two rivet heads 9a, b are let into the connecting webs 3 on both sides of the sheet metal shells 1a, b.
- depressions 10 are provided in the profile tubes 6 of the profile tube layer 8b above and below them, in which the contacting wall sections are welded together. These depressions 10 are preferably provided in the area of the rivet heads 9a, b of the adjacent profile tube layer 8a. However, they can also be arranged in between if this is necessary due to the internal pressure.
- FIG. 3 shows a cross section through three adjacent profile tube layers 8a, b, c, which shows how the rivet heads 9a, b of a profile tube layer 8b interact with the depressions 10 of the adjacent profile tube layers 8a, c.
- the two sheet metal shells 1a, b are soldered or welded to one another at the depressions 10 in the region of the contact points 11.
- 4 is the 3 shown in longitudinal section of the profile tube 6, wherein it can be seen that the depressions 10 are punctiform.
- FIG. 5 An alternative embodiment of the connecting webs 3 is shown in FIG. 5, in which the spacing between two adjacent profile tube layers 8a, b takes place through bent-back side flaps 13 of the connecting webs 3.
- FIG. 6 An alternative embodiment of the connecting webs 3 is shown in FIG. 5, in which the spacing between two adjacent profile tube layers 8a, b takes place through bent-back side flaps 13 of the connecting webs 3.
- FIG. 6 An alternative embodiment of the connecting webs 3 is shown in FIG. 5, in which the spacing between two adjacent profile tube layers 8a, b takes place through bent-back side flaps 13 of the connecting webs 3.
- VI-VI which is shown in Fig. 6
- the profiled tube 6a has regularly spaced depressions 10 which are connected to one another along their contact points 11.
- the version 6b has a longitudinally extending support bar 15b, which is alternately bent in one and in the other direction in order to achieve a sufficient connection surface with the profile tube walls 14a, b. Furthermore, the support bar 15b has regularly distributed recesses 16, which contributes to a reduction in weight.
- the version 6c has a continuous, cross-sectionally concave support strip 15c, which is connected to the two profile tube walls 14a, b.
- the profile tube 6d has a straight support bar 15d that is regularly perforated.
- the embodiment for a profiled tube 6e shows a serpentine strip 18, which is also connected to the two profiled tube walls 14a, b.
- the embodiment 6f finally shows a zigzag-like strip 18, which can be produced, for example, by stretching from an originally straight strip.
- the two sheet metal shells 1a, b are bent up and are pressed against one another by two co-operating rollers 19a, b.
- the sheet metal shells 1a, b are simultaneously drawn into the gap between the rollers 19a, b.
- the sheet metal shells 1a, b are connected to an AC generator 21 via contacts 20a, b.
- a high-frequency alternating voltage is passed over the sheet metal shells 1a, b to their connection point 22 in the gap between the rollers 19a, b.
- the AC generator 21 supplies currents in the range of a few amperes at frequencies of approximately 10 MHz to 1 GHz.
- the specialist chooses the exact parameters depending on the material, geometry and dimensions.
- the heat exchanger elements produced in this way and consisting of two complementary sheet metal shells 1a, b are then stacked on top of one another and soldered to one another in another way, for example by means of diffusion welding or by applying solder material in the area around the cutouts 2a, b.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE3914774A DE3914774A1 (de) | 1989-05-05 | 1989-05-05 | Waermetauscher |
| DE3914774 | 1989-05-05 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0396131A2 EP0396131A2 (de) | 1990-11-07 |
| EP0396131A3 EP0396131A3 (de) | 1991-07-10 |
| EP0396131B1 true EP0396131B1 (de) | 1993-09-29 |
Family
ID=6380108
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP90108360A Expired - Lifetime EP0396131B1 (de) | 1989-05-05 | 1990-05-03 | Wärmetauscher |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US5086837A (enrdf_load_stackoverflow) |
| EP (1) | EP0396131B1 (enrdf_load_stackoverflow) |
| JP (1) | JPH0351695A (enrdf_load_stackoverflow) |
| DE (2) | DE3914774A1 (enrdf_load_stackoverflow) |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4122961A1 (de) * | 1991-07-11 | 1993-01-14 | Kloeckner Humboldt Deutz Ag | Waermeaustauscher |
| DE4129215C2 (de) * | 1991-09-03 | 2003-04-30 | Behr Gmbh & Co | Verfahren zum Herstellen von Flachrohren mit Turbulenzeinlagen und Flachrohre |
| US5636527A (en) * | 1995-11-15 | 1997-06-10 | The Ohio State University Research Foundation | Enhanced fluid-liquid contact |
| FR2754595B1 (fr) * | 1996-10-11 | 1999-01-08 | Ziemann Secathen | Echangeur de chaleur, et faisceau d'echange de chaleur, ainsi que procedes de soudage et de realisation s'y rapportant |
| EP1274923B1 (de) * | 2000-04-15 | 2006-08-23 | Audi Ag | Abgasanlage für brennkraftmaschinen |
| US8087452B2 (en) * | 2002-04-11 | 2012-01-03 | Lytron, Inc. | Contact cooling device |
| US20040003916A1 (en) * | 2002-07-03 | 2004-01-08 | Ingersoll-Rand Energy Systems, Inc. | Unit cell U-plate-fin crossflow heat exchanger |
| DE10333577A1 (de) * | 2003-07-24 | 2005-02-24 | Bayer Technology Services Gmbh | Verfahren und Vorrichtung zur Entfernung von flüchtigen Substanzen aus hochviskosen Medien |
| US7637313B2 (en) * | 2004-04-14 | 2009-12-29 | Panasonic Corporation | Heat exchanger and its manufacturing method |
| KR200361913Y1 (ko) * | 2004-06-30 | 2004-09-14 | 주식회사 엘지화학 | 접합부가 볼트로 체결된 난방용 패널 |
| EP1705445A1 (en) * | 2005-03-04 | 2006-09-27 | Methanol Casale S.A. | Method for the production of plate type heat exchangers and related apparatus |
| EP2018906A1 (en) * | 2007-07-19 | 2009-01-28 | Methanol Casale S.A. | Heat exchange unit for isothermal chemical reactors |
| US9683789B2 (en) * | 2009-11-24 | 2017-06-20 | Air To Air Sweden Ab | Method of producing multiple channels for use in a device for exchange of solutes or heat between fluid flows |
| ITMI20110465A1 (it) * | 2011-03-24 | 2012-09-25 | Rosella Rizzonelli | Dispositivo scambiatore di calore. |
| FR2997644B1 (fr) * | 2012-11-08 | 2015-05-15 | Technicatome | Procede de soudage par diffusion |
| DE112015003388T5 (de) * | 2014-07-21 | 2017-04-27 | Dana Canada Corporation | Wärmetauscher mit Strömungshindernissen zum Verringern von Fluidtotzonen |
| FR3024224B1 (fr) * | 2014-07-25 | 2018-12-07 | Airbus Helicopters | Echangeur thermique a plaques avec renforts structurels pour turbomoteur |
| RU2699851C1 (ru) * | 2019-05-20 | 2019-09-11 | Акционерное общество "ОДК-Климов" | Трубчатый теплообменник |
| JP7641478B2 (ja) * | 2020-10-27 | 2025-03-07 | 有限会社和氣製作所 | 熱交換器 |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2957679A (en) * | 1955-06-02 | 1960-10-25 | Olin Mathieson | Heat exchanger |
| US2868519A (en) * | 1957-09-06 | 1959-01-13 | Louis G Tocci | Dry material mixing machine |
| FI64859C (fi) * | 1976-01-22 | 1984-01-10 | Oestbo John D B | Vaermevaexlare |
| US4270602A (en) * | 1978-08-30 | 1981-06-02 | The Garrett Corporation | Heat exchanger |
| DE3242845C2 (de) * | 1982-11-19 | 1986-03-20 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Wärmetauscher für Gase stark unterschiedlicher Temperaturen |
| DE3543893A1 (de) * | 1985-12-12 | 1987-06-25 | Mtu Muenchen Gmbh | Waermetauscher |
| DE3636762C1 (de) * | 1986-10-29 | 1988-03-03 | Mtu Muenchen Gmbh | Waermetauscher |
| DE3726058A1 (de) * | 1987-08-06 | 1989-02-16 | Mtu Muenchen Gmbh | Waermetauscher fuer gase stark unterschiedlicher temperaturen, insbesondere in kreuz-gegenstrom-bauweise |
| GB8719473D0 (en) * | 1987-08-18 | 1987-09-23 | Cesaroni A J | Headers for heat exchangers |
| US4860823A (en) * | 1988-03-02 | 1989-08-29 | Diesel Kiki Co., Ltd. | Laminated heat exchanger |
-
1989
- 1989-05-05 DE DE3914774A patent/DE3914774A1/de active Granted
-
1990
- 1990-05-02 JP JP2116681A patent/JPH0351695A/ja active Pending
- 1990-05-03 EP EP90108360A patent/EP0396131B1/de not_active Expired - Lifetime
- 1990-05-03 DE DE90108360T patent/DE59002877D1/de not_active Expired - Fee Related
- 1990-05-04 US US07/520,038 patent/US5086837A/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| EP0396131A2 (de) | 1990-11-07 |
| US5086837A (en) | 1992-02-11 |
| DE59002877D1 (de) | 1993-11-04 |
| DE3914774C2 (enrdf_load_stackoverflow) | 1992-12-03 |
| EP0396131A3 (de) | 1991-07-10 |
| DE3914774A1 (de) | 1990-11-08 |
| JPH0351695A (ja) | 1991-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0396131B1 (de) | Wärmetauscher | |
| DE2619371C3 (de) | Verfahren zur Herstellung hohler Gegenstände, insbesondere Sonnenkollektoren, und nach dem Verfahren hergestellter hohler Gegenstand, insbesondere plattenförmiger Körper | |
| DE102012204178B3 (de) | Mikrostrukturbauteil und Verfahren zu dessen Herstellung | |
| DE69102000T2 (de) | Rohr und Verfahren zur Herstellung. | |
| DE69013619T2 (de) | Verfahren zur Herstellung eines Wärmetauschers. | |
| DE69002684T2 (de) | Katalysatorträger und Zusammenbau. | |
| DE4039293C3 (de) | Wärmeaustauscher | |
| DE3726868C2 (enrdf_load_stackoverflow) | ||
| DE4416147C2 (de) | Anwendung des Innenhochdruckumformverfahrens zum Herstellen eines gekrümmten metallischen Längshohlkörpers und eine hierfür einsetzbare Innenhochdruckumformpresse | |
| EP0396132B1 (de) | Wärmetauscher aus mindestens zwei Sammelrohren | |
| EP1235655B1 (de) | Verbindung zwischen zwei- oder mehrflächig aufeinanderliegenden dünnen bahnförmigen lagen, insbesondere zwischen zwei eine kontinuierliche behandlung erfahrenden bänder | |
| DE69603383T2 (de) | Wärmetauscher und Verfahren zu seiner Herstellung | |
| DE2622673C3 (de) | Verfahren zum kontinuierlichen Verschweißen der Schmalseiten von streifenformigen Stegen mit Rohren durch Widerstandserhitzung mittels Hochfrequenz | |
| CH624793A5 (enrdf_load_stackoverflow) | ||
| DE2939431A1 (de) | Zusammengesetzte metallplatte und verfahren zu ihrer herstellung | |
| DE69609460T2 (de) | Rohr mit Zwischenwand, Endkammer eines Wärmetauschers und sein Herstelllungsverfahren | |
| CH384008A (de) | Verfahren zur Herstellung von Wärmetauschern | |
| DE69402057T2 (de) | Verfahren zum zusammenfügen von flanschen oder ähnlichen verbindungsteilen bei einem heizkörperbündel | |
| DE4322405C2 (de) | Verfahren zur Herstellung von Wärmetauscherelementen | |
| EP3507046B1 (de) | Verfahren zur herstellung eines plattenwärmeübertragerblocks mit gezielter applikation des lotmaterials auf, insbesondere fins und sidebars | |
| DE2936148B2 (de) | Stützgitter für Wärmeübertrager und Verfahren zu seiner Herstellung | |
| EP1529934B1 (de) | Verfahren zur Herstellung eines Katalysatorkörpers und durch das Verfahren herstellbarer Katalysatorkörper | |
| DE69211959T2 (de) | Plattenstruktur und Verfahren zur dessen Herstellung | |
| DE3447145A1 (de) | Verfahren zur herstellung zylindrische waermetauschersammelrohrstrukturen bildender ringscheibenartiger bauteile | |
| EP4396395B1 (de) | Verfahren zum herstellen einer metallischen trägerstruktur für eine elektrode, metallische trägerstruktur und elektrode |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB IT LI SE |
|
| 17P | Request for examination filed |
Effective date: 19901220 |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE FR GB IT LI SE |
|
| 17Q | First examination report despatched |
Effective date: 19920203 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| ITF | It: translation for a ep patent filed | ||
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI SE |
|
| ET | Fr: translation filed | ||
| REF | Corresponds to: |
Ref document number: 59002877 Country of ref document: DE Date of ref document: 19931104 |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940106 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940419 Year of fee payment: 5 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940420 Year of fee payment: 5 Ref country code: CH Payment date: 19940420 Year of fee payment: 5 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940421 Year of fee payment: 5 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940425 Year of fee payment: 5 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| EAL | Se: european patent in force in sweden |
Ref document number: 90108360.0 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950503 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950504 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950531 Ref country code: CH Effective date: 19950531 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950503 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960201 |
|
| EUG | Se: european patent has lapsed |
Ref document number: 90108360.0 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960229 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050503 |